ADATBÁZIS-KEZELÉS. Relációalgebra, 5NF

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ADATBÁZIS-KEZELÉS. Relációalgebra, 5NF"

Átírás

1 ADATBÁZIS-KEZELÉS Relációalgebra, 5NF

2 ABSZTRAKT LEKÉRDEZŐ NYELVEK relációalgebra relációkalkulus rekord alapú tartomány alapú Relációalgebra a matematikai halmazelméleten alapuló lekérdező nyelv a lekérdezés egy kifejezés, amelyben az operátorok relációalgebrai műveletek, az operandusok pedig relációk a lekérdezés eredménye szintén egy reláció 2

3 A RELÁCIÓALGEBRA MŰVELETEI Szelekció (σ) Projekció (π) Átnevezés (ρ) Halmazműveletek Unió ( ), metszet ( ), különbség ( ) Descartes szorzat ( ) Összekapcsolás (join) Általános összekapcsolás (theta join, ) egyenlőség alapú összekapcsolás (equijoin) természetes összekapcsolás (natural join, *) bal oldali/jobb oldali/teljes külső összekapcsolás (left/right/full outer join,,, ) Hányados ( ) 3

4 SZELEKCIÓ σ <szelekciós feltétel> (R) R azt a relációt jelöli, amelyből a szelekciós feltétel nek eleget tevő rekordokat válogatjuk ki. A szelekciós feltétel egy logikai kifejezés, amely logikai operátorokkal összekapcsolt részkifejezésekből épül föl. A részkifejezések alakja a következők valamelyike lehet: <attribútum> <hasonlító op.> <konstans> vagy <attribútum> <hasonlító op.> <attribútum> ahol az attribútum az R egy attribútumának neve, a h hasonlító op {=,, <, >,, } operátorok egyike, a konstans pedig egy konstans érték az attribútum tartományából. Egy általános szelekciós feltételben a részkifejezéseket az AND, az OR és a NOT logikai operátorokkal kapcsolhatjuk össze. 4

5 SZELEKCIÓ TULAJDONSÁGAI A szelekció unáris művelet. Az eredményül kapott reláció foka és sémája megegyezik R fokával, illetve sémájával. Az eredményül kapott reláció számossága mindig kisebb vagy egyenlő R számosságánál, azaz bármely F feltétel esetén σ F (R) R Két egymásba ágyazott szelekciós művelet végrehajtási sorrendje felcserélhető: σ F1 (σ F2 (R))= σ F2 (σ F1 (R)) Minden többszörösen egymásba ágyazott (kaszkádolt) szelekció átírható egyetlen szelekcióvá, amelynek a feltétele az eredeti feltételek konjunkciója: σ F1 (σ F2 ( σ Fn (R)) ))= σ F1 AND F2 AND AND Fn (R) 5

6 PROJEKCIÓ π <attribútumlista> (R) Az attribútumlista az R reláció lekérdezni kívánt attribútumainak listája. 6

7 PROJEKCIÓ TULAJDONSÁGAI A projekció unáris művelet. Az eredményül kapott reláció fokát és sémáját az attribútumlistában szerepl ő attribútumok határozzák meg: az eredmény sémájában az attribútumok sorrendje megegyezik a listában megadott attribútumok sorrendjével, a fokszám a listában megadott attribútumok darabszáma lesz. Ha az attribútumlista nem tartalmaz kulcs attribútumot, akkor az eredményül kapott reláció számossága kisebb lehet R számosságánál, ugyanis az eredményben nem jelenhetnek meg duplikált rekordok. Ha az attribútumlista R szuperkulcsa, akkor az eredmény számossága megegyezik R számosságával. Két egymásba ágyazott projekciós művelet eredménye megegyezik a külső projekció eredményével: π L1 (π L2 (R))= π L1 (R) 7

8 ÁTNEVEZÉS ρ S(B1,B2,, Bn) (R) VAGY ρ S (R) VAGY ρ B1,B2,, Bn) (R) A S a reláció jelölésére használt új szimbólum, B1,B2,,Bn az új attribútumnevek. Az átnevezés unáris művelet. Az eredményül kapott reláció foka és számossága megegyezik R fokával, illetve számosságával. Az eredményül kapott reláció sémája a B1,B2,,Bn attribútumokkal meghatározott séma lesz, ha megadtukőket, megegyezik az R sémájával, ha a B1,B2,,Bn attribútumokat nem soroltuk fel. 8

9 UNIÓKOMPATIBILITÁS Az R(A 1,A 2,,A n ) és S(B 1,B 2,,B n ) relációkat egymással uniókompatibilisnek mondjuk, ha azonos a fokszámuk, és dom(a i ) = dom(b i ) minden 1 i n esetén. Az uniókompatibilitás tehát azt jelenti, hogy a két relációnak ugyanannyi attribútuma van, és attribútumaik tartományai páronként megegyeznek egymással 9

10 UNIÓ: R S METSZET: R S KÜLÖNBSÉG: R S Az unió, a metszet és a különbség bináris műveletek. Az eredményül kapott reláció sémája megállapodás szerint az első (R) reláció sémájával egyezik meg. Az unió és a metszet műveletek kommutatívak: R S = S R és R S = S R Az unió és a metszet műveletek asszociatívak: R (S T) = (R S) T és R (S T) = (R S) T: A különbség művelet általában nem kommutatív: R S S R 10

