Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László"

Átírás

1 MATEMATIKAI LOGIKA A gondolkodás tudománya Diszkrét matematika Arisztotelész(i.e ) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey, Tarski, Ramsey, Russel, Robinson, Skolem, Turing, Zermelo, Post,, Quine Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László Mesterséges Intelligencia (MI) és matematikai logika: MI matematikai alátámasztása Tudás manipuláció: Állítások Újabb állítások Bizonyítások Következtetések Problémák: Emberi következtetés nem a logika szabályai szerint történik Túl szigorú rugalmatlan

2 A logika egyik feladata: helyes következtetési sémák kialakítása Logikai alapok Automatikus tételbizonyítás Programozási nyelvek PROLOG MPROLOG (moduláris Prolog): Szeredi Péter, Futó Iván

3 Nulladrendű logika (ítéletkalkulus) Formalizált nyelv: szintaxis és szematika Szintaxis: Szemantika: Jelkészlet Formulaképzés szabályai A helyes szintaxisú formulák jelentése Szintaxis Jelkészlet: 1. Betűk 2.,,, Atomok 3. I, H 4. Zárójelek

4 Formula: Minden atom formula Ha α, β formula akkor α, α β, α β, α β is formulák a fenti két szabály véges sokszori alkalmazásával kapjuk a formulákat A magyar betűkkel az atomi formulákat, a görög betűkkel az összetett formulákat jelöljük.

5 Szemantika A jelkészlet elemeit értelmezzük. A betűk az ún. ítéletváltozók. Nevüket az indokolja, hogy a köznapi nyelv kijelentő mondatainak, kijelentéseinek felelnek meg. A klasszikus logikában csak olyan kijelentésekre gondolunk, amelyek igaz vagy hamis volta egyértelműen eldönthető. Ezáltal egyfajta ítéletet képviselnek e mondatok. Változók pedig azért, mert az eredeti kijelentés tartalmától függetlenül, csakis annak igazságértékeit vehetik fel: az igaz, vagy a hamis értékek valamelyikét. Az igazságértékek tehát az ítéletváltozók lehetséges értékei, jelöljük ezek a halmazát I-vel. I csak a klasszikus logikában kételemű halmaz.

6 Azt a függvényt, amely a betűkkel jelölt változókhoz hozzárendeli a lehetséges igazságértékek valamelyikét, interpretációnak hívjuk. (Az interpretációk az igazságtábla atomokat tartalmazó oszlopaiban találhatók, ezen oszlopok minden egyes sora egy interpretáció.) Praktikus, ha az I és H betűt kiemeljük a betűk közül, és rögzítjük igazságértéküket - ezáltal e betűk nem ítéletváltozók, hanem ítéletkonstansok lesznek. Az I betű igazságértéke minden interpretációban legyen igaz, a H betű igazságértéke minden interpretációban legyen hamis. A többi ítéletváltozó esetében az igazságérték az interpretációtól függ. A zárójelek értelmezése és használata a matematikában szokásos módon történik: lényegében a műveletek kiértékelési sorrendjét tudjuk általuk neghatározni. A,, jelek az igazságértékeken értelmezett műveleteknek felelnek meg. E műveletek közül csak az egy-, és kétváltozós műveletek közül néhánynak van gyakorlati jelentősége. A műveletek definícióját szokás kiértékelésnek, kiértékelési szabálynak is nevezni. A kiértékelés az igazságtábla eredménynek megfelelő oszlopában van.

7 Negáció (tagadás): Egyváltozós művelet Igazságtáblázat: Ítéletváltozó Ítéletváltozó tagadása A A Igaz Hamis Hamis Igaz A 4 egyváltozós művelet közül csak a negáció lényeges, a többi a gyakorlatban alig fordul elő.

8 Kétváltozós műveletek Általában infix jelölést használunk. Konjunkció A B: informális jelentése: és. Példa: Esik az eső és süt a nap. Ezt a mondatot az A B sémával lehet jellemezni. Mikor gondoljuk igaznak ezt a két kijelentés összetételével kapott mondatot? A konjunkció akkor és csak akkor igaz, ha mindkét változó igazságértéke igaz. Igazságtáblázat: interpretációk Ítéletváltozók Művelet A B A B I I I I H H H I H H H H kiértékelések

9 Diszjunkció A B: informális jelentése: vagy. Példa: Esik az eső vagy süt a nap. Ezt a mondatot az A B sémával lehet jellemezni. Mikor gondoljuk igaznak ezt a két kijelentés összetételével kapott mondatot? A diszjunkció akkor és csak akkor hamis, ha mindkét változó igazságértéke hamis. Igazságtáblázat: interpretációk Ítéletváltozók Művelet A B A B I I I I H I H I I H H H kiértékelések

10 Implikáció A B : informális jelentése: ha A, akkor B. Példa: Ha az iskolai tanulmányai alatt a tanuló/hallgató minden félévben lagalább jeles átlageredményt ért el, akkor az állam egy aranygyűrűt ad ajándékba a diploma kiosztásakor. (Valójában ehhez még az is feltétel, hogy ne legyen hármasnál rosszabb jegye). Ezt a mondatot az A B sémával lehet jellemezni. Mikor gondoljuk igaznak ezt a két kijelentés összetételével kapott mondatot? Az implikáció akkor és csak akkor hamis, ha az előtagja igaz, az utótagja hamis. Igazságtáblázat: Kérdés: interpretációk Hány kétváltozós művelet van? Mitől függ az interpretációk száma? Ítéletváltozók Művelet A B A B I I I I H H H I I H H I kiértékelések

