Knoch László: Információelmélet LOGIKA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Knoch László: Információelmélet LOGIKA"

Átírás

1 Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke pedig igaz. A mákos tészta egyik alapanyaga a mustár. Ennek logikai értéke hamis. Most következzen egy mondat, ami nem ítélet: Hazudok. Ennek nem dönthető el a logikai értéke, hiszen: 1. ha igaz, akkor hazudok, tehát hamis 2. ha hamis, akkor igazat mondok, vagyis igaz. Az elemi ítélet és az ítélet Az elemi ítélet olyan ítélet, amely nem bontható tovább más ítéletekre. Minden ítélet egy vagy több elemi ítélet logikai műveletekkel való összekapcsolásával hozható létre. Egy összetett ítélet: A 2 páros és prím. Ez két elemi ítélet összekapcsolása az ÉS logikai művelettel. Az elemi ítélet és az ítélet Knoch László: Információelmélet LOGIKA A logikai műveletek Legyen A illetve B ítélet a következő. A: A gomba növény. (logikai értéke: h) B: A kukorica növény. (logikai értéke: i) C: A gorilla emlős. (logikai értéke: i) Ebből képezhetünk összetett ítéleteket. Például a következőket. 1

2 A negáció Jele:Ø A negáció az ítélet tagadása. Ha p igaz, akkor p hamis. Ha pedig p hamis, akkor p igaz. p: Süt a nap. Ha a "süt a nap" kijelentés igaz, akkor a "nem süt a nap" kijelentés hamis. Ha a "süt a nap" kijelentés hamis, akkor a "nem süt a nap" kijelentés igaz. A konjunkció Jele: Ù Ha két vagy több ítéletet összekapcsolunk az ÉS kötőszóval, új ítéletet kapunk. Ez a logikai művelet a konjunkció. Egy konjunkció logikai értéke csak akkor igaz, ha a benne szereplő ítéletek mindegyike igaz. Egyébként hamis. r: A hidrogén nemesgáz. s: A hidrogén vegyjele H. A hidrogén nem nemesgáz, tehát az állítások közül az első hamis. A hidrogén vegyjele H, tehát a második állítás igaz. Így a "hidrogén nemesgáz ÉS vegyjele H" állítás hamis lesz. A diszjunkció Jele: Ú Ha két vagy több ítéletet összekapcsolunk a VAGY kötőszóval, új ítéletet kapunk. Ez a logikai művelet a diszjunkció. Egy diszjunkció logikai értéke akkor igaz, ha a benne szereplő ítéletek közül legalább az egyik igaz. Egyébként hamis. r: A kukorica növény. s: A kukorica állat. A kukorica növény, tehát az állítások közül az első igaz. A kukorica nem állat, tehát a második állítás hamis. Így a "kukorica növény vagy állat" állítás igaz lesz, mivel legalább az egyik teljesült. 2

3 Az antivalencia Jele: Å Olyan vagy művelet, amely akkor igaz, ha a benne szereplő állítások közül pontosan egy igaz. Egyébként hamis. r: Rendet rakok a szobámban. s: Kimegyek görkorcsolyázni. A "VAGY rendet rakok a szobámban, VAGY kimegyek görkorcsolyázni." mondat hamis, ha mindkét állítás igaz. Azaz akkor igaz, ha rendet rakok a szobámban, de nem korcsolyázom, vagy ha korcsolyázom, de nem rakok rendet. Az implikáció Jele: Ha p és q két állítás, akkor a HA p, AKKOR q alakú új állítást implikációnak, vagy következtetésnek nevezzük, és azt jelenti, ha p igaz, akkor q is igaz. Ezt úgy mondjuk, hogy "p implikálja q-t". Az implikáció csak akkor hamis, ha a feltétel igaz, és a következmény hamis ( p igaz, de q hamis). Az implikáció tehát két részből áll: Tehát csak akkor hamis az implikáció, ha igaz feltételből hamis lesz a következtetés. 3 r: esik az eső s: vizes a járda A r s implikáció így hangzik: "Ha esik az eső, akkor vizes a járda". Ennek logikai értéke igaz. A s r implikáció, ami az előző megfordítása pedig így hangozhat: "Ha vizes a járda, akkor esik az eső". Amint látjuk ennek lehet hamis is a logikai értéke, például, ha egy locsoló kocsi járt arra. Láthatjuk tehát, hogy egy implikációnak és megfordításának nem feltétlenül egyezik meg a logikai értéke. Az ekvivalencia Jele: «Ha egy implikációnak és megfordításának logikai értéke megegyezik (vagy egyszerre igaz, vagy egyszerre hamis), akkor ezt ekvivalenciának nevezzük. Ha például p q igaz, és megfordítása q p is egyszerre igaz, akkor implikációnak nevezzük. Vagy ha r s hamis, és megfordítása s r is egyszerre hamis, akkor szintén implikációról beszélünk. Tehát az implikáció így írható fel: (p q) (q p) Az ekvivalenciát a "p akkor és csak akkor, ha q" alakban szoktuk megfogalmazni. Példa: p: A háromszög egyenlő oldalú q: A háromszög minden szöge egyenlő p q: A háromszög akkor és csak akkor egyenlő oldalú, ha minden szöge egyenlő.

4 Ezt megfogalmazhatnánk két implikáció formájában is: Ha a háromszög egyenlő oldalú, akkor minden szöge egyenlő. ÉS Ha a háromszög minden szöge egyenlő, akkor egyenlő oldalú. A Sheffer művelet Jele: Kizárásnak is szokás nevezni. A művelet logikai értéke csak akkor hamis, ha az ítéletek közül mindkettő igaz. Úgy is fogalmazhatunk, hogy a Sheffer művelet akkor igaz, ha legalább az egyik állítás hamis. A sem-sem művelet Jele: ~ A művelet logikai értéke csak akkor igaz, ha az ítéletek közül mindkettő hamis. MŰVELETEK: Legyenek p, q, r és s a következő ítéletek! p: Szép nap van. q: Még a rabkocsiból is nóta hangzik. r: Kutyák futkosnak az árokszélen. s: Mindenki remekül tölti az időt. 1. feladat: Fogalmazd meg a következő kijelentéseket! a) p Ù r b) p s Ù q c) r Å s Megoldás: a) Szép nap van és kutyák futkosnak az árokszélen. b) Ha szép nap van, akkor mindenki remekül tölti az időt, és még a rabkocsiból is nóta hangzik. c) Vagy kutyák futkosnak az árokszélen, vagy mindenki remekül tölti az időt. 4

5 Írd fel a következő mondatokat logikai jelek segítségével! a) Mindenki remekül tölti az időt, és kutyák futkosnak az árokszélen. b) Ha nem futkosnak kutyák az árokszélen, akkor mindenki remekül tölti az időt. c) Akkor és csak akkor tölti mindenki remekül az időt, ha még a rabkocsiból is nóta hangzik. Megoldás: a) s Ù r b) Ør s c) s «q Add meg a következő kifejezés logikai értékét, ha p igaz, q igaz, r hamis, s hamis. a) p q b) q Å s c) s p d) Ø s e) q Ú r f) s ~ r Megoldás: a) igaz, mert ha az implikáció feltétele és következménye is igaz, akkor az implikáció is igaz. b) igaz, mert az antivalencia akkor igaz, ha az ítéletek közül pontosan az egyik igaz, itt pedig q igaz, és s hamis. c) igaz, mert a Sheffer művelet csak akkor hamis, ha mindkét ítélet igaz, itt pedig az egyik (s) hamis. d) igaz, mert s hamis, ezért negációja (tagadása) igaz. e) igaz, mert a diszjunkció akkor igaz, ha legalább az egyik ítélet igaz. f) igaz, mert a sem-sem művelet csak akkor igaz, ha mindkét ítélet hamis. Itt pedig r és s is hamis. A műveletek sorrendje Egy többszörösen összetett művelet logikai értékét többféleképpen lehetne értelmezni, ha nem állítanánk fel egy műveleti sorrendet. A logika műveleteknél ez a következő. 1. negáció 2. konjunkció 3. diszjunkció 4. implikáció 5. ekvivalencia Egyenértékű jelek esetén pedig balról jobbra végezzük el a műveleteket. Nézzük meg, hogy milyen értékeket vehet fel a kifejezés attól függően, hogy milyen sorrendet határozunk meg. 1. Először a negációt végezzük el, azután a konjunkciót: 2. most nézzük meg milyen igazságértékeket kapunk, ha a konjunkciót végezzük el először, és csak azután a negációt: Láthatjuk, hogy két teljesen különböző eredményt kaptunk, tehát fontos, hogy figyeljünk a helyes műveleti sorrendre. 5

6 Logikai érték kiszámítása igazságtáblával A több állításból álló ítéletek logikai értékének kiszámítása nehezen követhető, ha segítség nélkül próbáljuk végiggondolni. Az igazságtábla segít rendszerezni a különböző műveletek logikai értékét. Példa: (pø q )Ú(pÙr) A logikai értékek meghatározásához tudnunk kell a pø q és a pùr kifejezések logikai értékét. A pùr meghatározható közvetlenül a p és az r logikai értékeiből, de a pø q meghatározásához még szükségünk van a q értékeire is. Először beírjuk p, q és r összes variációját. Majd q alapján Øq-t határozzuk meg. Így könnyen megadható pø q kifejezés. Ezután megadjuk pùr logikai értékeit. pø q és pùr alapján meghatározható a végeredmény. Határozd meg a következő ítéletek lehetséges logikai értékeit igazságtábla segítségével! a) (AÙB) (ØAÚB) b) (ØpØÙ q)ú(q r) 6

7 7

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Kijelentéslogika I. 2004. szeptember 24.

Kijelentéslogika I. 2004. szeptember 24. Kijelentéslogika I. 2004. szeptember 24. Funktorok A természetesnyelvi mondatok gyakran összetettek: további mondatokból, végső soron pedig atomi mondatokból épülnek fel. Az összetevő mondatokat mondatkonnektívumok

Részletesebben

Matematikai logika. Jegyzet. Összeállította: Faludi Anita 2011.

Matematikai logika. Jegyzet. Összeállította: Faludi Anita 2011. Matematikai logika Jegyzet Összeállította: Faludi Anita 2011. Tartalomjegyzék Bevezetés... 3 Előzmények... 3 Augustus de Morgan (1806-1871)... 3 George Boole(1815-1864)... 3 Claude Elwood Shannon(1916-2001)...

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Negáció igazságtáblája. Propozicionális logika -- levezetések. Diszjunkció igazságtáblája. Konjunkció igazságtáblája. Kondicionális igazságtáblája

Negáció igazságtáblája. Propozicionális logika -- levezetések. Diszjunkció igazságtáblája. Konjunkció igazságtáblája. Kondicionális igazságtáblája Negáció igazságtáblája Propozicionális logika -- levezetések p ~p I H H I Konjunkció igazságtáblája Diszjunkció igazságtáblája p q p&q I I I I H H H I H H H H p q pvq I I I I H I H I I H H H Megengedő

Részletesebben

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

A logikai következmény

A logikai következmény Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

ADATBÁZIS-KEZELÉS. Relációalgebra, 5NF

ADATBÁZIS-KEZELÉS. Relációalgebra, 5NF ADATBÁZIS-KEZELÉS Relációalgebra, 5NF ABSZTRAKT LEKÉRDEZŐ NYELVEK relációalgebra relációkalkulus rekord alapú tartomány alapú Relációalgebra a matematikai halmazelméleten alapuló lekérdező nyelv a lekérdezés

Részletesebben

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László MATEMATIKAI LOGIKA A gondolkodás tudománya Diszkrét matematika Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey,

Részletesebben

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László.

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László. MATEMATIKAI A gondolkodás tudománya Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey, Tarski, Ramsey, Russel,

Részletesebben

Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek

Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek Matematikai logika A logika tudománnyá válása az ókori Görögországban kezd dött. Maga a logika szó is görög eredet, a logosz szó jelentése: szó, fogalom, ész, szabály. Kialakulása ahhoz köthet, hogy már

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? 4/14/2014. propozicionális logikát

Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? 4/14/2014. propozicionális logikát roozicionális logikát roozicionális logikát Legfontosabb logikai konnektívumok: roozíció=állítás nem néztünk a tagmondatok belsejébe, csak a logikai kacsolatuk érdekelt minket Legfontosabb logikai konnektívumok:

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI szeptember 13.

NULLADIK MATEMATIKA ZÁRTHELYI szeptember 13. 6A NULLADIK MATEMATIKA ZÁRTHELYI 00. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Az ellenpéldával történő cáfolás az elemi matematikában

Az ellenpéldával történő cáfolás az elemi matematikában Az ellenpéldával történő cáfolás az elemi matematikában Tuzson Zoltán, Székelyudvarhely Ismeretes, hogy a logika a helyes gondolkodás törvényeit leíró tudomány, ezért más tudományágakban sem nélkülözhető.

Részletesebben

A matematikai logika alapjai

A matematikai logika alapjai A matematikai logika alapjai A logika a gondolkodás törvényeivel foglalkozó tudomány A matematikai logika a logikának az az ága, amely a formális logika vizsgálatára matematikai módszereket alkalmaz. Tárgya

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 3. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa

Részletesebben

Dunaújvárosi Főiskola Informatikai Intézet

Dunaújvárosi Főiskola Informatikai Intézet Dunaújvárosi Főiskola Informatikai Intézet Bizonytalanságkezelés Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Bizonytalan tudás forrása A klasszikus logikában a kijelentések vagy igazak

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 5 (2012.04.09) Programozás alapok Eddig amit láttunk: Programozás lépései o Feladat leírása (specifikáció) o Algoritmizálás, tervezés (folyamatábra, pszeudokód) o Programozás

Részletesebben

A logika története ott kezdődik, ahol elkezdenek gondolkodni a helyes következtetési formákról.

A logika története ott kezdődik, ahol elkezdenek gondolkodni a helyes következtetési formákról. A MATEMATIKAI LOGIKA TÖRTÉNETE A logika eredetileg a filozófia részeként jelent meg a tudományok sorában. Az i. e. 5. századtól kezdtek terjedni a tisztán emberi gondolkodáson alapuló logikai bizonyítások.

Részletesebben

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12. XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután

Részletesebben

Név:... Kód:... 1. LEVÉL INFORMATIKA TEHETSÉGGONDOZÁS 2011

Név:... Kód:... 1. LEVÉL INFORMATIKA TEHETSÉGGONDOZÁS 2011 Név:... Kód:... Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy az informatika tehetséggondozás első levelét olvassátok. A tehetséggondozással az a célunk, hogy egy kicsit megmutassuk, hogy

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Érveléstechnika-logika 5. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2.

Érveléstechnika-logika 5. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2. Érveléstechnika-logika 5. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u. 2-4. fsz. 2. Elemi állítás Állítás: Jelentéssel bíró kijelentő mondat, amely információt közöl a világról.

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Felmentések. Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól.

Felmentések. Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól. Felmentések Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól. Az eredménye, ezek után a számításelélet részből elért eredmény

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

2. Alapfogalmak, műveletek

2. Alapfogalmak, műveletek 2. Alapfogalmak, műveletek Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGIMIEM Tartalomjegyzék I Mit tudunk eddig? 2 Fuzzy halmazokkal kapcsolatos alapvető fogalmak Fuzzy halmaz tartója Fuzzy halmaz

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSÉPÍTŐ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSÉPÍTŐ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ KÖZLEKEDÉSÉPÍTŐ SMERETEK KÖZÉPSZNTŰ ÍRÁSBEL VZSGA JAVÍTÁS-ÉRTÉKELÉS ÚTMUTATÓ A MNTAFELADATOKHOZ Rövid választ igénylő feladatok 1. feladat 2 pont Az alábbi igaz vagy hamis állítások közül válassza ki a

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

MATEMATIKA C 9. évfolyam

MATEMATIKA C 9. évfolyam MATEMATIKA C 9. évfolyam 6. modul GONDOLKODOM, TEHÁT VAGYOK Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 6. MODUL: GONDOLKODOM, TEHÁT VAGYOK TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret

Részletesebben

Válogatott fejezetek a logikai programozásból ASP. Answer Set Programming Kelemen Attila

Válogatott fejezetek a logikai programozásból ASP. Answer Set Programming Kelemen Attila ASP 1 Kedvcsináló N királynő 3+1 sorban index(1..n). % minden sorban pontosan 1 királynő van 1{q(X,Y):index(X)}1 :- index(y). % az rossz, ha ugyanabban az oszlopban 2 királynő van :- index(x; Y1; Y2),

Részletesebben

Induktív következtetés. Deduktív következtetés. Induktív és deduktív következtetések. Induktív és deduktív következtetések 02/03/2015

Induktív következtetés. Deduktív következtetés. Induktív és deduktív következtetések. Induktív és deduktív következtetések 02/03/2015 (1) Daninak jövőre a szociológiát vagy az antropológiát kell felvennie. Mivel (2) mindig a lazábbat választja, és (3) a szociológia jövőre laza lesz, mert (4) dr. Laza adja elő, (5) nem kétséges, melyiket

Részletesebben

I.4. BALATONI NYARALÁS. A feladatsor jellemzői

I.4. BALATONI NYARALÁS. A feladatsor jellemzői I.4. BALATONI NYARALÁS Tárgy, téma A feladatsor jellemzői Logikai fogalmak: logikai kijelentés; minden; van olyan; ha, akkor; és; vagy kifejezések jelentése. Egyszerű logikai kapcsolatok mondatok között.

Részletesebben

Excel 2010 függvények

Excel 2010 függvények Molnár Mátyás Excel 2010 függvények Csak a lényeg érthetően! Tartalomjegyzék FÜGGVÉNYHASZNÁLAT ALAPJAI 1 FÜGGVÉNYEK BEVITELE 1 HIBAÉRTÉKEK KEZELÉSE 4 A VARÁZSLATOS AUTOSZUM GOMB 6 SZÁMÍTÁSOK A REJTETT

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

Új műveletek egy háromértékű logikában

Új műveletek egy háromértékű logikában A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Készítette: Nagy Tibor István

Készítette: Nagy Tibor István Készítette: Nagy Tibor István Operátorok Műveletek Egy (vagy több) műveleti jellel írhatók le A műveletet operandusaikkal végzik Operátorok fajtái operandusok száma szerint: egyoperandusú operátorok (pl.:

Részletesebben

I.2. ROZSOMÁK. A feladatsor jellemzői

I.2. ROZSOMÁK. A feladatsor jellemzői I.2. ROZSOMÁK Tárgy, téma A feladatsor jellemzői Kombinatorikai alapfeladatok, halmazok használata. Logikai kijelentések vizsgálata, értelmezése. A szövegértés képességének fejlesztése. Előzmények Cél

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Összetett hálózat számítása_1

Összetett hálózat számítása_1 Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint a körben folyó áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás felhasználásával

Részletesebben

2009. májusi matematika érettségi közép szint

2009. májusi matematika érettségi közép szint I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

MATEMATIKA tanterv emelt szint 11-12. évfolyam

MATEMATIKA tanterv emelt szint 11-12. évfolyam MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,

Részletesebben

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE . EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

4. A kézfogások száma pont Összesen: 2 pont

4. A kézfogások száma pont Összesen: 2 pont I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes

Részletesebben

ARCHIMEDES MATEMATIKA VERSENY

ARCHIMEDES MATEMATIKA VERSENY Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

3 A C programozási nyelv szintaktikai egységei

3 A C programozási nyelv szintaktikai egységei 3 A C programozási nyelv szintaktikai egységei 3.1 Azonosítók Betűk és számjegyek sorozata, betűvel vagy _ (aláhúzás) karakterrel kell kezdődnie. A nagy- és kisbetűk különbözőek. Az azonosítók tetszőleges

Részletesebben

Vezérlési szerkezetek

Vezérlési szerkezetek Vezérlési szerkezetek Szelekciós ok: if, else, switch If Segítségével valamely ok végrehajtását valamely feltétel teljesülése esetén végezzük el. Az if segítségével valamely tevékenység () végrehajtását

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 10. tankönyv A Heuréka-sorozat tagja, így folytatása a Matematika 9. tankönyvnek. Ez a kötet is elsősorban

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 003. május-június MATEMATIKA EMELT SZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 003 MATEMATIKA Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján

Részletesebben

MATEMATIKA A 10. évfolyam

MATEMATIKA A 10. évfolyam MATEMATIKA A 10. évfolyam 1. modul Logika Készítette: Vidra Gábor Matematika A 10. évfolyam 1. modul: Logika Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

VII. Keretalapú ismeretábrázolás

VII. Keretalapú ismeretábrázolás Collins és Quillian kísérlete VII. Keretalapú ismeretábrázolás Tud-e a kanári énekelni? 1.3 mp Képes-e a kanári? 1.4 mp Van-e a kanárinak bőre? 1.5 mp A kanári egy kanári? 1.0 mp A kanári egy madár? 1.2

Részletesebben

Nem teljesen nyilvánvaló például a következı, már ismert következtetés helyessége:

Nem teljesen nyilvánvaló például a következı, már ismert következtetés helyessége: Magyarázat: Félkövér: új, definiálandó, magyarázatra szoruló kifejezések Aláhúzás: definíció, magyarázat Dılt bető: fontos részletek kiemelése Indentált rész: opcionális mellékszál, kitérı II. fejezet

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

12. tétel: A Boole-algebra alapfogalmai, a főbb logikai műveletek igazságtáblái.

12. tétel: A Boole-algebra alapfogalmai, a főbb logikai műveletek igazságtáblái. 12. tétel: A Boole-algebra alapfogalmai, a főbb logikai műveletek igazságtáblái. Definíció: Állításon vagy kijelentésen olyan kijelentő mondatot értünk, amelyről egyértelműen eldönthető, hogy igaz vagy

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

TANMENET-IMPLEMENTÁCIÓ Matematika kompetenciaterület 1. évfolyam

TANMENET-IMPLEMENTÁCIÓ Matematika kompetenciaterület 1. évfolyam Beszédjavító Általános Iskola TANMENET-IMPLEMENTÁCIÓ Matematika kompetenciaterület 1. évfolyam Söpteiné Tánczos Ágnes Idő Tevékenységek (tananyag) 35. Az összeadás és kivonás egymás inverz művelete. Készségek,

Részletesebben

M4 TÁBLÁZATKEZELÉS ALAPJAI

M4 TÁBLÁZATKEZELÉS ALAPJAI Képletek Olyan egyenletek, amelyek a munkalapon szereplő értékekkel számításokat hajtanak végre. Jellemzői: - egyenlőségjellel = kezdődik Képlet részei: 1. Számtani műveleti jelek. 2. Állandók. 3. Hivatkozások.

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

MATEMATIKA. Szakközépiskola

MATEMATIKA. Szakközépiskola MATEMATIKA Szakközépiskola Az osztályozóvizsga írásbeli feladatlap. Az osztályozó vizsgán az osztályzás a munkaközösség által elfogadott egységes követelményrendszer alapján történik. A tanuló az osztályozó

Részletesebben