11 DESCERTES-SZORZAT R(A 1,A 2,,A N ) S(B 1,B 2,,B M ) Két tetszőleges sémájú reláció között elvégezhető bináris művelet. Az eredményül kapott Q reláció egy n + m fokszámú reláció, melynek sémája: Q(A 1,A 2,,A n,b 1,B 2,,B m ) Az eredményül kapott reláció számossága: R S = R S Az eredményül kapott relációban az eredeti két reláció minden rekordjának összes lehetséges kombinációja szerepelni fog. 11

12 ÁLTALÁNOS ÖSSZEKAPCSOLÁS R (összekapcsolási feltétel) S Bináris művelet, operandusai R(A 1,A 2,,A n ) és S(B 1,B 2,,B m ) sémájú relációk. Az eredményül kapott Q egy n + m fokszámú reláció, melynek sémája: Q(A 1,A 2,,A n,b 1,B 2,,B m ) Az eredményül kapott relációban benne lesz az R és az S relációk rekordjainak minden olyan kombinációja, amely kielégíti az összekapcsolási feltételt. 12

13 AZ ÖSSZEKAPCSOLÁSI FELTÉTEL A join művelet összekapcsolási feltételének általános alakja <feltétel> AND <feltétel> AND AND <feltétel> mindegyik feltétel A i θ B j alakú, A i az R attribútuma, B j az S attribútuma, az A i és B j attribútumok tartománya megegyezik, θ egyike a {=,, <, >,, } halmaz összehasonlító műveleteinek. Az ilyen összekapcsolási feltétellel megadott általános összekapcsolási műveletet theta join műveletnek is nevezzük. 13

14 EGYENLŐSÉGEN ALAPULÓ ÖSSZEKAPCSOLÁS Azt az általános összekapcsolási műveletet, amelynek összekapcsolási feltételében csak az egyenlőségjel (=) szerepel összehasonlító műveleti jelként, egyenlőségen alapuló összekapcsolásnak vagy más szóval equijoin műveletnek nevezzük. Az egyenlőségen alapuló összekapcsolás eredményeként kapott reláció minden rekordjában van legalább egy pár azonos érték. 14

15 TERMÉSZETES ÖSSZEKAPCSOLÁS R*S Az egyenlőségen alapuló összekapcsolás eredményeként kapott relációban a rekordokban felbukkanó azonos értékpárok miatt mindig találhatók felesleges értékek. A természetes összekapcsolás műveletét az egyenlőségen alapuló összekapcsolás műveletéből származtatjuk oly módon, hogy az ott kapott relációból eltávolítjuk az összekapcsolás alapjául szolgáló, a hozzájuk tartozó értékek egyenlősége miatt felesleges attribútumok egyikét. Az összekapcsolandó két relációban az összekapcsolás alapjául szolgáló attribútumok nevének meg kell egyezniük. 15

16 Az eredményül kapott reláció sémája az eredeti két reláció sémájának az attribútumait tartalmazza, ám az összekapcsolás alapjául szolgáló attribútumok közül páronként csak egyet. Az eredményül kapott reláció foka az eredeti két reláció fokszámának az összegénél annyival kevesebb, ahány azonos nevű attribútumot tartalmaznak. Az eredményül kapott reláció számossága 0-tól az eredeti relációk számosságainak szorzatáig terjedhet. 16

17 OSZTÁS, HÁNYADOS R S Jelöljük Z-vel az R sémáját alkotó attribútumok halmazát, X-szel az S sémáját alkotó attribútumok halmazát! Az osztás művelete akkor hajtható végre, ha X Z. Jelöljük T-vel az eredmény relációt! Legyen Y = Z X Ekkor Y lesz a T sémáját alkotó attribútumok halmaza. A hányados művelet az alábbi műveletek sorozataként fogható fel: T 1 π Y (R) T 2 π Y ((S T1) R) T T 1 T 2 17

18 OSZTÁS, HÁNYADOS PÉLDA R S R S T 1 π Y (R) S T 1 T 2 π Y ((S T1) R) A B A B A B B a1 a2 a3 b1 b1 b1 a1 a2 a3 b1 b2 b3 a1 a1 a1 b1 b2 b3 b3 b2 a4 b1 b4 a1 b4 a1 b2 a2 b1 T T 1 T 2 a3 b2 a2 b2 B a2 b3 a2 b3 b1 a3 b3 a2 b4 b4 a4 b3 a3 b1 a1 b4 a3 b2 a2 b4 a3 b3 18 a3 b4 a3 b4

19 KAPCSOLÁSFÜGGÉS Egy R relációsémán megadott kapcsolásfüggés (join dependency, JD) meghatároz egy megszorítást az R bármely r relációjára. A megszorítás azt írja elő, hogy R minden legális r relációjának kell, hogy legyen egy veszteségmentes join dekompozíciója az R 1,R 2,,R n sémákba; azaz minden ilyen r re *(π R1 (r), π R2 (r), π Rn (r)) = r Az így előírt megszorítást JD(R 1,R 2,,R n )-nel jelöljük. Egy R sémára megadott R 1,R 2,,R n ) kapcsolásfüggés triviális kapcsolásfüggés, ha valamely R 1,R 2,,R n )-beli R i relációséma egyenlő R-rel. 19

20 5. NORMÁL FORMA (5.NF) Egy reláció 5.NF-ban van, ha minden nem triviális join függés esetén minden R i az R szuperkulcsa 20

21 5. NORMÁL FORMA (5.NF) PÉLDA 21

8. előadás. normálformák. Többértékű függés, kapcsolásfüggés, 4NF, 5NF. Adatbázisrendszerek előadás november 10.