11 Példák kiértékelésre: 1. Adja meg az ((A B) C) (A B) formula kiértékelését minden interpretációban! A B C ((A B) C) B) (A I I I I I H H H I I H I H I H H I H I I I I I I I H H I H I I I H I I I I H H H H I H I H I H H H H I H H I H I H H H H H I H I

12 2. Adja meg az (A B) (A B) formula kiértékelését minden interpretációban! Megoldás: A B ( B (A B A ) ) I I I I I H I H H I H I H H H I I I H I H I I H H H H H H H I H H H H I 3. Adja meg az (A B) (A B) formula kiértékelését minden interpretációban! ABA B A B (A B) (A B) I I I H I I H H I I H I I H I HH I H I

13 Def.: Tautológia (azonosan igaz formula, érvényes formula): Az a formula, amely minden interpretációban igaz (például a 3. formula). Def.: Kontradikció (ellentmondás, azonosan hamis, kielégíthetlen):az a formula, amely minden interpretációban hamis (például a 2. formula). A kétértékű logikában érvényes az ún. harmadik (érték) kizárásának elve, amelyet például az alábbi formulákkal is megfogalmazhatunk: A A=H (kontradikció) ez azt jelenti, hogy az A ítéletváltozó az igaz, hamis értékek közül pontosan egyet vehet fel (kétértékű logika). A v A=I (tautológia) ez informálisan azt jelenti, hogy az A ítéletváltozó az igaz, hamis értékek közül legalább az egyiket felveszi. Def.: Modell: modellnek nevezzük azt az interpretációt, amelyben a formula igaz.

14 Kérdések: Mi a tautológia tagadása? Mi a kontradikció tagadása? Hány modellje van az 1., 2., 3 példákban szereplő formuláknak? kielégíthető formulák van modellje Formula: tautológia nincs modellje kontradikció, ellentmondás Def.: Ekvivalens két formula, α és β, ha minden interpretációban ugyanaz az igazságértékük. (A két formula közös igazságtáblájában a kiértékelésnek megfelelő oszlopok azonosak) Jelölés: α β

15 Példák fontos ekvivalens formulákra: 1. A konjunktív normálformára hozáshoz nélkülözhetetlen: α β α β α β α β α β I I I I I H H H H I I I H H I I 2. De Morgan azonosság 1. (A B) A B A B A B A B I I H H I H H H H I I I H H I I

16 3. De Morgan azonosság 2. (A B) A B A B (A B) A B I I H H I H I I H I I I H H I I

17 A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A (A B) A 4.b. H A H 5.b. A (B C) (A B) (A C) 6.b. A A H Feladat: Igazolja igazságtáblázattal, hogy a fenti formulák valóban ekvivalensek!

18 Halmazelméletben is hasonló azonosságok igazak: 1.a. A B=B A 1.b. A B=B A 2. a. (A B) C=A (B C) 2.b. (A B) C=A (B C) 3. a. A (A B)=A 3.b. A (A B)=A 4. a. U A=U 4.b. A= 5. a. A (B C)= (A B) (A C) 5.b. A (B C)= (A B) (A C) 6. a. A A = U 6.b. A A = Az olyan struktúrákat, amelyekben két művelet van definiálva, és van két kitüntett elem, amelyekre a fenti azonosságok igazak, BOOLE ALGEBRÁnak nevezzük. További példa: a valószínűségszámításban Boole algebrát alkotnak az események.

19 További kétváltozós művelet Ekvivalencia Az ekvivalencia szót a logikában egy kétváltozós műveletre is használjuk. Az ekvivalencia, mint művelet az implikációból és a konjunkcióból származtatható: Def.: α β:= (α β) (β α) Az ekvivalencia akkor és csak akkor igaz, ha α és β igazságértéke egyforma. Az ekvivalencia igazságtáblázata: α β α β β α (α β) (β α) I I I I I I H H I H H I I H H H H I I I Kérdés: Ha α és β ekvivalens formulák, mit tudunk mondani az α β formuláról? Megjegyzés: Noha az alapjelkészletben nem szerepelt a jel, ezt használhatjuk a definícióban megadott formula rövidítéseként. Lemma: Minden (eddig felírt) igazságtábla igaz úgy is, ha az atomok helyett formulákat írunk.

20 Lemma: α és β akkor és csak akkor ekvivalens, ha α β tautológia. Biz.: a. α ekvivalens β α β tautológia. Ha α és β igazságértéke megegyezik, akkor az ekvivalencia definíciója miatt csak igaz lehet tautológia. b. ha α β tautológia csak igaz lehet, de ez pontosan akkor van, ha α és β igazságértéke ugyanaz, vagyis α ekvivalens β. Tétel: Ha α tautológia, akkor az ítéletváltozók helyébe formulákat írva tautológiát kapunk. Tétel: Ha α tautológia, akkor bármely részformula helyett azzal ekvivalens formulát írva tautológiát kapunk.

21 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre régebbi jelölésekkel: Az első példát nem tudjuk nulladrendű formulákkal jól modellezni: Minden veréb madár. Minden madár gerinces. Minden veréb gerinces. Feltétel1 Feltétel2 Következmény Az alábbi példa nulladrendben is jól modellezhető: Ha elfogy a benzin, az autó leáll. Elfogyott a benzin. Az autó leáll. Feltétel1 Feltétel2 Következmény A= Elfogy a benzin, B=az autó leáll. A megfelelő séma:

22 A A B B Újabb jelöléssel: {A, A B} = 0 B Latin szavakkal: 1. feltétel 1. Premissza 2. feltétel. 2. Premissza Következmény Konklúzió

23 Mikor helyes egy következtetési séma? Ahhoz, hogy e kérdésre válaszolni tudjunk, értelmeznünk kell a következmény fogalmát. Def.: Modellelméleti vagy szemantikus következményfogalom: Azt mondjuk, hogy az {α 1, α 2,,α n } formulahalmaz következménye a β formula, ha minden olyan interpretációban, amelyben az α 1, α 2, α n formulák igazak, β is igaz. Más szavakkal: {α 1, α 2,,α n } formulahalmaz következménye a β formula, ha β legalább akkor igaz, amikor az α i -k igazak. Jelölés: {α 1, α 2,,α n } = 0 β Megjegyzés: Mivel az elsőrendű logika követketményfogalma nem teljesen azonos a nulladrendűével, ezért az indexben szokás azt is jelölni, hogy melyik nyelvről van szó: = 0 Az elsőrendű logikában a következményfogalom jele: = 1 Ha β tautológia, akkor minden interpretációban igaz, tehát abban is, amelyekben az α i k. Ezért a tautológia bármely formulahalmaz következménye. Ez indokolja a tautológia jelölését: = 0 β.

24 A következményfogalom definíciójának egyszerű következményei:) - α i -k közös modellje β-nak is modellje (fordítva az állítás nem igaz) - tautológia következménye csak tautológia lehet: tautológia = 0 tautológia - a tautológia bármely α formula következménye: α = 0 tautológia, - kontradikciónak bármi lehet a következménye ( spec. A is és az A tagadása is) : Kontradikció = 0 α - kontradikció csak kontradikciónak lehet következménye (hiszen más formula esetén igaznak kellene lennie ott, ahol a formula igaz): kontradikció = 0 kontradikció Most már válaszolni tudunk a fejezet elején feltett kérdésre, melyek a helyes következtetési sémák. Def.: Azokat a következtetési sémákat tekintjük helyesnek, amelyekben a következmény valóban a feltételek (szemantikai) következménye.

25 Példák helyes következtetési sémákra (szabályokra) 1. Modus ponens (leválasztási szabály): {α, α β } = 0 β Azt kell vizsgálnuk, ahol α és α β igaz, ott a β igaz-e. Ha igen, akkor helyes, ha nem, akkor helytelen a következtetési séma. Csak az első interpretációban teljesül, hogy α és α β igaz. Ebben a interpretációban β is igaz, tehát valóban {α, α β } = 0 β. Ítéletváltozók α β α β I I I I H H H I I H H I A A B A MODUS PONENS

26 Feladat: Bizonyítsa be, hogy az alábbi következtetési sémák helyesek! - Modus tollens (elvető mód, kontrapozíció): {α β, β } = 0 α - Hipotetikus szillogizmus (feltételes szillogizmus, láncszabály): {α β, β γ} = 0 γ - Modus tollendo ponens / diszjunktív szillogizmus (elvéve helyező mód): {α β, β} = 0 α - Indirekt: { α β, β } = 0 α Tétel: α 1, α 2,,α n = 0 β akkor és csak akkor, α 1 α 2 α n = 0 β Biz.: α 1, α 2,,α n együttesen akkor és csak akkor igaz, ha α 1 α 2 α n igaz. E tétel miatt a = 0 jel bal oldalát a továbbiakban egyszerűen α-val jelöljük, ahol α-n mindig α=α 1 α 2 α n formulát értjük.

27 Tétel: α = 0 β akkor és csak akkor, ha α β tautológia. Biz.: a.) ha α = 0 β akkor α β tautológia: a jelölt sor ez esetben nem lehet az igazságtáblában, ugyanis akkor α = 0 β nem teljesülne, hiszen ekkor β-nak legalább akkor kell igaznak lennie, amikor α igaz. A maradék sorokra pedig valóban az I az igazságérték. α β α β I I I I H H H I I H H I b.) ha α β tautológia, akkor α = 0 β: Ha α β tautológia, akkor a fenti igazságtáblában jelölt sor nem szerepelhet, hanem csak a jelöletlen, I sorok. Ezekben a sorokban viszont valóban a β legalább ott igaz, ahol az α.

28 Példa: Modus ponens: {α, α β } = 0 β helyes: Ítéletváltozók Formulák α β α β (α (α β)) β I I I I I I H H H I H I I H I H H I H I Feladat: A fenti módszerrel bizonyítsa be, hogyaz alábbi következtetési szabályk helyesek! - Modus tollens: {α β, β } = 0 α - Hipotetikus szillogizmus: {α β, β γ} = 0 γ - Modus tollendo ponens / diszjunktív szillogizmus (elvéve helyező mód) {α β, β} = α - Indirekt: { α β, β } = 0 α

29 Tétel: α = 0 β akkor és csak akkor, ha α β azonosan hamis. Biz: α = 0 β akkor és csak akkor, ha α β tautológia, vagyis hamis): (α β)= ( α β) α β α β (α β) kontradikció (azonosan Példa: Modus ponens {α, α β } = 0 β helyes: Ítéletváltozók Formulák α β α β (α (α β)) β I I I I H I H H H H H I I H H H H I H H

30 Feladat: A fenti módszerrel bizonyítsa be, hogyaz alábbi következtetési szabályok helyesek! - Modus tollens: {α β, β } = 0 α - Hipotetikus szillogizmus: {α β, β γ} = 0 γ - Modus tollendo ponens / diszjunktív szillogizmus (elvéve helyező mód) {α β, β} = 0 α - Indirekt: { α β, β } = 0 α Tétel (rezolúció alapelvéhez): {α β, γ β} = 0 α γ (diszjunktív szillogizmus általánosabban). Megjegyzés: Az α β és γ β formulák ún. klózok. E két klóz rezolvense α γ. Biz.: igazságtáblával, a következők alapján többféleképpen lehet: a.) def. alapján (házi feladat) b.) α = 0 β akkor és csak akkor, ha α β tautológia (házi feladat) c.) α = 0 β akkor és csak akkor, ha α β azonosan hamis (előadáson)

31 Alkalmazás: automatikus tételbizonyítás, rezolúció (PROLOG nyelv ) alapelve: A következményfogalom eldöntésére bizonyított tételekben az összes interpretációt meg kell vizsgálni. Ez exponenciális nagyságrendű feladat. Ezért volt forradalmi jelentőségű a rezolúció felfedezése (Robinson, 1965). Feladat: Hány interpretáció van, ha az ítéletváltozók száma n? Def.: Konjunktív NormálForma, KNF: K i klózok konjunkciója, klóz: literálok diszjunkciója, literál: atom, vagy annak tagadása.

32 KNF: diszjunkciók konjunkciója K 1 K 2 K n K i = A 1 A 2 A n Literál Pozitív, ha A Negatív, ha A Tétel: Minden formulához létezik vele ekvivalens konjunktív normálforma. Biz.: 1. α β α β 2. De Morgan (α β) α β (α β) α β 3. α (β γ) ( α β) ( α γ) α (β γ) ( α β) ( α γ) Def.: DNF (diszjunktív normálforma): konjunkciók diszjunkciója Megjegyzés: A KNF és DNF duális: ua. mindkettő, csak helyett, helyett. Következmény:

33 (Funkcionálisan) teljes rendszerek Fentiekből szerint, minden formula kifejezhető a,, műveletekkel. Ezért azt mondjuk, hogy e három művelet teljes rendszert alkot. A De Morgan azonosságokból azonnal adódik, hogy (α β) α β, így,, és hasonlóképpen bizonyíthatóan a, is funkcionálisan teljes halmaz. A, műveletekkel viszont nem lehet a -t kifejezni, így a konjunkció és diszjunkció együttesen NEM alkot teljes rendszert. Feladat: Bizonyítsa be, hogy a és teljes rendszert alkot! (Melyik implikáció ekvivalens α β-val?)

34 Példa: Hozza konjunktív normálformára az alábbi formulát! [(A B) ((C A) (C B))] [( A B) ( (C A) (C B))] [ ( A B) ( (C A) (C B ))] [ ( A B) (( C A) (C B))] [(A B) ( C A) (C B)] (A B) ( C A) (C B)] ( A B) (C A) ( C) B A klózok: K1=( A B) K2=(C A) K3=( C) K4= B

35 Tétel volt: α = 0 W akkor és csak akkor, ha α W kontradikció, vagyis α=α 1 α 2 α n miatt α 1 α 2 α n W kontradikció. Adott az {α 1,α 2,,α n }formulahalmaz. E tétel alapján el szeretnénk dönteni, hogy {α 1,α 2,,α n } = 0 W? A rezolúció alapelve informálisan: W-t is, és a feltételhalmaz formuláit is konjunktív normálformára hozzuk. Mikor igaz egy KNF? Ha minden benne szereplő klóz igaz. A klózokban viszont lehetnek negált és negálatlan, azonos atomok. Ezek együttesen nem lehetnek igazak az egész formulában, ezért ezeket a klózpárokból, amelyekben szerepelnek, elhagyjuk, és a maradékból egy klózt képezünk, ez a rezolvens. Az így kapott klózzal bővítjük a formulát. Ezen új formula modelljét (amely interpretációban igaz a formula) keressük.

36 A fentiek alkalmazása: Adott az {α 1,α 2,,α n }formulahalmaz. El szeretnénk dönteni, hogy {α 1,α 2,,α n } = 0 W? W-t is, és a feltételhalmaz formuláit is konjunktív normálformára hozzuk. Ekkor világos, hogy az α 1 α 2 α n W formula is KNF-ben van. Azt kell tehát megnézni, hogy van-e modellje. A fenti megjegyzés értelmében olyan klózokat keresünk, amelyekben azonos atom pozitív és negatív literálja szerepel. Ezekből a fent leírt módon konstruáljuk az új klózt, a rezolvenst. Az eljárás akkor ér véget, ha egy negált és egy negálatlan literál önmaga alkot egy-egy klózt. Ezek rezolvense az üres klóz, az azonosan hamis klóz (NIL-nek is nevezik). Jele:

37 Példa: Adott {P 1, P 1 Q 1, Q 1 Q 2 }=AB (adatbázis) Kérdés: Q 2 következmény-e? Megoldás: {P 1, P 1 Q 1, Q 1 Q 2 } a feltételek halmaza, mindegyiket KNF-re kell hozni: AB={ P 1, P 1 Q 1, Q 1 Q 2 } W= Q 2, tagadása: Q 2 (tagadás indirekt feltevés) Fentiek értelmében azt kell belátni, hogy az AB { Q 3 }formulahalmaz elemeinek nincsen modellje, nincsen olyan interpretáció, amelyben igaz lehetne. Informálisan: Ha például P 1 igaz P 1 nem lehet igaz a 2. klózban, ezért mivel minden klóznak igaznak kell lennie, a Q 1 literálnak igaznak kell lennie Q 1 ekkor hamis a 3. klózban, ami szerint tehát Q 2 igaz, de ekkor már ellentmondásra jutottunk, hiszen Q 2 és Q 2 egyszerre nem lehet igaz. (Azért kellene nekik egyszerre igaznak lenni, mert különböző klózokban szerepelnek, és az egész formula igazságát az összes klóz igaz értéke garantálja. Igy azonban nagyon nehéz bizonyítani, hiszen minden lehetséges értékadásra végig kellene nézni. Ezt oldja meg a rezolúció.

38 Rezolúciós levezetés: P 1 P 1 Q 1 Q 1 Q 2 Q 2 Q 1 P 1 P 1 Q 1 Q 1 Q 2 Q 2 Q 1 Q 2 P 1 P 1 Q 1 Q 1 Q Q 2 Q 1 Q 2 Eredeti Klózhalmaz = 0 Rezolvenssel bővített klózhalmaz - Üres klóz, ellentett literálpárból jön létre Rezolvense kielégíthetetlen P 1 P 1 Q 1 Q 1 Q Q 2 Q 1 Q 2 Ennek a klózhalmaznak nincsen modellje a miatt.

39 Példa: Igazoljuk, hogy az alábbi ϕ formula tautológia! ϕ=[(a B) [(C A) (C B)]] Megoldás: ϕ akkor és csak akkor tautológia, ha ϕ kielégíthetetlen ϕ-t KNF-re írjuk át. ϕ= [(A B) [(C A) (C B)]] ( A B) (C A) ( C) ( B) A B C A C B A B Tehát az eredetei formula tautológia (hiszen tagadása kielégíthetetlen)

40 Példa: Részlet egy nyomozás jegyzőkönyvéből (Pásztorné Varga Katalin: Matematikai logika és alkalmazásai, ELTE, 1991.) : 1. Ha férfi a tettes (F), akkor kistermetű(kt). (F KT F KT) 2. Ha kistermetű a tettes(kt), akkor az ablakon keresztül mászott be(am). (KT AM KT AM) 3. A tettes férfi(f), vagy férfiruhát hordott(fr). (F FR) 4. Ha a tettes férfiruhát hordott(fr) és a szemtanú hiteles(h) akkor az ablakon keresztül mászott be.(am) (H FR AM (H FR) AM H FR AM) 5. Helyszíni szemle: a tettes nem az ablakon mászott be. ( AM). Kérdés: férfi, F, vagy nő, F, a tettes?

41 Adott { F KT, KT AM, F FR, H FR AM, AM} klózhalmaz. 1. Tegyük fel, hogy nő a tettes: F. A klózhalmazhoz hozzávesszük F tagadását: F 2. Rezolúcióval eldöntjük a klózhalmaz kielégíthetetlenségét. F KT KT AM F FR H FR AM AM F KT F tautológia F (tehát nem férfi a tettes)

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László.

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László. MATEMATIKAI A gondolkodás tudománya Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey, Tarski, Ramsey, Russel,

Részletesebben

A logikai következmény

A logikai következmény Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel

Részletesebben

Diszkrét matematika MATEMATIKAI LOGIKA

Diszkrét matematika MATEMATIKAI LOGIKA NULLADRENDŰ LOGIKA (ÍTÉLETKALKULUS) A logikát, mint a filozófia egy részét, már az ókori a görög tudósok is igen magas szinten művelték, pl. Platón (Kr. e. 427- Kr. e. 347), Arisztotelész (Kr.e. 384- Kr.

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 3. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa

Részletesebben

Logikai alapok a programozáshoz

Logikai alapok a programozáshoz Logikai alapok a programozáshoz Kidolgozott tételek Készítette: Chripkó Ágnes Felhasznált anyagok: előadásvázlat; gyakorlatok anyaga; Pásztorné Varga K., Várterész M.: A matematikai logika alkalmazásszemléletű

Részletesebben

Intelligens Rendszerek I. Tudásábrázolás formális logikával

Intelligens Rendszerek I. Tudásábrázolás formális logikával Intelligens Rendszerek I. Tudásábrázolás formális logikával 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel:

Részletesebben

Knoch László: Információelmélet LOGIKA

Knoch László: Információelmélet LOGIKA Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Logikai alapok a programozáshoz. Nagy Károly 2014

Logikai alapok a programozáshoz. Nagy Károly 2014 Logikai alapok a programozáshoz előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2014 1 1. Kijelentés logika, ítéletkalkulus 1.1. Definíció. Azokat a kijelentő mondatokat, amelyekről

Részletesebben

Halmazelmélet és logika

Halmazelmélet és logika Halmazelmélet és logika Dr. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006/07 I. szemeszter Dr. Szilágyi Ibolya (EKF) Logika 2006/007 1 / 58 Outline A halmazelmélet és

Részletesebben

Felmentések. Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól.

Felmentések. Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól. Felmentések Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól. Az eredménye, ezek után a számításelélet részből elért eredmény

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

A matematikai logika alapjai

A matematikai logika alapjai A matematikai logika alapjai A logika a gondolkodás törvényeivel foglalkozó tudomány A matematikai logika a logikának az az ága, amely a formális logika vizsgálatára matematikai módszereket alkalmaz. Tárgya

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Negáció igazságtáblája. Propozicionális logika -- levezetések. Diszjunkció igazságtáblája. Konjunkció igazságtáblája. Kondicionális igazságtáblája

Negáció igazságtáblája. Propozicionális logika -- levezetések. Diszjunkció igazságtáblája. Konjunkció igazságtáblája. Kondicionális igazságtáblája Negáció igazságtáblája Propozicionális logika -- levezetések p ~p I H H I Konjunkció igazságtáblája Diszjunkció igazságtáblája p q p&q I I I I H H H I H H H H p q pvq I I I I H I H I I H H H Megengedő

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Az informatika logikai alapjai előadások

Az informatika logikai alapjai előadások VÁRTERÉSZ MAGDA Az informatika logikai alapjai előadások 2006/07-es tanév 1. félév Tartalomjegyzék 1. Bevezetés 2 2. Az ítéletlogika 18 2.1. Az ítéletlogika nyelve szintaxis...............................................

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

4. fejezet Analitikus táblázatok a kijelentéslogikában Bevezetés A következtetések helyességének ellenőrzésére több eljárás is kínálkozik.

4. fejezet Analitikus táblázatok a kijelentéslogikában Bevezetés A következtetések helyességének ellenőrzésére több eljárás is kínálkozik. 4. fejezet Analitikus táblázatok a kijelentéslogikában Bevezetés A következtetések helyességének ellenőrzésére több eljárás is kínálkozik. Az egyik az igazságtáblázatok módszere, amelyet az előző fejezetekben

Részletesebben

Válogatott fejezetek a logikai programozásból ASP. Answer Set Programming Kelemen Attila

Válogatott fejezetek a logikai programozásból ASP. Answer Set Programming Kelemen Attila ASP 1 Kedvcsináló N királynő 3+1 sorban index(1..n). % minden sorban pontosan 1 királynő van 1{q(X,Y):index(X)}1 :- index(y). % az rossz, ha ugyanabban az oszlopban 2 királynő van :- index(x; Y1; Y2),

Részletesebben

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

LOGIKA ÉS SZÁMÍTÁSELMÉLET KIDOLGOZOTT JEGYZET

LOGIKA ÉS SZÁMÍTÁSELMÉLET KIDOLGOZOTT JEGYZET LOGIKA ÉS SZÁMÍTÁSELMÉLET KIDOLGOZOTT JEGYZET Készítette: Butkay Gábor és Gyenes József A jegyzet a 2013-2014-es tanév 2. felében lévő Logika és számításelmélet előadások alapján született. A jegyzet nem

Részletesebben

A 2011/2012-es iskolaév érettségi vizsgakatalógusa. Logika. LOGIKA 2012 mad.indd 1 13.4.2012 13:45:44

A 2011/2012-es iskolaév érettségi vizsgakatalógusa. Logika. LOGIKA 2012 mad.indd 1 13.4.2012 13:45:44 A 2011/2012-es iskolaév érettségi vizsgakatalógusa Logika LOGIKA 2012 mad.indd 1 13.4.2012 13:45:44 A logika vizsgaanyagát kidolgozó szakcsoport tagjai: Krešimir Gracin, prof., vezető, X. Gimnázium Ivan

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor

Részletesebben

Új műveletek egy háromértékű logikában

Új műveletek egy háromértékű logikában A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák

Részletesebben

DISZKRÉT MATEMATIKA. Elsőrendű Logika. Minden madár gerinces.

DISZKRÉT MATEMATIKA. Elsőrendű Logika. Minden madár gerinces. Elsőrendű Logika Volt (a helyes következtetéseknél): Minden veréb madár. Minden madár gerinces. Minden veréb gerinces. Feltétel1 Feltétel2 Következmény Érezzük, hogy a leírt következtetés helyes. Azonban

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

3. Az ítéletlogika szemantikája

3. Az ítéletlogika szemantikája 3. Az ítéletlogika szemantikája (4.2) 3.1 Formula és jelentése minden ítéletváltozó ( V v ) ha A JFF akkor A JFF ha A,B JFF akkor (A B) JFF minden formula előáll az előző három eset véges sokszori alkalmazásával.

Részletesebben

Írta: PIGLERNÉ LAKNER ROZÁLIA STARKNÉ WERNER ÁGNES ÁGENS-TECHNOLÓGIA. Egyetemi tananyag

Írta: PIGLERNÉ LAKNER ROZÁLIA STARKNÉ WERNER ÁGNES ÁGENS-TECHNOLÓGIA. Egyetemi tananyag Írta: PIGLERNÉ LAKNER ROZÁLIA STARKNÉ WERNER ÁGNES ÁGENS-TECHNOLÓGIA Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Piglerné Dr. Lakner Rozália, Starkné Dr. Werner Ágnes, Pannon Egyetem Műszaki Informatikai

Részletesebben

Matematikai logika. Jegyzet. Összeállította: Faludi Anita 2011.

Matematikai logika. Jegyzet. Összeállította: Faludi Anita 2011. Matematikai logika Jegyzet Összeállította: Faludi Anita 2011. Tartalomjegyzék Bevezetés... 3 Előzmények... 3 Augustus de Morgan (1806-1871)... 3 George Boole(1815-1864)... 3 Claude Elwood Shannon(1916-2001)...

Részletesebben

A deduktív logika elemei. Érveléselmélet, 2015. 10. 12.

A deduktív logika elemei. Érveléselmélet, 2015. 10. 12. A deduktív logika elemei Érveléselmélet, 2015. 10. 12. Ismétlés: Deduktív érvelés Deduktív érvelés: A premisszák igazsága szükségszerűen maga után vonja a konklúzió igazságát. Minden magyar adócsaló. Pityu

Részletesebben

Matematikai logika. Nagy Károly 2009

Matematikai logika. Nagy Károly 2009 Matematikai logika előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2009 1 1. Elsőrendű nyelvek 1.1. Definíció. Az Ω =< Srt, Cnst, F n, P r > komponensekből álló rendezett négyest elsőrendű

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Logikai ágens ügyesebben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Mit tudunk már?

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 1. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2009 tavasz Követelmények A tárgy (ea+gyak) teljesítésének követlményeit

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Logika és számításelmélet. 2011/11 11

Logika és számításelmélet. 2011/11 11 (Logika rész) Logika és számításelmélet. 2011/11 11 1. előadás 1. Bevezető rész Logika (és a matematikai logika) tárgya Logika (és a matematikai logika) tárgya az emberi gondolkodás vizsgálata. A gondolkodás

Részletesebben

Tartalomjegyzék. Pragmatikai és logikai alapok. Első rész A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika

Tartalomjegyzék. Pragmatikai és logikai alapok. Első rész A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika Tartalomjegyzék ELSŐ FEJEZET Bevezetés 1.1. A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika 15 15 17 Első rész Pragmatikai és logikai alapok MÁSODIK FEJEZET A vita 2.1 A vita: megközelítési

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és

Részletesebben

Logikai programozás ADMINISZTRATÍV KÉRDÉSEK KÖVETELMÉNYRENDSZER FŐBB PONTOK NÉHÁNY BIZTATÓ SZÓ

Logikai programozás ADMINISZTRATÍV KÉRDÉSEK KÖVETELMÉNYRENDSZER FŐBB PONTOK NÉHÁNY BIZTATÓ SZÓ Logikai programozás ADMINISZTRATÍV KÉRDÉSEK Bármilyen kérdéssel (akár tananyag, akár nem), örömmel, bánattal: achs.agnes@gmail.com (Ha két napon belül nem válaszolok, akkor kérek egy figyelmeztető levelet.

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 1. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Követelmények A tárgy (ea+gyak) teljesítésének követlményeit

Részletesebben

2. Alapfogalmak, műveletek

2. Alapfogalmak, műveletek 2. Alapfogalmak, műveletek Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGIMIEM Tartalomjegyzék I Mit tudunk eddig? 2 Fuzzy halmazokkal kapcsolatos alapvető fogalmak Fuzzy halmaz tartója Fuzzy halmaz

Részletesebben

Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb

Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb Logika, 5. Az előadásfóliák ÉsikZoltén (SZTE InformatikaiTanszékcsoport) Logikaa szamtastudomanyban Logikaes informatikaialkalmazasai Előadásai alapján készültek Ésik Zoltán (SZTE Informatikai Tanszékcsoport)

Részletesebben

Kijelentéslogika I. 2004. szeptember 24.

Kijelentéslogika I. 2004. szeptember 24. Kijelentéslogika I. 2004. szeptember 24. Funktorok A természetesnyelvi mondatok gyakran összetettek: további mondatokból, végső soron pedig atomi mondatokból épülnek fel. Az összetevő mondatokat mondatkonnektívumok

Részletesebben

A logika története ott kezdődik, ahol elkezdenek gondolkodni a helyes következtetési formákról.

A logika története ott kezdődik, ahol elkezdenek gondolkodni a helyes következtetési formákról. A MATEMATIKAI LOGIKA TÖRTÉNETE A logika eredetileg a filozófia részeként jelent meg a tudományok sorában. Az i. e. 5. századtól kezdtek terjedni a tisztán emberi gondolkodáson alapuló logikai bizonyítások.

Részletesebben

Csikós Pajor Gizella Péics Hajnalka ALGEBRA. Bolyai Farkas Alapítvány Zenta 2011.

Csikós Pajor Gizella Péics Hajnalka ALGEBRA. Bolyai Farkas Alapítvány Zenta 2011. Béres Zoltán Csikós Pajor Gizella Péics Hajnalka ALGEBRA elméleti összefoglaló és példatár Bolyai Farkas Alapítvány Zenta 0. Szerzők: Béres Zoltán, középiskolai tanár, Bolyai Tehetséggondozó Gimnázium

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Dr. Jelasity Márk Mesterséges Intelligencia I Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Elsőrendű logika -Ítéletkalkulus : Az elsőrendű logika egy speciális esete, itt csak nullad

Részletesebben

Logika. Mihálydeák Tamás szeptember 27. Tartalomjegyzék. 1.

Logika. Mihálydeák Tamás szeptember 27. Tartalomjegyzék. 1. Logika Mihálydeák Tamás mihalydeak@inf.unideb.hu www.inf.unideb.hu/szamtud/tagok/?mihalydeak 2007. szeptember 27. Tartalomjegyzék 1. Irodalom 3 2. A logika feladata 3 3. A helyes következtetés 3 4. Történeti

Részletesebben

Diszkrét Matematika. Ha Picur akkor és csak akkor szabadítja ki a kalitkából Gombóc Artúrt, ha Artúr

Diszkrét Matematika. Ha Picur akkor és csak akkor szabadítja ki a kalitkából Gombóc Artúrt, ha Artúr FELADATOK AZ ÍTÉLETKALKULUS TÉMAKÖRHÖZ Diszkrét Matematika 3.1. Feladat. Döntse el, hogy az (a) A ( ( B) (C B) ) ( ) (b) A ( B) (C B) ( ) ( ) (c) (A ( B)) C B (d) A ( B) (C B) formulák közül a prímítéletek

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Dunaújvárosi Főiskola Informatikai Intézet

Dunaújvárosi Főiskola Informatikai Intézet Dunaújvárosi Főiskola Informatikai Intézet Bizonytalanságkezelés Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Bizonytalan tudás forrása A klasszikus logikában a kijelentések vagy igazak

Részletesebben

INFORMATIKA LOGIKAI ALAPJAI JEGYZET

INFORMATIKA LOGIKAI ALAPJAI JEGYZET INFORMATIKA LOGIKAI ALAPJAI JEGYZET KÉSZÍTETTE: CSENGERI ISTVÁN PTI SALGÓTARJÁN 2009 Nulladrendű matematikai logika... 4 1.1 Matematikai Logika = mat.log = symbolic logic... 4 1.2 Kijelentések... 4 1.3

Részletesebben

A matematika alapjai. Nagy Károly 2014

A matematika alapjai. Nagy Károly 2014 A matematika alapjai előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2014 1 1. Kijelentés logika, ítéletkalkulus 1.1. Definíció. Azokat a kijelentő mondatokat, amelyekről egyértelműen

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Az informatika logikai alapjai 1

Az informatika logikai alapjai 1 Az informatika logikai alapjai 1 1.1. Az alábbi idézetek 1 közül melyek fejeznek ki állítást? Miért, illetve miért nem? (a) Ez volt ám az ember, ha kellett, a gáton. (b) Szép öcsém, miért állsz ott a nap

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

Érveléstechnika-logika 5. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2.

Érveléstechnika-logika 5. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2. Érveléstechnika-logika 5. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u. 2-4. fsz. 2. Elemi állítás Állítás: Jelentéssel bíró kijelentő mondat, amely információt közöl a világról.

Részletesebben

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE . EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ) I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

Tételsor a szóbeli számításelmélet vizsgához

Tételsor a szóbeli számításelmélet vizsgához Tételsor a szóbeli számításelmélet vizsgához A vizsgázó az 1-6., 7-10., 11-15. és 16-19. tételek közül húz egyet-egyet. Minden rész 1..5-ig lesz értékelve. Minden részb ı l legalább 2-est kell elérni,

Részletesebben

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt?

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? skombinatorika 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot írhatunk föl 2 db 1-es, 1 db 2-es és 1 db 3-as

Részletesebben

Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek

Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek Matematikai logika A logika tudománnyá válása az ókori Görögországban kezd dött. Maga a logika szó is görög eredet, a logosz szó jelentése: szó, fogalom, ész, szabály. Kialakulása ahhoz köthet, hogy már

Részletesebben

Bizonytalanság. Mesterséges intelligencia április 4.

Bizonytalanság. Mesterséges intelligencia április 4. Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? 4/14/2014. propozicionális logikát

Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? 4/14/2014. propozicionális logikát roozicionális logikát roozicionális logikát Legfontosabb logikai konnektívumok: roozíció=állítás nem néztünk a tagmondatok belsejébe, csak a logikai kacsolatuk érdekelt minket Legfontosabb logikai konnektívumok:

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

A deduktív logika elemei

A deduktív logika elemei Ismétlés 1: Deduktív érvelés A deduktív logika elemei Érveléselmélet, 2006. 10. 24. Deduktív érvelés: A premisszák igazsága szükségszerűen maga után vonja a konklúzió igazságát. Minden magyar adócsaló.

Részletesebben

Példa 1. A majom és banán problémája

Példa 1. A majom és banán problémája Példa 1. A majom és banán problémája Egy majom ketrecében mennyezetről egy banánt lógatnak. Kézzel elérni lehetetlen, viszont egy faládát be is tesznek. Eléri-e a majom a banánt? Mit tudunk a majom képességeirõl?

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Logikai függvények osztályai. A függvényosztály a függvények egy halmaza.

Logikai függvények osztályai. A függvényosztály a függvények egy halmaza. Logikai függvények osztályai A függvényosztály a függvények egy halmaza. A logikai fügvények egy osztálya logikai függvények valamely halmaza. Megadható felsorolással, vagy a tulajdonságainak leírásával.

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Megoldott feladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA

Megoldott feladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA Megoldott eladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA. Az : R R üggvény teljesíti az ( + y) = ( a y) + ( y) ( a ) összeüggést bármely,y R esetén (a egy rögzített valós szám). Bizonyítsd

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Logikai Emberi ágens tudás és problémái gépi reprezentálása Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Dombi József. University of Szeged Department of Informatics.

Dombi József. University of Szeged Department of Informatics. Dombi József University of Szeged Department of Informatics dombi@inf.u-szeged.hu Előadásom során rámutatok a logikai rendszerhez való ragaszkodás korlátaira. Megmutatom, hogy az új létrejött paradigmák

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása

MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása Bellák György László Mechatronikai elemek A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása A követelménymodul száma: 0944-06 A tartalomelem azonosító száma és

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben