Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben"

Átírás

1 Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben I. A kvantifikáció a klasszikus Frege-féle kvantifikációelméletben A kvantifikáció klasszikus kezelése Gottlob Fregétől származik (a 19. század végéről). Egyik legfontosabb teljesítménye a kvantorok hatókörének sikeres kezelése. a) x y [férfi(x) (szeret(x,y) & nő(y))] b) y x [férfi(x) (szeret(x,y) & nő(y))] A két formula értelmezése különbözik egymástól: a) akkor igaz, amikor minden egyes férfira a tárgyalási univerzumban teljesül, hogy van legalább egy olyan nő a tárgyalási univerzumban, akit ez a férfi szeret. b) akkor igaz, amikor van legalább egy olyan nő a tárgyalási univerzumban, akire igaz, hogy a tárgyalási univerzumban szereplő minden egyes férfi szereti őt. a)-ban az univerzális kvantornak tág hatóköre van (wide scope), az egzisztenciális kvantornak szűk hatóköre (narrow scope); b)-ben fordítva. A kvantorok értelmezése során kívülről befelé kell haladni (ez egymásnak szerkezetileg aláfölérendelt kvantorok esetében azonos a balról jobbra iránnyal). Az univerzális kvantor azt mondja, hogy nézzük végig az összes individuumot a tárgyalási univerzumban, és ellenőrizzük, hogy a kvantor hatókörében álló formula teljesül-e. Ha találunk egyetlen olyan individuumot is, akire nem teljesül, akkor az univerzálisan kvantifikált formula hamis. Az egzisztenciális kvantor pedig azt, hogy nézzük végig a tárgyalási univerzumban szereplő individuumokat addig, amíg nem találunk egy olyat, amire teljesül a kvantor hatókörében álló formula. Ha találtunk egy ilyen individuumot, akkor az egzisztenciálisan kvantifikált formula igaz lesz. Példa: A nyelv tulajdonnevei: Anna, Beáta, Cecília, Dénes, Elemér, Ferenc A nyelv egyargumentumú predikátumai: férfi, nő A nyelv kétargumentumú predikátuma: szeret [[ Anna ]] M = Anna ( U) [[ Beáta ]] M = Beáta ( U) stb. [[ férfi ]] M = férfi = Dénes, Elemér, Ferenc [[ nő ]] M = nő = Anna, Beáta, Cecília [[ szeret ]] M = szeret = {<Dénes, Anna>, <Dénes, Cecília>, <Elemér, Cecília>, <Ferenc, Beáta>} x y [férfi(x) (szeret(x,y) & nő(y))] x y állítás igaz? Anna Anna Anna férfi (<Anna, Anna> szeret & Anna (a kondícionális előtagja hamis) Beáta Anna Beáta férfi (<Beáta, Anna> szeret & Anna (ugyanezért) Cecília Anna Cecília férfi (<Cecília, Anna> szeret & Anna (ugyanezért) Dénes Anna Dénes férfi (<Dénes, Anna> szeret & Anna

2 Elemér Anna Elemér férfi (<Elemér, Anna> szeret & Anna (a kondícionális előtagja igaz, de <Elemér,Anna> szeret, így az utótagja hamis) Elemér Beáta Elemér férfi (<Elemér, Beáta> szeret & Beáta (ugyanezért, de: <Elemér,Beáta> szeret) Elemér Cecília Elemér férfi (<Elemér, Cecília> szeret & Cecília Ferenc Anna Ferenc férfi (<Ferenc, Anna> szeret & Anna (a kondícionális előtagja igaz, de <Ferenc,Anna> szeret, így az utótagja hamis) Ferenc Beáta Ferenc férfi (<Ferenc, Beáta> szeret & Beáta Az x oszlop univerzálisan van kvantifikálva, ezért amíg nem találunk olyan esetet, hogy x-re hamis az állítás (adott esetben amikor y minden értékére hamis az állítás), és így hamis az univerzális kvantifikáció, addig végig kell néznünk x összes lehetséges értékét. Ha egy olyan modellt veszünk, ami azonos az előbbivel, attól eltekintve, hogy pl. [[ szeret ]] M = {<Dénes, Anna>, <Elemér, Dénes>, <Ferenc, Anna>}, akkor az elemzés az x = Elemér esettől kezdve a következő lenne a táblázat: Dénes Anna Dénes férfi (<Dénes, Anna> szeret & Anna Elemér Anna Elemér férfi (<Elemér, Anna> szeret & Anna Elemér Beáta Elemér férfi (<Elemér, Beáta> szeret & Beáta Elemér Cecília Elemér férfi (<Elemér, Cecília> szeret & Cecília Elemér Dénes Elemér férfi (<Elemér, Dénes> szeret & Dénes (Dénes Elemér Elemér Elemér férfi (<Elemér, Elemér> szeret & Elemér Elemér Ferenc Elemér Ferenc (<Elemér, Ferenc> szeret & Ferenc Az x = Ferenc esetet nem kell megnéznünk, mert x = Elemér esetre hamis volt az univerzális kvantor hatókörében álló formula, így az univerzális kvantoros formula már biztosan hamis. A klasszikus kvantifikációelméletben a kvantifikáció korlátozatlan (unrestricted), azaz mindig a teljes tárgyalási univerzum felett kvantifikálunk, és egyáltalán nincs mód arra, hogy a kvantifikációs tartományt a tárgyalási univerzum valamely részhalmazára korlátozzuk. A természetes nyelvi kvantifikáció viszont egyáltalán nem tűnik korlátozatlannak. Pl.: Minden asztalon van egy toll. Amikor ezt a mondatot használjuk, nem vesszük számításba a világ (szituáció) összes individuumát, hanem csak az asztalok, illetve a tollak felett kvantifikálunk, a világ (szituáció) többi individuumával egyáltalán nem törődünk. A kvantifikáció klasszikus logikai kezelése a természetes nyelvi beszélői intuíciónk felől nézve kifejezetten abszurd. Ettől függetlenül helyesen ragadja meg a megfelelő természetes nyelvi kvantorok igazságfeltételeit. A kvantorhoz tartozó korlátozást az univerzális kvantornál kondicionálissal, az egzisztenciálisnál konjunkcióval tudjuk kifejezni. Ez viszont csak fenntartásokkal működik. A konjunkció kommutativitása miatt pl.: x (egér (x) & fehér (x)) x (fehér (x) & egér (x)) Van olyan egér, amelyik fehér., ill. Van olyan fehér dolog, amelyik egér. Mivel a természetes nyelvi kvantifikáció nem korlátozatlan, így nem könnyű belátni, hogy a két mondat ekvivalens (bár igazságfeltételeik valóban azonosak).

3 A klasszikus logika kvantifikációelméletével kapcsolatban egy szokásos ellenpélda a legtöbb kvantor. Legyen egy M-mel jelölt kvantorunk, aminek a jelentése legyen az, hogy legtöbb, mégpedig abban az értelemben, hogy: [[ Mx P(x) ]] = 1 akkor és csak akkor, ha az univerzum individuumainak több, mint a fele eleme a P által jelölt halmaznak ( P > U /2 ). Hogyan tudjuk kifejezni ezzel a kvantorral azt, hogy A legtöbb varjú fekete.? Mx (varjú(x) & fekete(x))? Mx (varjú(x) fekete(x))? Ezek a megoldások nem járnak sikerrel, és egyetlen más megoldás sem, és a legtöbb kvantort önálló kvantorként egyáltalán nem is lehet korlátozatlan kvantifikációelméletben kifejezni. Az igazságfeltételeit meg lehet adni numerikus kvantorok segítségével: n( (n) & ( n x (fekete(x) & varjú(x)) & ~ n x (~fekete(x) & varjú(x)))) Ezzel az ábrázolással viszont még jobban eltávolodunk a természetes nyelvi mondat szerkezetétől, mint az univerzális és egzisztenciális kvantornál. Másrészt ez a formula csupán rövidítése egy sokkal komplexebb (potenciálisan végtelen komplexitású) formulának, ami nem felel meg annak az intuíciónak, hogy az A legtöbb varjú fekete. mondat viszonylag egyszerű, könnyen ellenőrizhető állítást fejez ki. A klasszikus fregei kvantifikációelméletben könnyű univerzális és egzisztenciaállításokat kifejezni, viszont viszonylag körülményes mennyiségeket, illetve mennyiségek közötti viszonyokat kifejezni. Az ilyen tényezők kifejezésére kiválóan alkalmas viszont az ún. általánosított kvantorok elmélete. II. Az általánosított kvantorok elmélete a nyelvészeti szemantikában Azt az elképzelés, hogy érdemes lenne a kvantorok fogalmát általánosítani, a 20. század közepén vetették fel a matematikai logikában, majd létrejött az általánosított kvantorok elmélete. A nyelvészetre ez az elmélet egészen 1980 körülig nem volt hatással, míg Barwise és Cooper 1981-ben megjelent cikkükben felhívták a figyelmet az általánosított kvantorok nyelvészeti relevanciájára. Az általánosított kvantorok elmélete ugyanis lehetővé teszi a legkülönfélébb természetes nyelvi kvantorok szemantikájának leírását, és azt, hogy velük kapcsolatban különféle érdekes absztrakt tulajdonságokat tárjunk fel. Az általánosított kvantorok elméletének nyelvészeti változata szerint a természetes nyelvi mondatok szerkezetét máshogy bontjuk fel, mint az elsőrendű predikátumlogika szerint. Pl. Minden varjú fekete. Ez a mondat áll egy állítmányból (fekete) (ami egyargumentumú predikátum, faktuális értéke a tárgyalási univerzum egy részhalmaza), illetve egy főnévi csoportból (minden varjú), aminek a szemantikai értékét (faktuális értékét) általánosított kvantornak nevezzük. (Megjegyzés: A kvantor eszerint a terminológia szerint tehát nem egyszerűen a minden szó, mint a klasszikus kvantifikációelmélet példáiban, hanem az egész főnévi csoport.)

4 A főnévi csoportokat olyan funktoroknak tekintjük, amelyek bemenete predikátum és kimenete mondat. Ezeknek a funktoroknak a szemantikai értéke (tehát az általánosított kvantor) olyan függvény, amelynek bemenete a tárgyalási univerzum egy részhalmaza, kimenete pedig igazságérték (vagy ezzel ekvivalensen a tárgyalási univerzum hatványhalmazának egy részhalmaza). (Példa: A minden varjú általánosított kvantor az univerzum mindazon részhalmazaival azonos, amelyeknek eleme minden egyes varjú.) Az általánosított kvantorok maguk is összetettek: állnak egy (esetleg több) predikátumból és egy ún. determinánsból (determiner). A minden varjú főnévi csoport áll a minden determinánsból és a varjú predikátumból. A determináns olyan funktor, aminek a bemenete predikátum, kimenete pedig egy főnévi csoport. (Példa: A minden determináns bemenete itt a varjú predikátum, kimenete a minden varjú főnévi csoport.) A determináns faktuális értéke olyan függvény, amelynek bemenete az univerzum egy részhalmaza, kimenete pedig általánosított kvantor (azaz olyan függvény, amelynek bemenete a tárgyalási univerzum egy részhalmaza, kimenete pedig igazságérték). A determinánsok faktuális értékét úgy is felfoghatjuk, mint az univerzum két részhalmaza közötti relációt. A logikai formula felépítése lényegében megegyezik a természetes nyelvi formula felépítésével: (minden (varjú)) (fekete) szemantikai értéke pedig: [[ (minden (A)) (B) ]] = 1 akkor és csak akkor, ha A B. további példák: [[ (van (A)) (B) ]] = 1 akkor és csak akkor, ha A B. [[ (egyetlen (A)) sem (B) ]] = 1 akkor és csak akkor, ha A B =. [[ (az (A)-k többsége) (B) ]] = 1 akkor és csak akkor, ha A B > A B [[ (kevesebb mint öt (A)) (B) ]] = 1 akkor és csak akkor, ha A B < 5. Tovább is általánosíthatjuk a determinánsok fogalmát, és megengedhetjük, hogy egyes determinánsok bemenete predikátumok rendezett n-ese legyen, pl: [[ (több (A) mint (B)) (C) ]] = 1 akkor és csak akkor, ha A C > B C. Az elmélet keretében megfogalmazhatók bizonyos érdekes általánosítások a természetes nyelvi kvantorokkal kapcsolatban, amelyek megfogalmazására korábban nem volt megfelelő fogalmi keretünk, pl.: Minden (esetleg majdnem minden) természetes nyelvi determináns konzervatív. Konzervativitás: Egy Q determinánst akkor mondunk konzervatívnak, ha (Q(A))(B) (Q(A))(A B) vagy másként megfogalmazva: ha A B = A C, akkor (Q(A))(B) (Q(A))(C) Azaz: A determinánssal alkotott általánosított kvantor csak arra a részére kiváncsi annak a B halmaznak (az ő argumentumának), amelyik része B-nek része annak az A halmaznak is, amely az általánosított kvantor részét alkotja.

5 Monotonitás: Monotonnak hívunk egy determinánst akkor, ha a vele összekapcsolódó A és B halmazok valamelyikének a tágítása, illetve szűkítése nem változtatja meg a mondat igazságát. Pontosabban: Egy olyan F függvényt, amely halmazhoz igazságértéket rendel (F po(u) 2), akkor és csak akkor mondunk növekvőnek, ha F(A) F(B), és akkor és csak akkor mondunk csökkenőnek, ha F(B) F(A); feltéve mindkét esetben, hogy A B. Monotonnak hívunk egy függvényt, ha növekvő vagy csökkenő. Egy D determinánst (D(A))(B) formulában balról monotonnak hívunk, ha a D által jelölt függvény az A halmazra vonatkoztatva monoton, és jobbról monotonnak hívunk, ha a D által jelölt függvény a B halmazra vonatkoztatva monoton. Eszerint: Balról monoton csökkenőnek hívunk egy olyan determinánst, amelyre teljesül, hogy: (D(A))(B) (D(A ))(B) bármely A -re, ahol A A (azaz ha az A halmazt szűkítjük, nem változik az állítás igazsága) Balról monoton növekvőnek hívunk egy olyan determinánst, amelyre teljesül, hogy: (D(A))(B) (D(A ))(B) bármely A -re, ahol A A (azaz ha az A halmazt bővítjük, nem változik az állítás igazsága) stb. Példák: (Legalább két (lány)) (fut) Legalább két lány fut. Legalább két ember fut. lány ember, tehát a legalább két determináns balról monoton növekvő. Ellenőrzésként: Legalább két lány fut. Legalább két szép lány fut. szép lány lány, tehát nem balról monoton csökkenő. Legalább két lány fut. Legalább két lány mozog. fut mozog, tehát jobbról monoton növekvő. Legalább két lány fut. Legalább két lány gyorsan fut. gyorsan fut fut, tehát nem jobbról monoton csökkenő. (Kevés (lány)) (fut) Feltéve, hogy: [[ (kevés (A)) (B) ]] = 1 akkor és csak akkor, ha A B < A /3. Megjegyzés: az arányszám nem valószínű, hogy teljesen pontosan rögzíthető, és kontextusfüggő. Vannak viszont olyan esetek is, ahol a kevés nem arányt fejez ki, hanem valamiféle abszolút mércéhez viszonyít: Naponta kevés ember hal meg közlekedési balesetben. (még akkor is hamis, ha ez a szám az összes ember/halálozás stb. számához képest csekély) Kevés lány fut. Kevés lány mozog. Kevés lány fut. Kevés lány fut gyorsan. Kevés lány fut. Kevés ember fut. Kevés lány fut. Kevés szép lány fut. A kevés balról nem monoton. a kevés nem jobbról monoton növekvő. jobbról monoton csökkenő. nem balról monoton növekvő. nem balról monoton csökkenő.

6 (Pontosan két (lány)) (fut) a pontosan két sem balról, sem jobbról nem monoton. (Minden (lány)) (fut) a minden balról monoton csökkenő, jobbról monoton növekvő. Polaritás a természetes nyelvekben A monoton csökkenő jellegnek különösen nagy szerepe van a természetes nyelvekben az ún. polaritás meghatározásában. Mindenki látott valakit. Everybody saw something. A mindenki monoton növekvő kvantor, a vele alkotott mondatokat pozitív polaritásúnak mondjuk. Ezzel szemben a senki monoton csökkenő kvantor, és negatív polaritású környezetet hoz létre: Nobody saw anything. Az angol mondatban megjelenő anything határozatlan névmás olyan kifejezés, amely csak negatív polaritású környezetben van engedélyezve (ún. negative polarity item). Negatív polaritású környezetnek általánosított kvantorok monoton csökkenő argumentumai számítanak. Általánosított kvantorok és korlátozott kvantifikáció Az általánosított kvantorokkal korlátozott kvantifikációt is ki tudunk fejezni. Azt a predikátumot, amivel összekapcsolódva a determináns az általánosított kvantort alkotja, gyakran korlátozásnak (restriction) hívja az irodalom. A fregei korlátozatlan kvantifikációt is ki lehet fejezni általánosított kvantorokkal. (minden (U))(λx [Px Qx]) ( x (Px Qx)) ahol U az a predikátum, amely a tárgyalási univerzum minden elemére és csak ezekre teljesül. A nyelvészeti irodalomban az általánosított kvantorokat gyakran a következő formában is fel szokták írni: x:px (Qx) Ez a (minden(p))(q) általánosított kvantoros mondat jelölési variánsa. Irodalom: BARWISE, J./R. COOPER (1981) Generalized quantifiers and natural language. Linguistics and Philosophy 4, KEENAN, E. L./J. STAVI (1986) A semantic characterization of natural language determiners. Linguistics and Philosophy 6, KEENAN, E. L. (1996) The semantics of determiners. In: S. LAPPIN (szerk.): The Handbook of contemporary semantic theory. Oxford: Blackwell, KEENAN, E. L./D. WESTERSTÅHL (1997) Generalized quantifiers in linguistics and logic. In: J. VAN BENTHEM/A. TER MEULEN (szerk.): The handbook of logic and language. Amsterdam/Cambridge: Elsevier/MIT Press,

Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek

Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek Matematikai logika A logika tudománnyá válása az ókori Görögországban kezd dött. Maga a logika szó is görög eredet, a logosz szó jelentése: szó, fogalom, ész, szabály. Kialakulása ahhoz köthet, hogy már

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5 1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat

Részletesebben

Halmazelmélet. 2. fejezet 2-1

Halmazelmélet. 2. fejezet 2-1 2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz

Részletesebben

Logika nyelvészeknek, 12. óra A típuselmélet alapjai. Lehetőség van a kvantorfogalom mellett a funktorfogalom általánosítására is.

Logika nyelvészeknek, 12. óra A típuselmélet alapjai. Lehetőség van a kvantorfogalom mellett a funktorfogalom általánosítására is. Logika nyelvészeknek, 12. óra A típuselmélet alapjai Lehetőség van a kvantorfogalom mellett a funktorfogalom általánosítására is. Az L 1 elsőrendű nyelvben csak bizonyos típusú funktoraink voltak: ami

Részletesebben

Logika és számításelmélet. 2011/11 11

Logika és számításelmélet. 2011/11 11 (Logika rész) Logika és számításelmélet. 2011/11 11 1. előadás 1. Bevezető rész Logika (és a matematikai logika) tárgya Logika (és a matematikai logika) tárgya az emberi gondolkodás vizsgálata. A gondolkodás

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő ő Ő ö ű

ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő ő Ő ö ű ö ő ü ö ö ő ö ö ö ö ő ő ő ö ő ő ő ö ő ö ő ő ö ö ő ő ö ö ő ö ö ő ö ö ö ő ő ü ö ő ü ű ö ú ő ú ú ú ő ü ő ü ö ö ú ö ö ö ő ü ö ö ö ő ö ő ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

A matematika alapjai. Nagy Károly 2014

A matematika alapjai. Nagy Károly 2014 A matematika alapjai előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2014 1 1. Kijelentés logika, ítéletkalkulus 1.1. Definíció. Azokat a kijelentő mondatokat, amelyekről egyértelműen

Részletesebben

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

ASPEKTUS ÉS ESEMÉNYSZERKEZET A MAGYARBAN

ASPEKTUS ÉS ESEMÉNYSZERKEZET A MAGYARBAN ASPEKTUS ÉS ESEMÉNYSZERKEZET A MAGYARBAN OHNMACHT MAGDOLNA 1. Bevezetés Célom elkülöníteni az aspektust az eseményszerkezett l, valamint megadni egy eseményszerkezeti osztályozást a magyarra vonatkozóan,

Részletesebben

Ü Ú ű ö ö ö Ú ű Ú ö ö Ú Ü ö ű ű ö ö ö Ü ö ö Ü ö ö Ú ö Ú ö Ü Ú ö Ú ö Ü Ú Ú Ú ö ö ö Ú ö ű ö ö ö Ó ö ö ö ö ö ö ű ö ö Ö ö ű ű ö Ó ö ö Ú ö ö Ú Ó ÓÚ ö ö ö ö Ó Ú ű Ú ö ö ö ö ö ö ö ű ö ö ö ö ö ö ö ö ö ö ö ö ű

Részletesebben

ő ö ü ö ű ö Ó ű ő ő ő ő ú Ó ő ő ö ő ö Ó Ó ő Ó ő Ó ö ő ö Ó ő ő ő ö ő ö ő ö Ó ö ő ű ő ö Ó ö Ó Ó Ó Ó ö ő ö ő ü ö Ó Ó ő ü ő ö Ó ő ö ő ö ő ő ö Ö ö ö ő ő ő ö ő ö ő Ó ő ö ő ő ő ö ő ő ő ö ő ő Ó ö ő ő ü ő ö ü ő

Részletesebben

ü ü ő ő ü ő ü ő ü Ü ü Ő ő Ú ü ő Ü ü Ú Ó ű Ú Ó Ú Ó Ú ő Ú Ó Ó Ú Ó ű Ú Ó Ú Ó ő Ö Ú Ó Ó Ú Ó Ó ő Ö Ú Ó Ú Ó Ő Ő Ö ő ő Ő Ü Ó Ü ü Ő Ó ő ő ő ő Ó Ü ü ű ő Ó ő Ü ü ő ő ü Ú Ó Ő Ó ő Ő ű ő ü Ú Ú Ö Ö ő ő ő Ö Ő Ő ő ő ű

Részletesebben

ű ű ű ű ű Ü ű ű Ü Ő

ű ű ű ű ű Ü ű ű Ü Ő ű ű ű Ú ű ű ű ű ű Ü ű ű Ü Ő Ö Ó ű ű ű Ö Ö ű ű Ö Ü ű ű ű Ó ű ű Ö ű Ö Ú Ú ű ű Ú ű ű ű ű ű ű Ö ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ü Ü ű ű ű Ú ű ű Ö Ö Ü Ó ű Ú Ó Ó ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü Ü ű Ü ű ű ű ű ű ű Ó ű

Részletesebben

Mesterséges Intelligencia (Artificial Intelligence)

Mesterséges Intelligencia (Artificial Intelligence) Mesterséges Intelligencia (Artificial Intelligence) Bevezetés (ágens típusok, környezet tulajdonságai) Ágens: Környezetébe ágyazott (érzékelések, beavatkozások) autonóm rendszer (minimum válasz). [Bármi

Részletesebben

ú ú ú ű ú ú ú ú ú ú ú ű ú ú ű ű ű ú ú ú ú Ó ú ú ú ú Ü Ü Ü ú ű ű ú ú ú ú ú ű ű ú ú ű ú ű ú ú ű ú Ö Ö Ú Ü Ö ű ű ú ű ű ű ú ű ű ú ű ú ű ú ú ú ú ú ú ú ú ú ű ú ű ú ű ű Ú ú ű ú ú ú Ó ú ú ú ú ű ű ű ú ú ú ú ű ű

Részletesebben

A matematikai logika alapjai

A matematikai logika alapjai A matematikai logika alapjai A logika a gondolkodás törvényeivel foglalkozó tudomány A matematikai logika a logikának az az ága, amely a formális logika vizsgálatára matematikai módszereket alkalmaz. Tárgya

Részletesebben

A Szerzői Jogi Szakértő Testület szakvéleményei

A Szerzői Jogi Szakértő Testület szakvéleményei A Szerzői Jogi Szakértő Testület szakvéleményei Szakirodalmi mű változatainak összehasonlító vizsgálata Ügyszám: SZJSZT 16/2005 A Bíróság által feltett kérdések: 1. A felperes által írt, lektorált, a 8.

Részletesebben

Matematikai logika. Nagy Károly 2009

Matematikai logika. Nagy Károly 2009 Matematikai logika előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2009 1 1. Elsőrendű nyelvek 1.1. Definíció. Az Ω =< Srt, Cnst, F n, P r > komponensekből álló rendezett négyest elsőrendű

Részletesebben

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006 A matematika alapjai 1 A MATEMATIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2006 Köszönöm Koós Gabriella végzős hallgatónak, hogy felhívta a figyelmemet az anyag előző változatában szereplő néhány

Részletesebben

1 Rendszer alapok. 1.1 Alapfogalmak

1 Rendszer alapok. 1.1 Alapfogalmak ÉRTÉKTEREMTŐ FOLYAM ATOK MENEDZSMENTJE II. RENDSZEREK ÉS FOLYAMATOK TARTALOMJEGYZÉK 1 Rendszer alapok 1.1 Alapfogalmak 1.2 A rendszerek csoportosítása 1.3 Rendszerek működése 1.4 Rendszerek leírása, modellezése,

Részletesebben

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. Halmazok Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x H,

Részletesebben

MONDATTAN SZEMINÁRIUM A mellérendelő szintagma

MONDATTAN SZEMINÁRIUM A mellérendelő szintagma MONDATTAN SZEMINÁRIUM A mellérendelő szintagma Ajánlott irodalom: K. Balogh Judit 1989. A mellérendelő szószerkezetek és határeseteik. In: Rácz Endre (szerk.) Fejezetek a magyar leíró nyelvtan köréből.

Részletesebben

Válasz Páles Zsolt opponensi véleményére

Válasz Páles Zsolt opponensi véleményére Válasz az opponenseknek Köszönöm az opponensek elismerő szavait és a játékelmélet szerepének az értekezésen túlmutató pozitív értékelését. A bírálatra válaszaimat a bírálóknak külön-külön tételesen, az

Részletesebben

Az 5-2. ábra két folyamatos jel (A és B) azonos gyakoriságú mintavételezését mutatja. 5-2. ábra

Az 5-2. ábra két folyamatos jel (A és B) azonos gyakoriságú mintavételezését mutatja. 5-2. ábra Az analóg folyamatjeleken - mielőtt azok további feldolgozás (hasznosítás) céljából bekerülnének a rendszer adatbázisába - az alábbi műveleteket kell elvégezni: mintavételezés, átkódolás, méréskorrekció,

Részletesebben

ö ö ö ö ő ö ö ő ö ő ő ő ö ö ő ő ö ö ő ő ű ű ő ő ö ű ő ö ö ő ö ő ö ú ő ö ű ű ő ő ö ű ő ö ö ű ű ő ö ű ő ö ö ű ű ű ű ű ű ű ö ű ő É ö ú ö ö ö ö Ő ö ö ö ö ő ö ö ő ö ö ő ö ö ő ű ö ö ö ö ö ö ő Ö ő ö ö ő ö ő ö

Részletesebben

Pöntör Jenõ. 1. Mi a szkepticizmus?

Pöntör Jenõ. 1. Mi a szkepticizmus? Pöntör Jenõ Szkepticizmus és externalizmus A szkeptikus kihívás kétségtelenül az egyik legjelentõsebb filozófiai probléma. Hogy ezt alátámasszuk, elég csak arra utalnunk, hogy az újkori filozófiatörténet

Részletesebben

Megoldások. 2001. augusztus 8.

Megoldások. 2001. augusztus 8. Megoldások 2001. augusztus 8. 1 1. El zetes tudnivalók a különböz matematikai logikai nyelvekr l 1.1. (a) Igen (b) Igen (c) Nem, mert nem kijelent mondat. (d) Nem fejez ki önmagában állítást. "Ádám azt

Részletesebben

ő Ö ő ó ő ó ő ő ó ő ő ő ó ő ú ó ő ú ő ú ő ő ú ó ő ő ú ő ő ő ú ú ű ú ő ó ő ű ó ő ő ú ő ő ő ú ú ő ó ű ő ő Ö úú ő ó ú Ö ó ó ő ő Ö ó ú ő ő ő ú ő ó ő ó Ö ó ú Ű ő ő ó ő ő ó ő ú Ö ú Ö ő ő ú ú ő ő ú ú ó ó ő ó

Részletesebben

A feladatlap valamennyi részének kitöltése után, küldje meg konzulensének!

A feladatlap valamennyi részének kitöltése után, küldje meg konzulensének! Beküldendő A feladatlap valamennyi részének kitöltése után, küldje meg konzulensének! 1. Mini-projektterv Záródolgozat Projekt a gyakorlatban Osztály/csoport: 7. és 8. osztály német nemzetiségi tagozatos

Részletesebben

DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint 25.5.5. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐDÁS: LOGIKI (OOLE) LGER ÉS LKLMÁSI IRODLOM. ÉS 2. ELŐDÁSHO rató könyve2-8,

Részletesebben

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését

Részletesebben

VERSENYTANÁCS. h a t á r o z a t o t.

VERSENYTANÁCS. h a t á r o z a t o t. VERSENYTANÁCS Ügyszám: Vj-137/2006/23. A Gazdasági Versenyhivatal Versenytanácsa a Sláger Rádió Műsorszolgáltató Zrt. (Budapest) eljárás alá vont vállalkozás ellen fogyasztói döntések tisztességtelen befolyásolása

Részletesebben

ÉS TESZTEK A DEFINITSÉG

ÉS TESZTEK A DEFINITSÉG MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001

Részletesebben

ú ú ú Ú ú ú ő ő ú ű ú ő ő ú ő ú ő ő Ó Ó ő ű ő ő ú ő Ó Ó ú ú ú Ú ü ú ú ő Ü ü ő ü ő ő ú ú ő ő ú ő ő ü ü ú ő ű ü ő ő Ü ű ű ű ű ú ü ü ő ú Ö ű ű ő ú Ü ú ü ő ú ő ü ő ű Á Ü Ó Ó ű ü Ü ü ú Ü ő ő ő ő ő ő ő ü Ü ü

Részletesebben

1. Logikailag ekvivalens

1. Logikailag ekvivalens Informatikai logikai alapjai Mérnök informatikus 4. gyakorlat 1. Logikailag ekvivalens 1. Az alábbi formulák közül melyek logikailag ekvivalensek a ( p p) formulával? A. ((q p) q) B. (q q) C. ( p q) D.

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Halmazok-előadás vázlat

Halmazok-előadás vázlat Halmazok-előadás vázlat Naiv halmazelmélet:. Mi a halmaz? Mit jelent, hogy valami eleme a halmaznak? Igaz-e, hogy a halmaz elemei valamilyen kapcsolatban állnak egymással? Jelölés: a A azt jelenti, hogy

Részletesebben

Tervezett erdőgazdálkodási tevékenységek bejelentése

Tervezett erdőgazdálkodási tevékenységek bejelentése Tervezett erdőgazdálkodási tevékenységek bejelentése ERDŐGAZDÁLKODÁSI HATÓSÁGI BEJELENTÉSEK/ TERVEZETT ERDŐGAZDÁLKODÁSI TEV. BEJELENTÉSE A Tervezett erdőgazdálkodási tevékenységek bejelentése a fakitermelési

Részletesebben

Mindenki tud úszni. Nincs olyan, aki ne tudna úszni.

Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. Kvantoros logikai ekvivalenciák Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. x(úx) ~ x(~úx) Kvantoros logikai ekvivalenciák Mindenki tud úszni.

Részletesebben

INFORMATIKA KÖZÉPSZINT%

INFORMATIKA KÖZÉPSZINT% Szövegszerkesztés 1. Ivóvíz Prezentáció, grafika és weblapkészítés 2. Italos karton Táblázatkezelés 3. Bérautó Adatbázis-kezelés 4. Felajánlás maximális A gyakorlati vizsgarész a 120 40 30 30 20 elért

Részletesebben

8. előadás EGYÉNI KERESLET

8. előadás EGYÉNI KERESLET 8. előadás EGYÉNI KERESLET Kertesi Gábor Varian 6. fejezete, enyhe változtatásokkal 8. Bevezető megjegyzések Az elmúlt héten az optimális egyéni döntést elemeztük grafikus és algebrai eszközökkel: a preferenciatérkép

Részletesebben

Ú Ó ö Ő ö Ú Ú Ó Á Á ü ő ö Ú Ú Ó ű ő ő ő ő ü Á ö ü ö ö ő Ó Á Á ő Á Ú ö Ó Ű Ú Ó ű Á ő ő ő ö Ú ö ű ö ö ö ő Ó Á Á ű ű ö ü ű ü Á Á ű ű ö ü ű ü ü ö ü ő ü Ó Ó ő ő ő ő ű ö ő ű ü Á Á ő ü ő Ú Ó ü ö ő ő ö ő ö ö ő

Részletesebben

ő ő Ü ü Á ú ú ü ú ú ü ú ü ú ú ü ő ú Á ü ú Á ü ü ü ú Á Á Ó Ü ő ü ú ú ú ü ű ú Ü ü ű Ü ú Á ú Ó ő ü Ú ú Á ő ő ú ű Á ú ü ő Á ú ú Á ú Á ú Ü Á Ö ú ú ő ő ú ű ü ő Á ő Ú ü Ö Á Á Á Á ő Ü Ö ü Ú Ö Á Á ú ő Ú Á Á ü

Részletesebben

ű ű ű ű ű ű Ú ű ű ű ű ű ű ű ű Ú ű ű ű Ú ű ű ű ű Ó ű ű ű ű Ü É ű ű ű ű ű ű ű ű ű ű ű ű Ú É ű ű ű É Ó Ú Ó Ü Ő Ó Ó ű É ű ű ű É ű É ű ű ű ű Ö Ü ű ű ű ű ű ű ű ű ű ű ű ű É ű É É ű Ö ű ű ű ű É ű ű ű ű ű ű ű Ö

Részletesebben

É Ú ű Ö ű ű ű ű ű Ü ű ű ű ű ű Ú Ü ű Ú Ö ű ű Ö ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ö Ö ű É ű Ö ű Ö Ú Ó ű ű Ü Ú ű É Ó ű ű ű Ö ű ű É ű É É Ö É É É É É Ö Ö É Ú É Ó Ú É É Ö Ö Ö ű Ó ű Ö ű ű ű ű

Részletesebben

Kétszemélyes négyes sor játék

Kétszemélyes négyes sor játék Kétszemélyes négyes sor játék segítségével lehetővé kell tenni, hogy két ember a kliens program egy-egy példányát használva négyes sor játékot játsszon egymással a szerveren keresztül. Játékszabályok:

Részletesebben

ö ó É ó Ú ÜÉ ó ö ó ó ö É ó ó ó ó Ü ó ó É ó ó Ú ó ő Úó É ö ó Ü ó ó ó ó Ú ó Ü ó É Ó ő ó ó ó ó ö É ö ó ó Ü ó É ö ó ó ó É ó É Ü ó ó ö ú Ö É Ú É Ü É ó ó ó Ü ó Ü ő É Ö Ó É ó ó ó ó ó ó ó ó ó ö ó Ó ő ö ó ó ó ó

Részletesebben

2.3. A rendez pályaudvarok és rendez állomások vonat-összeállítási tervének kidolgozása...35 2.3.1. A vonatközlekedési terv modellje...37 2.3.2.

2.3. A rendez pályaudvarok és rendez állomások vonat-összeállítási tervének kidolgozása...35 2.3.1. A vonatközlekedési terv modellje...37 2.3.2. TARTALOMJEGYZÉK BEVEZETÉS...5 1. ÁRU ÉS KOCSIÁRAMLATOK TERVEZÉSE...6 1.1. A vonatközlekedési terv fogalma, jelent sége és kidolgozásának fontosabb elvei...6 1.2. A kocsiáramlatok és osztályozásuk...7 1.2.1.

Részletesebben

É Ő ú ú Ü Ú Ü ú Ü Ú Ú Ú Ü Ü Ú ű Ü ú É Ü Ü Ü Ú ú ű Ü Ü Ü ű ű Ü Ü ú Ú ű Ü ű Ú ű Ü ű Ú Ü É É ű É É É É É Ü Ü Ü É ÉÉ Ö ú É É É É ÉÉ É É É ű ú Ó Ö ú Ó Ö ú Ó ú ú Ü Ü ú É É É Ö Ö Ö Ó Ü Ú Ó É É É É Ü Ú Ó Ő Ó ú

Részletesebben

Ú É ő ő ő ő ő Ú É ő ő ő ő ű ű ő ő ő ő ő ű ű ő ő ő Ú ő Ú É É Ú Ú ű ű ő ő É ő Ó ű ű ő ő ű ő É Ó Ü ő ű ő ő ű ő ű Ó É É Ó Ü Ü ő Ú Ü É É Ú É É ő É Ú É Ó É Ü ő ő Ú É ő ő ű ő ű Ú ő Ü É Ú É ő ő É É ű ő Ú É Ü ű

Részletesebben

Ö É ű Ú ő Ú ő ű ő ő ő ű Ü ő Ú Ú Ú Ú Ú ű Ü É ű ő ő Ú Ú É Ú ő Ú ő Ú ő É ő Ó É ő ű ű ő ő ő Ó Ú Ó ő ő Ü ő ő ű Ü Ú Ú Ü Ú Ó Ú Ú Ü Ü Ü ő Ö Ö É É É É É É Ó ő ő ű ő ű ű ű ő ő Ú É Ú É Ü űé É Ú ő ő É ő Ü ő ű É É

Részletesebben

ő ú ö ű ő ö ő ö ö ö ű ö ö ű

ő ú ö ű ő ö ő ö ö ö ű ö ö ű ő ú ő ö ő ő ü ö ő ú ú ú ő ú ő ö ő ö ő ö ö ő ő ö ö ö ö ö ő ö ú ö ő ő ő ö ö ö ű ő ő ő ö ö ö ö ö ö ú ő ö ö ő ö ő ő ü ő ő ő ö ő ú ő ő ö ő ö ő ő ő ö ő ő ö ö ö ö ő ú ö ö ő ő ö ü ő ú ö ű ő ö ő ö ö ö ű ö ö ű Ő

Részletesebben

A metaforikus jelentés metafizikai következményei

A metaforikus jelentés metafizikai következményei VILÁGOSSÁG 2006/8 9 10. Metafora az analitikus filozófiában Ujvári Márta A metaforikus jelentés metafizikai következményei Az analitikus filozófiai irodalom ma már hagyományosnak tekinthető, Max Black-hez

Részletesebben

ú ü Ü Ö ü ő ő ő Ú Ú Ö Ú

ú ü Ü Ö ü ő ő ő Ú Ú Ö Ú Ö Ö Ö Ö Ö Ö Ö Ö ő Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö ő Ö Ö ú ü Ü Ö ü ő ő ő Ú Ú Ö Ú Ű ú ő ő Ó ő Ó Ő ú Ü Ü ő ű ű Ö ű ű ú Ú ű ő ű ő Ö ő Ö Ü ü ő ü ő ü ü ű ú ü ű ú Ö Ó ű ú ű ű ú ű Ö ő ő ő ő ű Ó ü ű Ö Ö Ö Ö ü Ú ú ő ü ő

Részletesebben

Ö Ü Ú Ö ű ű Ö ű ű ű ű Ú

Ö Ü Ú Ö ű ű Ö ű ű ű ű Ú Ö ű ű Ö ű Ó Ó Ö Ü Ú Ö ű ű Ö ű ű ű ű Ú ű Ó ű ű ű ű ű ű ű ű ű ű ű Ó Ó ű ű ű ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ö Ó ű ű Ü ű ű Ü ű Ö ű Ú Ü Ú ű ű Ü ű ű ű ű ű ű ű Ö Ö ű ű ű Ó ű Ö Ö Ü ű Ö ű ű ű ű ű ű ű ű Ö ű ű ű

Részletesebben

Nem teljesen nyilvánvaló például a következı, már ismert következtetés helyessége:

Nem teljesen nyilvánvaló például a következı, már ismert következtetés helyessége: Magyarázat: Félkövér: új, definiálandó, magyarázatra szoruló kifejezések Aláhúzás: definíció, magyarázat Dılt bető: fontos részletek kiemelése Indentált rész: opcionális mellékszál, kitérı II. fejezet

Részletesebben

ű ú ü ö ö ü ö ö ö ú ü ü ö ö ö ú ö ö ü ű ö ö ö ö ü ö ö ü ö ö ú ö ü ö ü ü ü ú ö ö ü ö ü ü ö Ó ü ű ö ö ü ö ü ö ú ö ö ö ö ű ú ú ű ö ö ü ö ö ö ö ü ú ö ü ö ü ü ö ú ü ü ü ű ú ö ü ö ö ö ü ö ü ú ö ö ö ü Ú ű ü ö

Részletesebben

Valószínűségszámítás

Valószínűségszámítás Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................

Részletesebben

É ü ü ű ü Ü ü É É ü Ó Ú É É Ö É Ó ű ű ű ű ü ű ü ü Ú ü ű ü ü ű ü Ó ü ü ü ű ü ü ü ü ü ü Ö Ü ű ü ü ü ü ű ü ü É ű ü ü ü ü ű Ü Ö É ü ü ü ü É ü ü ü É ü ű ű ü ü ü ü ü ű ü ü ü Ó ü ü ű ű ü ü ü ü ü ü É ű ü É Ó ü

Részletesebben

É ö ü ú ü ö ú ö ü ö ü ú ü ű ü ü ö ö ö ú ü ö ü ü ö ü ü ü ü ü Ü ü ö ú ü ü ö ö ö ö ö ö ö ö ö ö ö ö ö ö ü ö ü ö ü ö ö ú ö ü ö ü ö ö ö ú ö ö ö ö ú ú ö ü ö ü ú ü Ú É ö ö ö ö ö ú ö ű ö ű ö ú ö ö ú Ú ü ö ö ö ö

Részletesebben

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Dr. Jelasity Márk Mesterséges Intelligencia I Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Elsőrendű logika -Ítéletkalkulus : Az elsőrendű logika egy speciális esete, itt csak nullad

Részletesebben

ábra 1 LabelPOINT 250 elektromos feliratozógép Címkekimeneti nyílás Vágóél LCD kijelző Bekapcsológomb

ábra 1 LabelPOINT 250 elektromos feliratozógép Címkekimeneti nyílás Vágóél LCD kijelző Bekapcsológomb Címkekimeneti nyílás Vágóél LCD kijelző Bekapcsológomb Stílus/Nyelv billentyű Igazítás/ Aláhúzás-keret billentyű Fix hosszúság/ Betűtípus billentyű Memória/Extra billentyű Numerikus billentyűk Nyomtatás

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy

Részletesebben

Ú Ó Ö ö ü ö ö ö Í ö Ö ö ö ü ü ü ö ü ü Ú Ü Ú ü ü Ó ü ü Ő ö Ú Ó ű Ú Ó Ö ö Ú Ó Ú Ó ö ű Ú Ó Ú ö ű Ú Ó Ú Ó ö Í Í Ú Ö Ú Ó Ü Ó ö Ú Ó Ú Ó Ő Ő Ő ö ö ö ö Ü Ü ö ö ö Ő Ó ü ü ö ű ü ű ű Ó ü Ü ö Ü Ú Ó Ó ö ű Ü ö Ú Ú ö

Részletesebben

ő ü Ú ö ő ü ö ü Ó ú ő ő Ú ő Ú ő ü ü ő ő ö ö ő ü ő ő ő ő Ü Ö ü ő Ú ő ü ü ő ö ü ö ö ő ö ö ő ö ő ú ő ő ú ü Ú Ó ű ö ő Ü Ő ö ő ő ö ö ü ő ő ü ő ő ö ö Ö ü ü Ő ő ü ő ú ő ő ö ő ö ú ö ő ö ő ü ú ő ő ő ő ő ő ü Ú ö

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

ö ú ó ó ó ö ö ö ő ó ó ö ö ú ő ó ó ö ő ö ú ő ü ő ö ú ö ő ó ő ü ő ü ó ö ú ű ö ó ö ú ű ü ú ó ü Í ü ó ő ó ö ö ó ó ő ő ő ó ó ő ő ő ő ő ő ő ő ö ő ő ó ó ó ö ú ó ő ő ó ó ő ő Í ő ő ú ő ó ó ó ó ö ö ő ő ó ó ő ő ű

Részletesebben

Meghívó. Helyszín: Pető András Főiskola - 1125 Budapest, Kútvölgyi út 6. "B" épület 4. tanterem

Meghívó. Helyszín: Pető András Főiskola - 1125 Budapest, Kútvölgyi út 6. B épület 4. tanterem Meghívó A " Tudományos életút és tudományos karrier " programhoz kapcsolódóan a Pető András Főiskola Kutatói és Tehetséggondozó Műhelye és a TDK szervezésében szeretettel meghívjuk a tisztelt oktatókat,

Részletesebben

A nyelvtechnológia alapjai

A nyelvtechnológia alapjai Prószéky Gábor A nyelvtechnológia alapjai 2015/2016 tanév, 1. félév A tantárgy órái 2015-ben 1. óra: szeptember 9. 2. óra: szeptember 16. (elmarad: szeptember 23.) 3. óra: szeptember 30. 4. óra: október

Részletesebben

3. Az ítéletlogika szemantikája

3. Az ítéletlogika szemantikája 3. Az ítéletlogika szemantikája (4.2) 3.1 Formula és jelentése minden ítéletváltozó ( V v ) ha A JFF akkor A JFF ha A,B JFF akkor (A B) JFF minden formula előáll az előző három eset véges sokszori alkalmazásával.

Részletesebben

15. BESZÉD ÉS GONDOLKODÁS

15. BESZÉD ÉS GONDOLKODÁS 15. BESZÉD ÉS GONDOLKODÁS 1. A filozófiának, a nyelvészetnek és a pszichológiának évszázadok óta visszatérô kérdése, hogy milyen a kapcsolat gondolkodás vagy általában a megismerési folyamatok és nyelv,

Részletesebben

ü Í Ö ö ö ö

ü Í Ö ö ö ö ö Ő ü Í Ö ö ö ö Í ö Ü ü ö Ö Ü ö ö Ó Ö Ő Í Ő Ö ö ö ö ü Ó ü Ü ü Í ű ü ü ü ű Í Ó ü Ó Í Ó Ü Ü ö ü Ó ö ű Ü ö ö ű ö ö Ö ö Ö ö ű ö ű Ö Ö Ö ö ö Ö Í Ü Ó Ö ö Ü Ü ü ü ű ö ö ü ü ö Ö ű ö Ö ű ú ü ű ű ö Ü ö Ú ü ú ö Ü

Részletesebben

ö Ö Ó ö ő ú Ö őú ü Ö ü ő Ó Ö ó Í ő ö ő Í ö ő ő ő ő ó ő ő ű ú ő ú ő Ó ó Ó ú Í ú ő ö ő ő ö ó ü ő Í Í ű Ö ő ü ó ö ü ó ú ő ó Í ü ő ó Í ó ő ő Í ó ü ü ű ű ü ű ü ű ő ó ó ö ö ő Ú ó ó ő ó ö ő Í ó ö ö Í ú Ó ó Í

Részletesebben

ííó í í Ú ú ó í ü úó Ú ö ó Ú Ű Í ó ö ó ö ö Ö íí Öó ó Í Ü ó í í Ö Ú Ú ó ö ú ó í ú Í ó Í Ó ó ö ü ó íü ó ÍÜ ó ó ú í ó í ó ü í ó ó Ö Ú Ú Í í ÍÍ í í Í íó ú í íó ü Í í Ü Ú í í ü ü í Ú ó Í ó ö ú í ö ú ö ó í ó

Részletesebben

ó ó ó ó ó ó ö ö ú ö ó ó ó ó ó ö ó ó ó ó ó ö ó Ú ú Ő ü ó ó ü ó ó ó ó ó ó ó ü ü ó ó ó ó ó Ö ö ó ó ő ó ó ó ó ő Í ő ö ó ó ő ö ö ÍÍ ű ó ő ó Í ó ő ó ó ó Íó ó ó ö ó ó ö ő ö ó ó ő ű ó ó ö ó ü Í Í ó ö ó ő ó ő ő

Részletesebben

ó ó ó ö í ő ó ő ó ű ö ő ü ö ő ő ű ó Ő ű ö ö Ó ő ö ü ő ű Ó ú ő ő ű ö ő ú őí í ó ú í ó ó Ú ö ó ö ö ő Ú í ó ű ó ő ő ő ó ö ö ö ó í ó ó ő ó ö ö í ü ő í ő ö ó í ű í ó ó í ö ő ő í í í í ő ó ű ó ő í ú ó í ö ó

Részletesebben

ö ü í ö Ü ó í ü ü ó í ó ö í ö ö ü ö ö í ö í ü í Ü í ó í Ú í Ő ú ü ü ö Ü ö ü ó ú ö ó ó í ű í ú í ó ö ö ü ú ö í ö ö Ü ó ó ü ü ü ó í ű ö ö ű ö Ü ö ö ü ö ö ö ü í ü ö í ó ö ú í ö í ü ó ó ó ó ö ö ü ö ö ö ö ü

Részletesebben

ü ó ó ü ű ö Ö ö ü ö ü ö ö ü ö ú ü í ó ó ó Ö ó ü Ö ö ü ö ú ü í ó ü ö ü ö ú ü ö í ú ö í ú ü í ú ü í ú í ú ö ó ü Ö ö ü ó í ü ó ó ű í í ó ö ö ö í ú ö ü í

ü ó ó ü ű ö Ö ö ü ö ü ö ö ü ö ú ü í ó ó ó Ö ó ü Ö ö ü ö ú ü í ó ü ö ü ö ú ü ö í ú ö í ú ü í ú ü í ú í ú ö ó ü Ö ö ü ó í ü ó ó ű í í ó ö ö ö í ú ö ü í ö ö Ö ó ó ü ű ö Ű Ö í ű ü ö ö ó ü ű ö Ö ü ö ö í ö í Ö ű ö í ü ö ö ü ű ö í ó ű ö ö ó í ü ö ű ö í ü ö ú ú í ö ü ö ó ü ö í ö Ö ö í ó ö ü ó ú ö í ó ö ü ó ü ű ö í ü Ű ö ó ö ö ö ö ü í ü ó ó ü ű ö Ö ö ü ö ü ö

Részletesebben

Mintavételezés: Kvantálás:

Mintavételezés: Kvantálás: Mintavételezés: Időbeli diszkretizálást jelent. Mintavételezési törvény: Ha a jel nem tartalmaz B-nél magasabb frekvenciájú komponenseket, akkor a jel egyértelműen visszaállítható a legalább 2B frekvenciával

Részletesebben

ó í ö ö ö ü ö ö ö ü ü ó ö í ü í í í ö ö ö ö í ü ü ö ö í ü ö í ó í í ü ü ü ó ö í ü ü ü ó ü í í ö ü ó í ö ü ü ü ú í ú ü ö ü ó í ö ü í

ó í ö ö ö ü ö ö ö ü ü ó ö í ü í í í ö ö ö ö í ü ü ö ö í ü ö í ó í í ü ü ü ó ö í ü ü ü ó ü í í ö ü ó í ö ü ü ü ú í ú ü ö ü ó í ö ü í í ö ü í ü ü ú ó ü ö ö í ü ü ö ü ö ű ö ó Í í ö ü ö ö ö í ö ü ü í ó ü ú ü ö ü í ö ó í ü ú ó ü ö ü í ö ó í ö ö ö ü ö ö ö ü ü ó ö í ü í í í ö ö ö ö í ü ü ö ö í ü ö í ó í í ü ü ü ó ö í ü ü ü ó ü í í ö ü ó í

Részletesebben