8. előadás. normálformák. Többértékű függés, kapcsolásfüggés, 4NF, 5NF. Adatbázisrendszerek előadás november 10. 8. előadás 4NF, 5NF Adatbázisrendszerek előadás 2008. november 10. ek és Debreceni Egyetem Informatikai Kar 8.1 (multivalued dependency, MVD) Informálisan, valahányszor két független 1 : N számosságú A

Részletesebben

Adatbázis rendszerek 2. előadás. Relációs algebra

Adatbázis rendszerek 2. előadás. Relációs algebra Adatbázis rendszerek. előadás Relációs algebra Molnár Bence Szerkesztette: Koppányi Zoltán Bevezetés Relációs algebra általában A relációs algebra néhány tulajdonsága: Matematikailag jól definiált Halmazelméletből

Részletesebben

Mveletek a relációs modellben. A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére.

Mveletek a relációs modellben. A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére. Mveletek a relációs modellben A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére. Megfogalmaz egy kérést, amelyben leírja, milyen adatokra van szüksége,

Részletesebben

Adatbázis rendszerek 2. előadás. Relációs algebra

Adatbázis rendszerek 2. előadás. Relációs algebra Adatbázis rendszerek 2. előadás Relációs algebra Molnár Bence Szerkesztette: Koppányi Zoltán Bevezetés Relációs algebra általában A relációs algebra néhány tulajdonsága: Matematikailag jól definiált Halmazelméletből

Részletesebben

ADATBÁZIS-KEZELÉS. Relációs modell

ADATBÁZIS-KEZELÉS. Relációs modell ADATBÁZIS-KEZELÉS Relációs modell Relációséma neve attribútumok ORSZÁGOK Azon Ország Terület Lakosság Főváros Földrész 131 Magyarország 93036 10041000 Budapest Európa 3 Algéria 2381740 33769669 Algír Afrika

Részletesebben

Redukciós műveletek. Projekció (vetítés): oszlopok kiválasztása. Jelölés: attribútumlista (tábla) Példa: Könyv

Redukciós műveletek. Projekció (vetítés): oszlopok kiválasztása. Jelölés: attribútumlista (tábla) Példa: Könyv Redukciós műveletek Projekció (vetítés): oszlopok kiválasztása Jelölés: attribútumlista (tábla) Példa: Könyv szerző,cím (Könyv) K.szám Szerző Cím Szerző Cím 1121 Sályi Adatbázisok Sályi Adatbázisok 3655

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Adatbázis-kezelés. alapfogalmak

Adatbázis-kezelés. alapfogalmak Adatbázis-kezelés alapfogalmak Témakörök Alapfogalmak Adatmodellek Relációalgebra Normalizálás VÉGE Adatbázis-kezelő rendszer Database Management System - DBMS Integrált programcsomag, melynek funkciói:

Részletesebben

ABR ( Adatbázisrendszerek) 1. Előadás : Műveletek a relációs medellben

ABR ( Adatbázisrendszerek) 1. Előadás : Műveletek a relációs medellben Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) ABR ( Adatbázisrendszerek) 1. Előadás : Műveletek a relációs medellben 1.0 Bevezetés. A relációs adatmodell. 1.1 Relációs algebra 1.2 Műveletek a relációs

Részletesebben

Adatbázis-kezelés. 3. Ea: Viszonyított betűszámtan (2013) Relációs algebra alapok (átgondolt verzió) v: 2015.02.15 Szűcs Miklós - ME, ÁIT. 1.

Adatbázis-kezelés. 3. Ea: Viszonyított betűszámtan (2013) Relációs algebra alapok (átgondolt verzió) v: 2015.02.15 Szűcs Miklós - ME, ÁIT. 1. Adatbázis-kezelés 3. Ea: Viszonyított betűszámtan (2013) Relációs algebra alapok (átgondolt verzió) v: 2015.02.15 Szűcs Miklós - ME, ÁIT. 1.o Témakörök Relációs algebra Ellenőrző kérdések 2.o Relációs

Részletesebben

Példa 2012.05.11. Többértékű függőségek, 4NF, 5NF

Példa 2012.05.11. Többértékű függőségek, 4NF, 5NF Többértékű függőségek, 4NF, 5NF Szendrői Etelka datbázisok I szendroi@pmmk.pte.hu harmadik normálformáig mindenképpen érdemes normalizálni a relációkat. Legtöbbször elegendő is az első három normálformának

Részletesebben

Adatbázisok 1. Kósa Balázs gyakorlata alapján Készítette: Nagy Krisztián. 1. gyakorlat

Adatbázisok 1. Kósa Balázs gyakorlata alapján Készítette: Nagy Krisztián. 1. gyakorlat Adatbázisok 1. Kósa Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Relációs adatbázis Alap fogalmak (Forrás: http://digitus.itk.ppke.hu/~fodroczi/dbs/gyak2_1/ ) A relációs algebra egy

Részletesebben

RELÁCIÓS LEKÉRDEZÉSEK OPTIMALIZÁLÁSA. Marton József november BME TMIT

RELÁCIÓS LEKÉRDEZÉSEK OPTIMALIZÁLÁSA. Marton József november BME TMIT RELÁCIÓS LEKÉRDEZÉSEK OPTIMALIZÁLÁSA Marton József 2015. november BME TMIT ÁTTEKINTÉS lekérdezés (query) értelmező és fordító reláció algebrai kifejezés optimalizáló lekérdezés kimenet kiértékelő motor

Részletesebben

Lekérdezések az SQL-ben 1.rész

Lekérdezések az SQL-ben 1.rész Lekérdezések az SQL-ben 1.rész Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 6.1. Egyszerű (egy-relációs) lekérdezések az SQL-ben - Select-From-Where utasítás

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 2. Adatbáziskezelés eszközei Adatbáziskezelés feladata Adatmodell típusai Relációs adatmodell

Részletesebben

7. előadás. Karbantartási anomáliák, 1NF, 2NF, 3NF, BCNF. Adatbázisrendszerek előadás november 3.

7. előadás. Karbantartási anomáliák, 1NF, 2NF, 3NF, BCNF. Adatbázisrendszerek előadás november 3. 7. előadás,,,, Adatbázisrendszerek előadás 2008. november 3. és Debreceni Egyetem Informatikai Kar 7.1 relációs adatbázisokhoz Mit jelent a relációs adatbázis-tervezés? Az csoportosítását, hogy jó relációsémákat

Részletesebben

Lekérdezések az SQL-ben 1.rész

Lekérdezések az SQL-ben 1.rész Lekérdezések az SQL-ben 1.rész Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 6.1. Egyszerű (egy-relációs) lekérdezések az SQL-ben - Select-From-Where utasítás

Részletesebben

Adatbázisok I A relációs algebra

Adatbázisok I A relációs algebra Adatbázisok I A relációs algebra Relációs algebra Az adatmodell műveleti része definiálja a rendelkezésre álló operátorokat. Műveletek típusai: -adat definiáló(ddl) Data DefinitionLanguage -adatkezelő(dml)

Részletesebben

A relációs algebra egy speciális algebra, amely néhány egyszerű, de hathatós. operandusok. Egy reláció megadható a nevével vagy közvetlenül, sorainak

A relációs algebra egy speciális algebra, amely néhány egyszerű, de hathatós. operandusok. Egy reláció megadható a nevével vagy közvetlenül, sorainak Informatika szigorlat 11-es tétel: Lekérdező nyelvek 1. Relációs algebra A relációs algebra egy speciális algebra, amely néhány egyszerű, de hathatós módszert ad arra nézve, hogy miként építhetünk új relációkat

Részletesebben

7. Gyakorlat A relációs adatmodell műveleti része

7. Gyakorlat A relációs adatmodell műveleti része 7. Gyakorlat A relációs adatmodell műveleti része Relációs algebra: az operandusok és az eredmények relációk; azaz a relációs algebra műveletei zártak a relációk halmazára Műveletei: Egy operandusú Két

Részletesebben

Adatbázisok 1 2013-14 tavaszi félév Vizsgatételsor

Adatbázisok 1 2013-14 tavaszi félév Vizsgatételsor Adatbázisok 1 2013-14 tavaszi félév Vizsgatételsor 1. Relációs adatmodell alapjai Adatmodell: Az adatmodell egy jelölésmód egy adatbázis adatszerkezetének a leírására, beleértve az adatra vonatkozó megszorításokat

Részletesebben

Adatbázis rendszerek Ea: Viszonyított betűszámtan. Relációs algebra alapok

Adatbázis rendszerek Ea: Viszonyított betűszámtan. Relációs algebra alapok Adatbázis rendszerek 1. 2. Ea: Viszonyított betűszámtan Relációs algebra alapok 52/1 B ITv: MAN 2015.09.08 Témakörök Relációs algebra Ellenőrző kérdések 52/2 Relációs algebra Műveletek Gyakorlás 52/3 Relációs

Részletesebben

Magas szintű adatmodellek Egyed/kapcsolat modell I.

Magas szintű adatmodellek Egyed/kapcsolat modell I. Magas szintű adatmodellek Egyed/kapcsolat modell I. Ullman-Widom: Adatbázisrendszerek. Alapvetés. 4.fejezet Magas szintű adatmodellek (4.1-4.3.fej.) (köv.héten folyt.köv. 4.4-4.6.fej.) Az adatbázis modellezés

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Lekérdezések az SQL-ben 2.rész

Lekérdezések az SQL-ben 2.rész Lekérdezések az SQL-ben 2.rész Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 6.2. Több relációra vonatkozó lekérdezések az SQL-ben - Szorzat és összekapcsolás

Részletesebben

Adatbázisrendszerek megvalósítása 2

Adatbázisrendszerek megvalósítása 2 Adatbázisrendszerek megvalósítása 2 Irodalom: Hector Garcia-Molina Jeffrey D. Ullman Jennifer Widom: Adatbázisrendszerek megvalósítása, 6. és 7. fejezet Előfeltételek: Adatbázisrendszerek tárgy, SQL. Tartalom:

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Normálformák Normalizálás ADATBÁZISKEZELÉS ÉS KÖNYVTÁRI RENDSZERSZERVEZÉS 1 / 2

Normálformák Normalizálás ADATBÁZISKEZELÉS ÉS KÖNYVTÁRI RENDSZERSZERVEZÉS 1 / 2 Normálformák Normalizálás ADATBÁZISKEZELÉS ÉS KÖNYVTÁRI RENDSZERSZERVEZÉS 1 / 2 Normálformák Normálforma: az egyed szerkezeti állapota NÉV SZAKKÉPZETTSÉG SZÜLETÉSI DÁTUM Nagy Zsolt Gépészmérnök közgazdász

Részletesebben

NORMALIZÁLÁS. Funkcionális függés Redundancia 1NF, 2NF, 3NF

NORMALIZÁLÁS. Funkcionális függés Redundancia 1NF, 2NF, 3NF NORMALIZÁLÁS Funkcionális függés Redundancia 1NF, 2NF, 3NF FUNKCIONÁLIS FÜGGŐSÉG Legyen adott R(A 1,, A n ) relációséma, valamint P, Q {A 1,, A n } (magyarán P és Q a séma attribútumainak részhalmazai)

Részletesebben

Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések

Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 2.4. Relációs algebra (áttekintés) 5.1.

Részletesebben

Az egyed-kapcsolat modell (E/K)

Az egyed-kapcsolat modell (E/K) Az egyed-kapcsolat modell (E/K) Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 4.1. Az egyed-kapcsolat (E/K) modell 4.2. Tervezési alapelvek 4.3. Megszorítások

Részletesebben

A RELÁCIÓS ADATMODELL MŰVELETI RÉSZE (RELÁCIÓS ALGEBRA ÉS KALKULUS)

A RELÁCIÓS ADATMODELL MŰVELETI RÉSZE (RELÁCIÓS ALGEBRA ÉS KALKULUS) REÁIÓS DMODE MŰVEEI RÉSZE (REÁIÓS ER ÉS KKS) Relációs algebra: reláció struktúrájának felépítése után következhet az adatk felvitele, módsítása és lekérdezése. z adatmdell műveleti része definiálja a rendelkezésre

Részletesebben

8. előadás. Az ER modell. Jelölések, az ER séma leképezése relációs sémára. Adatbázisrendszerek előadás november 14.

8. előadás. Az ER modell. Jelölések, az ER séma leképezése relációs sémára. Adatbázisrendszerek előadás november 14. 8. előadás Jelölések, az Adatbázisrendszerek előadás 2016. november 14., és Debreceni Egyetem Informatikai Kar Az előadások Elmasry & Navathe: Database Systems alapján készültek. 8.1 Egyedtípusok Definíció

Részletesebben

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk: 1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:

Részletesebben

Adatbázis rendszerek I Relációs adatmodell műveleti rész (relációs algebra) ME- GEIAL Dr. Kovács László Relációs adatmodell strukturális rész tárolási struktúra séma R(m1,m2, ) adatmodell integritási rész

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

6. Gyakorlat. Relációs adatbázis normalizálása

6. Gyakorlat. Relációs adatbázis normalizálása 6. Gyakorlat Relációs adatbázis normalizálása Redundancia: Az E-K diagramok felírásánál vagy az átalakításnál elképzelhető, hogy nem az optimális megoldást írjuk fel. Ekkor az adat redundáns lehet. Példa:

Részletesebben

Gazdasági informatika vizsga kérdések

Gazdasági informatika vizsga kérdések Gazdasági informatika vizsga kérdések 1. Mi az adatbázis? Adatbázisnak a valós világ egy részhalmazának leírásához használt adatok összefüggı, rendezett halmazát nevezzük. 2. Mit az adatbázis-kezelı rendszer?

Részletesebben

Adatbázisok gyakorlat

Adatbázisok gyakorlat Adatbázisok gyakorlat 5. gyakorlat Adatmodellezés III/IV Funkcionális függés, redundancia. Normalizálás Szegedi Tudományegyetem Természettudományi és Informatikai Kar Antal Gábor 1 Funkcionális függés

Részletesebben

BGF. 4. Mi tartozik az adatmodellek szerkezeti elemei

BGF. 4. Mi tartozik az adatmodellek szerkezeti elemei 1. Mi az elsődleges következménye a gyenge logikai redundanciának? inkonzisztencia veszélye felesleges tárfoglalás feltételes függés 2. Az olyan tulajdonság az egyeden belül, amelynek bármely előfordulása

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Relációs algebra 1.rész

Relációs algebra 1.rész Relációs algebra 1.rész Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 Lekérdezések a relációs modellben 2.4. Egy algebrai lekérdező nyelv -- 01B_RelAlg1alap:

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Az SQL nyelv. SQL (Structured Query Language = Strukturált Lekérdező Nyelv).

Az SQL nyelv. SQL (Structured Query Language = Strukturált Lekérdező Nyelv). Az SQL nyelv SQL (Structured Query Language = Strukturált Lekérdező Nyelv). A lekérdezési funkciók mellett a nyelv több olyan elemmel is rendelkezik, amelyek más adatkezelési funkciók végrehajtására is

Részletesebben

Tankönyv példák kidolgozása

Tankönyv példák kidolgozása Tankönyv példák kidolgozása Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 Áttekintés: Rel.algebra és SQL Példák: Tk.2.4.14.Feladatok Tk.54-57.o. 2.4.1.feladat

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

Adatbázisok - 1. előadás

Adatbázisok - 1. előadás Óbudai Egyetem Alba Regia Műszaki Kar (AMK) Székesfehérvár 2015. október 15. Köszönet A tárgyat korábban Kottyán László tanította. Köszönöm neki, hogy az általa elkészített

Részletesebben

A relációs adatmodell

A relációs adatmodell A relációs adatmodell E. Codd vezette be: 1970 A Relational Model of Data for Large Shared Data Banks. Communications of ACM, 13(6). 377-387. 1982 Relational Databases: A Practical Foundation for Productivity.

Részletesebben

Adatbázisok I. Definíció: DDL: - objektum létrehozás CREATE - objektum megszüntetés DROP - objektum módosítás ALTER

Adatbázisok I. Definíció: DDL: - objektum létrehozás CREATE - objektum megszüntetés DROP - objektum módosítás ALTER Adatbázisok I 1 SQL- Utasítások csoportosítása Definíció: DDL: - objektum létrehozás CREATE - objektum megszüntetés DROP - objektum módosítás ALTER Módosítás: DML: - rekord felvitel INSERT - rekord törlés

Részletesebben

LEKÉRDEZÉSEK SQL-BEN. A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek

LEKÉRDEZÉSEK SQL-BEN. A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek LEKÉRDEZÉSEK SQL-BEN A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek RELÁCIÓS ALGEBRA A relációs adatbázisokon végzett műveletek matematikai alapjai Halmazműveletek:

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

GEIAL Kovács László. GEIAL Kovács László

GEIAL Kovács László. GEIAL Kovács László Adatbázis rendszerek I ciós adatmodell műveleti rész ( ) ME- GEIAL Dr. Kovács LászlL szló ciós adatmodell strukturális részr tárol rolási struktúra ra séma R(m1,m2, ) adatmodell integritási részr ért rték

Részletesebben

SQL. Táblák összekapcsolása lekérdezéskor Aliasok Allekérdezések Nézettáblák

SQL. Táblák összekapcsolása lekérdezéskor Aliasok Allekérdezések Nézettáblák SQL Táblák összekapcsolása lekérdezéskor Aliasok Allekérdezések Nézettáblák A SELECT UTASÍTÁS ÁLTALÁNOS ALAKJA (ISM.) SELECT [DISTINCT] megjelenítendő oszlopok FROM táblá(k direkt szorzata) [WHERE feltétel]

Részletesebben

Adatbázis rendszerek. 4. előadás Redundancia, normalizálás

Adatbázis rendszerek. 4. előadás Redundancia, normalizálás Adatbázis rendszerek 4. előadás Redundancia, normalizálás Molnár Bence Szerkesztette: Koppányi Zoltán HF tapasztalatok HF tapasztalatok [ABR] az email címbe! Ne emailbe küldjük a házikat, töltsétek fel

Részletesebben

Algebrai és logikai lekérdezo nyelvek

Algebrai és logikai lekérdezo nyelvek rr, I r 5. fejezet Algebrai és logikai lekérdezo nyelvek A jelen fejezet során a relációs adatbázisok modellezése helyett a programozásra fektetjük a hangsúlyt. A tárgyalást két absztrakt programozási

Részletesebben

A D A T B Á Z I S O K

A D A T B Á Z I S O K A D A T B Á Z I S O K Előadási jegyzet (BSc) Készítette: dr. Katona Endre Szegedi Tudományegyetem Informatikai Tanszékcsoport 2013. Ez a jegyzet az adatbázis-tankönyvek szokásos felépítését követi: Az

Részletesebben

Bevezetés: Relációs adatmodell

Bevezetés: Relációs adatmodell Bevezetés: Relációs adatmodell Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 2.1. Adatmodellek áttekintése 2.2. A relációs modell alapjai --Megjegyzés:

Részletesebben

SQL parancsok feldolgozása

SQL parancsok feldolgozása Az SQL nyelv SQL nyelv szerepe Sequental Query Language, deklaratív nyelv Halmaz orientált megközelítés, a relációs algebra műveleteinek megvalósítására Előzménye a SEQUEL (IBM) Algoritmus szerkezeteket

Részletesebben

Relációs adatbázisok tervezése 2.rész (dekompozíció)

Relációs adatbázisok tervezése 2.rész (dekompozíció) Relációs adatbázisok tervezése 2.rész (dekompozíció) Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 3.3. Relációs adatbázissémák tervezése, relációk felbontása

Részletesebben

Adatmodellezés. 1. Fogalmi modell

Adatmodellezés. 1. Fogalmi modell Adatmodellezés MODELL: a bonyolult (és időben változó) valóság leegyszerűsített mása, egy adott vizsgálat céljából. A modellben többnyire a vizsgálat szempontjából releváns jellemzőket (tulajdonságokat)

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

5. Gyakorlat. 5.1 Hálós adatbázis modell műveleti része. NDQL, hálós lekérdező nyelv:

5. Gyakorlat. 5.1 Hálós adatbázis modell műveleti része. NDQL, hálós lekérdező nyelv: 5. Gyakorlat 5.1 Hálós adatbázis modell műveleti része NDQL, hálós lekérdező nyelv: A lekérdezés navigációs jellegű, vagyis a lekérdezés megfogalmazása során azt kell meghatározni, hogy milyen irányban

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Adatbázis, adatbázis-kezelő

Adatbázis, adatbázis-kezelő Adatbázisok I. rész Adatbázis, adatbázis-kezelő Adatbázis: Nagy adathalmaz Közvetlenül elérhető háttértárolón (pl. merevlemez) Jól szervezett Osztott Adatbázis-kezelő szoftver hozzáadás, lekérdezés, módosítás,

Részletesebben

Knoch László: Információelmélet LOGIKA

Knoch László: Információelmélet LOGIKA Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke

Részletesebben

8. Előadás tartalma. Funkcionális függőségek

8. Előadás tartalma. Funkcionális függőségek 8. Előadás tartalma Funkcionális függőségek 8.1 Funkcionális függőségek és kulcsok 8.2 Relációk felbontása 1 Funkcionális függőségek Definíció: A funkcionális függőség egy n attribútumú R reláción a következő

Részletesebben

az Excel for Windows programban

az Excel for Windows programban az Excel for Windows táblázatkezelőblázatkezel programban Mit nevezünk nk képletnek? A táblt blázatkezelő programok nagy előnye, hogy meggyorsítj tják és könnyebbé teszik a felhasználó számára a számítási

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Adatbázis rendszerek Ea: A rendes állapot. Normalizálás

Adatbázis rendszerek Ea: A rendes állapot. Normalizálás Adatbázis rendszerek 1. 3. Ea: A rendes állapot Normalizálás 19/1 B ITv: MAN 2015.09.08 Normalizálás A normalizálás az adatbázis belső szerkezetének ellenőrzése, lépésenkénti átalakítása oly módon, hogy

Részletesebben

ADATBÁZISOK I. Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2013. március 20.

ADATBÁZISOK I. Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2013. március 20. ADATBÁZISOK I. Szerkesztette: Bókay Csongor Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2013. március 20. Ez a Mű a Creative Commons Nevezd meg! - Ne add el!

Részletesebben

Adatbázisok* tulajdonságai

Adatbázisok* tulajdonságai Gazdasági folyamatok térbeli elemzése 4. előadás 2010. 10. 05. Adatbázisok* tulajdonságai Rendezett, logikailag összefüggő és meghatározott szempont szerint tárolt adatok és/vagy információk halmaza Az

Részletesebben

Lekérdezések feldolgozása és optimalizálása

Lekérdezések feldolgozása és optimalizálása Lekérdezések feldolgozása és optimalizálása Definíciók Lekérdezés feldolgozása lekérdezés lefordítása alacsony szintű tevékenységekre lekérdezés kiértékelése adatok kinyerése Lekérdezés optimalizálása

Részletesebben

Adatbázisok gyakorlat

Adatbázisok gyakorlat Adatbázisok gyakorlat 4. gyakorlat Adatmodellezés II Relációs adatbázisséma készítése E-K modellből Szegedi Tudományegyetem Természettudományi és Informatikai Kar Antal Gábor 1 Közérdekű Honlap: http://antalgabor.hu

Részletesebben

Többtáblás lekérdezések megjelenítése

Többtáblás lekérdezések megjelenítése Többtáblás lekérdezések megjelenítése Célkitűzés Egynél több táblának egyenlőségen vagy nem-egyenlőségen alapuló összekapcsolást végző SELECT utasítások írása. Egy táblának önmagával történő összekapcsolása.

Részletesebben

Adatbázisok I. Egyed-kapcsolat formális modell. Egyed-kapcsolat formális modell. Kapcsolatok típusai

Adatbázisok I. Egyed-kapcsolat formális modell. Egyed-kapcsolat formális modell. Kapcsolatok típusai Egyed-kapcsolat formális modell Adatbázisok I Szemantikai adatmodellek Szendrői Etelka PTE-PMMK Rendszer és Szoftvertechnológiai Tanszék szendroi@pmmk.pte.hu E(A1,,An) egyedhalmaz séma, E az egyedhalmaz

Részletesebben

Adatbázisok. 9. gyakorlat SQL: SELECT október október 26. Adatbázisok 1 / 14

Adatbázisok. 9. gyakorlat SQL: SELECT október október 26. Adatbázisok 1 / 14 Adatbázisok 9. gyakorlat SQL: SELECT 2015. október 26. 2015. október 26. Adatbázisok 1 / 14 SQL SELECT Lekérdezésre a SELECT utasítás szolgál, mely egy vagy több adattáblából egy eredménytáblát állít el

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Adatbázis rendszerek. 5. előadás Adatbázis tervezés. Koppányi Zoltán

Adatbázis rendszerek. 5. előadás Adatbázis tervezés. Koppányi Zoltán Adatbázis rendszerek 5. előadás Adatbázis tervezés Koppányi Zoltán koppanyi.zoltan@epito.bme.hu Előző óra Redundancia, Anomáliák: beszúrás, törlés, módosítás Funkcionális Normalizálás Normál Táblák konzisztencia

Részletesebben

Polinomosztás. Összeállította: Bogya Norbert. Diszkrét matematika I.gyakorlat

Polinomosztás. Összeállította: Bogya Norbert. Diszkrét matematika I.gyakorlat Diszkrét matematika I. gyakorlat Összeállította: Bogya Norbert Tartalom Elméleti bevezető 1 Elméleti bevezető 2 1. példa 2. példa 3. példa Elmélet I. Elméleti bevezető Definíció (polinom) p = a n x n +

Részletesebben

ADATBÁZISOK I. ELŐADÁS ÉS GYAKORLAT JEGYZET

ADATBÁZISOK I. ELŐADÁS ÉS GYAKORLAT JEGYZET ADATBÁZISOK I. ELŐADÁS ÉS GYAKORLAT JEGYZET Szerkesztette: Balogh Tamás 2013. március 31. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne

Részletesebben

ADATBÁZIS-KEZELÉS Demetrovics Katalin

ADATBÁZIS-KEZELÉS Demetrovics Katalin ADATBÁZIS-KEZELÉS Demetrovics Katalin 1. Alapfogalmak...1 1.1. Adat... 1 1.2. Információ... 1 1.3. Egyed, Tulajdonság, Kapcsolat... 1 1.4. Adatmodellek... 2 1.5. Adatbázis (DATABASE, DB)... 3 2. A relációs

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Adatbázis rendszerek. 5. előadás Adatbázis tervezés. Koppányi Zoltán

Adatbázis rendszerek. 5. előadás Adatbázis tervezés. Koppányi Zoltán Adatbázis rendszerek 5. előadás Adatbázis tervezés Koppányi Zoltán zoltan.koppanyi@gmail.com koppanyi.zoltan@epito.bme.hu Előző óra Redundancia, konzisztencia Anomáliák: beszúrás, törlés, módosítás Funkcionális

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Adatbázisok elméleti alapjai. Dr. Kiss Attila people.inf.elte.hu/kiss kiss@ullman.inf.elte.hu D.2.508

Adatbázisok elméleti alapjai. Dr. Kiss Attila people.inf.elte.hu/kiss kiss@ullman.inf.elte.hu D.2.508 Adatbázisok elméleti alapjai Dr. Kiss Attila people.inf.elte.hu/kiss kiss@ullman.inf.elte.hu D.2.58 1 Tematika 1. Adatbázis-kezelő rendszerek általános jellemzői. 2. A relációs adatmodell, a relációs algebra

Részletesebben

0. Ha valahol még nem szerepelt a relációs algebrai osztás, akkor azt kell először venni:

0. Ha valahol még nem szerepelt a relációs algebrai osztás, akkor azt kell először venni: Funkcionális függések, kulcskeresés, Armstrong axiómák A kékkel írt dolgokat tudniuk kell már, nem kell újra elmondani 0. Ha valahol még nem szerepelt a relációs algebrai osztás, akkor azt kell először

Részletesebben

Adatbázis kezelés. Dr. Iszály György Barna

Adatbázis kezelés. Dr. Iszály György Barna Adatbázis kezelés Dr. Iszály György Barna Egy kis történelem A 60'-as évek eleje: a programnyelvek képesek állományokat kezelni, de számos probléma merült fel: Egy adott programban adott szerkezetű állományt

Részletesebben

RELÁCIÓS ADATBÁZISSÉMÁK. Egyed-kapcsolat modellről átírás

RELÁCIÓS ADATBÁZISSÉMÁK. Egyed-kapcsolat modellről átírás RELÁCIÓS ADATBÁZISSÉMÁK Egyed-kapcsolat modellről átírás A RELÁCIÓS ADATMODELL Az adatokat egyszerűen reprezentálja: kétdimenziós adattáblákban Minden sor azonos számú oszlopból áll; egy sor egy rekord,

Részletesebben

2. Alapfogalmak, műveletek

2. Alapfogalmak, műveletek 2. Alapfogalmak, műveletek Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGIMIEM Tartalomjegyzék I Mit tudunk eddig? 2 Fuzzy halmazokkal kapcsolatos alapvető fogalmak Fuzzy halmaz tartója Fuzzy halmaz

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

ABR ( Adatbázisrendszerek) 2. Előadás : Műveletek a relációs modellben

ABR ( Adatbázisrendszerek) 2. Előadás : Műveletek a relációs modellben ABR ( Adatbázisrendszerek) 2. Előadás : Műveletek a relációs modellben 2.2 Műveletek a relációs modellben 2.2.1 Relációra vonatkozó megszorítások 2.2.2 Multihalmazon értelmezett műveletek 2.2.3 A relációs

Részletesebben

Vezérlési szerkezetek

Vezérlési szerkezetek Vezérlési szerkezetek Szelekciós ok: if, else, switch If Segítségével valamely ok végrehajtását valamely feltétel teljesülése esetén végezzük el. Az if segítségével valamely tevékenység () végrehajtását

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

Adatbázisok. 1. gyakorlat. Adatmodellezés október október 1. Adatbázisok 1 / 42

Adatbázisok. 1. gyakorlat. Adatmodellezés október október 1. Adatbázisok 1 / 42 Adatbázisok 1. gyakorlat Adatmodellezés 2016. október 1. 2016. október 1. Adatbázisok 1 / 42 Elérhet ség Web: http://www.inf.u szeged.hu/~mkatona E-mail: mkatona@inf.u-szeged.hu Fogadóóra: Kedd 15 16 Árpád

Részletesebben

ADATBÁZISOK, ADATTÁRHÁZAK

ADATBÁZISOK, ADATTÁRHÁZAK ADATBÁZISOK, ADATTÁRHÁZAK Adattárolás Háttértárak Fájlok Fájlkezelő rendszer 2 Adattárolás Az adatok, információk bináris formában kerülnek tárolásra. Értelmezés kérdése, hogy egy bitsorozatnak milyen

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben