Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor másrészt f(x + y = f ( (x 1, + (y 1, y 2 = f(x 1 + y 1, + y 2 = = ( 3(x 1 + y 1 + 2( + y 2, x 1 + y 1 ( + y 2 = = (3x 1 + 3y 1 + 2 + 2y 2, x 1 + y 1 y 2, f(x + f(y = f(x 1, + f(y 1, y 2 = (3x 1 + 2y 1, x 1 y 1 + (3 + 2y 2, y 2 = = (3x 1 + 2y 1 + 3 + 2y 2, x 1 y 1 + y 2 = = (3x 1 + 3y 1 + 2 + 2y 2, x 1 + y 1 y 2, így f(x + y = f(x + f(y, tehát f additív Másrészt f(cx = f ( c(x 1, = f(cx 1, c = (3cx 1 + 2c, cx 1 c, másrészt cf(x = c(3x 1 + 2, x 1 = (3cx 1 + 2c, cx 1 c, így f(cx = cf(x, azaz f homogén Mivel f additív és homogén, ezért lineáris 2 Lineáris-e az f : R 2 R 2 f(x, y = (x + y, leképezés? Legyen x = (x 1, R 2, c R Ekkor f(cx = f ( c(x 1, = f(cx 1, c = (cx 1 + c, c 2 1, másrészt cf(x = c(x 1 +, 1 = (cx 1 + c, c 1, így f(cx cf(x, tehát f nem homogén, így nem lineáris 1
2 3 Mutassuk meg, hogy ha f : R 2 R 2 lineáris, akkor f( = Ha f lineáris, akkor additív, így f(x + y = f(x + f(y Legyen x = y = Ekkor azaz f( + = f( + f(, f( = 2f(, így f( = 4 Lineáris-e az f : R 2 R 2 f(x, y = (x + y + 1, x y leképezés? Mivel f( = (1, (,, ezért f nem lineáris 5 Tekintsük az f : R 2 R 2, f(x, y = (2x + 2y, 2x + 5y lineáris leképezést! a Írjuk föl a lineáris leképezés (természetes bázisra vonatkozó mátrixát! b Határozzuk meg a (3, 1 vektor képét a lineáris leképzés mátrixának segítségével! c Írjuk föl a lineáris leképzés karakterisztikus polinomját! d Írjuk föl a lineáris leképzés karakterisztikus egyenletét! e Határozzuk meg a lineáris leképezés sajátértékeit! f Határozzuk a különböz sajátértékekhez tartozó sajátvektorokat! a A lineáris leképezés természetes bázisra vonatkozó mátrixát úgy írhatjuk föl, hogy megnézzük a természetes bázis tagjain felvett értékeket, majd ezekb l, mint oszlopvektorokból képezünk egy mátrixot: f(1, = (2, 2, f(, 1 = (2, 5 Így a lineáris leképzés mátrixa A = ( 2 2 2 5
b Minden lineáris leképzés a mátrixával balról szorzásként hat, így a v(3, 1 vektor képe ( ( ( 2 2 3 4 f(v = Av = = 2 5 1 1 c A karakterisztikus polinom a det(a λe polinom Behelyettesítve a ( 2 λ 2 det 2 5 λ determinánshoz jutunk, melyet kiszámolva, majd elvégzve a zárójelfelbontásokat a polinomot kapjuk (2 λ(5 λ 4 = λ 2 7λ + 6 d A karakterisztikus egyenlet a det(a λe = egyenlet, ami jelen esetben a λ 2 7λ+6 = másodfokú egyenlet e A sajátértékek a karakterisztikus egyenlet gyökei, így meg kell oldanunk a λ 2 7λ+6 = egyenletet: így λ 1 = 1, λ 2 = 6 λ 1,2 = 7 ± 49 24 2 = 7 ± 5 2, f A λ sajátértékhez tartozó sajátvektorok azok az x vektorok, melykre Ax = λx teljesül Ezt átrendezve (A λex = adódik El ször meghatározzuk a λ 1 = 1 sajátértékhez tartozó sajátvektorokat Ekkor ( ( ( 2 2 1 1 2 A 1 E = = 2 5 1 2 4 3 Így meg kell oldanunk a ( 1 2 2 4 ( ( x1 = egyenletrendszert Vegyük észre, hogy az alapmátrix második sora az els sor kétszerese, így az elhagyható, mivel az egyenletrendszer homogén Tehát a megoldandó lineáris egyenletrendszer x 1 + 2 = Az egyik ismeretlent szabad paraméternek választjuk Legyen = t R \ {} Ekkor x 1 = 2t Tehát a λ 1 = 1 sajátértékhez tartozó összes sajátvektorok halmaza (amit sajátaltérnek is nevezünk {( 2t S λ1 = t R \ {}} t Meghatározzuk a λ 2 = 6 sajátértékhez tartozó sajátvektorokat: ( ( ( 2 2 6 4 2 A 6 E = = 2 5 6 2 1
4 Így meg kell oldanunk a ( 4 2 2 1 ( ( x1 = egyenletrendszert Vegyük észre, hogy az alapmátrix els sora a második sor mínusz kétszerese, így az elhagyható, mivel az egyenletrendszer homogén Tehát a megoldandó lineáris egyenletrendszer 2x 1 = Az egyik ismeretlent szabad paraméternek választjuk Legyen x 1 = t R \ {} Ekkor = 2t Tehát a λ 2 = 6 sajátértékhez tartozó összes sajátvektorok halmaza {( t S λ2 = t R \ {}} 2t 6 Jelentse f a sík x-tengelyre való tükrözésének mátrixát! a Írjuk föl a lineáris leképezés (természetes bázisra vonatkozó mátrixát! b Határozzuk meg a (2, 5 vektor képét a lineáris leképzés mátrixának segítségével! c Írjuk föl a lineáris leképzés karakterisztikus polinomját! d Írjuk föl a lineáris leképzés karakterisztikus egyenletét! e Határozzuk meg a lineáris leképezés sajátértékeit! f Határozzuk a különböz sajátértékekhez tartozó sajátvektorokat! a Mivel f(1, = (1, és f(, 1 = (, 1, ezért a lineáris leképezés mátrixa ( 1 A = 1 b Minden lineáris leképzés a mátrixával balról szorzásként hat, így a v(2, 5 vektor képe ( ( ( 1 2 2 f(v = Av = = 1 5 5 c A karakterisztikus polinom a det(a λe polinom Behelyettesítve a ( 1 λ det 1 λ determinánshoz jutunk, melyet kiszámolva, majd elvégzve a zárójelfelbontásokat a polinomot kapjuk (1 λ( 1 λ = λ 2 1 d A karakterisztikus egyenlet a det(a λe = egyenlet, ami jelen esetben a λ 2 1 = másodfokú egyenlet e A sajátértékek a karakterisztikus egyenlet gyökei, így meg kell oldanunk a λ 2 1 = egyenletet, amib l λ 1 = 1, λ 2 = 1 adódik
f A λ sajátértékhez tartozó sajátvektorok azok az x vektorok, melykre Ax = λx teljesül Ezt átrendezve (A λex = adódik El ször meghatározzuk a λ 1 = 1 sajátértékhez tartozó sajátvektorokat Ekkor A 1 E = ( 1 1 ( 1 1 = ( 2 5 Így meg kell oldanunk a ( 2 ( ( x1 = egyenletrendszert Vegyük észre, hogy az alapmátrix második sora csupa nulla elemekb l áll, így az elhagyható, mivel az egyenletrendszer homogén Tehát a megoldandó lineáris egyenletrendszer 2 =, amib l = Az x 1 ismeretlent szabad paraméternek választhatjuk Legyen x 1 = t R \ {} Tehát a λ 1 = 1 sajátértékhez tartozó összes sajátvektorok halmaza (amit sajátaltérnek is nevezünk {( t S λ1 = t R \ {}} Meghatározzuk a λ 2 = 1 sajátértékhez tartozó sajátvektorokat: ( ( ( 1 1 2 A ( 1 E = + = 1 1 Így meg kell oldanunk a ( 2 ( ( x1 = egyenletrendszert Vegyük észre, hogy az alapmátrix második sora csupa nulla elemb l áll, így az elhagyható, mivel az egyenletrendszer homogén Tehát a megoldandó lineáris egyenletrendszer 2x 1 =, amib l x 1 = adódik Az ismeretlent szabad paraméternek választjuk Legyen = t R \ {} Tehát a λ 2 = 1 sajátértékhez tartozó összes sajátvektorok halmaza {( S λ2 = t R \ {}} t 7 Tekintsük az alábbi mátrixszal adott valós tér fölötti lineáris transzformációt 2 4 8 A = 6 8 14 3 3 5 a Írjuk föl a lineáris leképzés karakterisztikus polinomját! b Írjuk föl a lineáris leképzés karakterisztikus egyenletét! c Határozzuk meg a lineáris leképezés sajátértékeit! d Határozzuk meg a különböz sajátértékekhez tartozó sajátvektorokat!
6 a A karakterisztikus polinom 2 λ 4 8 det(a λe = det 6 8 λ 14 = ( 2 λ(8 λ( 5 λ+ 3 3 5 λ + 168 + 144 24(8 λ + 42( 2 λ + 24( 5 λ = = λ 3 + λ 2 + 4λ 4 b A karakterisztikus egyenlet λ 3 + λ 2 + 4λ 4 = c A sajátértékek a karakterisztikus egyenlet gyökei, azaz a λ 3 + λ 2 + 4λ 4 = egyenlet megoldásai Az els két tagból emeljünk ki λ 2 -et, a második két tagból pedig 4-et Majd alakítsuk szorzattá az egyenlet bal oldalát: λ 3 + λ 2 + 4λ 4 = λ 2 (1 λ + 4(λ 1 = (λ 1(4 λ 2 = Egy szorzat csak úgy lehet nulla, ha valamelyik tényez je nulla, így az egyenlet megoldásai, azaz a sajátértékek λ 1 = 1, λ 2 = 2, λ 3 = 2 d A λ sajátértékhez tartozó sajátvektorok azok az x vektorok, melykre Ax = λx teljesül Ezt átrendezve (A λex = adódik El ször meghatározzuk a λ 1 = 1 sajátértékhez tartozó sajátvektorokat Ekkor A 1 E = 2 4 8 6 8 14 3 3 5 1 1 1 = 3 4 8 6 7 14 3 3 6 Így meg kell oldanunk a 3 4 8 6 7 14 3 3 6 x 1 = egyenletrendszert Elimináljuk az egyenletrendszer mátrixát, azaz az els sor 2-szeresét adjuk hozzá a második sorhoz és az els sor 1-szeresét adjuk hozzá a harmadik sorhoz Ezután a második sor 1-szeresét adjuk hozzá a harmadik sorhoz: 3 4 8 6 7 14 3 3 6 3 4 8 1 2 1 2 3 4 8 1 2
Így az egyenletrendszer 3x 1 + 4 8 = + 2 = Legyen = t R\{} Ekkor = 2t Ezeket az els egyenletbe behelyettesítve 3x 1 + 8t 8t =, azaz x 1 = Tehát a λ 1 = 1 sajátértékhez tartozó összes sajátvektorok halmaza S λ1 = 2t t R \ {} t Most meghatározzuk a λ 2 = 2 sajátértékhez tartozó sajátvektorokat Ekkor 2 4 8 A 2 E = 6 8 14 2 4 4 8 2 = 6 6 14 3 3 5 2 3 3 7 7 Így meg kell oldanunk a 4 4 8 6 6 14 3 3 7 x 1 = egyenletrendszert Elimináljuk az egyenletrendszer mátrixát Els lépésben az els sort osszuk el 4-gyel, majd az els sor 6-szorosát adjuk hozzá a második sorhoz és az els sor 3-szorosát adjuk hozzá a harmadik sorhoz Ezután a második sor 1/2-szeresét adjuk hozzá a harmadik sorhoz: 4 4 8 6 6 14 1 1 2 6 6 14 1 1 2 2 1 1 2 2 3 3 7 3 3 7 1 Így a megoldandó egyenletrendszer x 1 + 2 = 2 = A második egyenletb l = adódik Ezt behelyettesítve az els egyenletbe azt kapjuk, hogy x 1 = Legyen = t R \ {} Ekkor x 1 = t Tehát a λ 2 = 2 sajátértékhez tartozó összes sajátvektorok halmaza S λ2 = t t t R \ {} Most meghatározzuk a λ 2 = 2 sajátértékhez tartozó sajátvektorokat Ekkor 2 4 8 A + 2 E = 6 8 14 + 2 2 = 4 8 6 1 14 3 3 5 2 3 3 3
8 Így meg kell oldanunk a 6 1 14 4 8 3 3 3 x 1 = egyenletrendszert Elimináljuk az egyenletrendszer mátrixát Els lépésben a harmadik sort osszuk el 3-al, és cseréljük fel az els és harmadik sort Az els sor 6-szorosát adjuk hozzá a harmadik sorhoz, majd a második sor 1-szeresét adjuk hozzá a harmadik sorhoz: 4 8 6 1 14 1 1 1 4 8 1 1 1 4 8 1 1 1 4 8 3 3 3 6 1 14 4 8 Így a megoldandó egyenletrendszer x 1 + = 4 8 = A második egyenletb l = 2 adódik Legyen = t R \ {} Ekkor = 2t Az els egyenletb l x 1 = t adódik Tehát a λ 3 = 2 sajátértékhez tartozó összes sajátvektorok halmaza S λ3 = t 2t t R \ {} t 8 Tekintsük az alábbi mátrixszal adott valós tér fölötti lineáris transzformációt A = 1 2 1 3 4 5 a Írjuk föl a lineáris leképzés karakterisztikus polinomját! b Írjuk föl a lineáris leképzés karakterisztikus egyenletét! c Határozzuk meg a lineáris leképezés sajátértékeit! d Határozzuk a legkisebb sajátértékhez tartozó sajátvektorokat! a A karakterisztikus polinom det(a λe = det b A karakterisztikus egyenlet 1 λ 2 1 3 λ 4 5 λ (1 λ(3 λ(5 λ = = (1 λ(3 λ(5 λ
9 c A sajátértékek a karakterisztikus egyenlet gyökei, azaz a (1 λ(3 λ(5 λ = egyenlet megoldásai Egy szorzat csak úgy lehet nulla, ha valamelyik tényez je nulla, így az egyenlet megoldásai, azaz a sajátértékek λ 1 = 1, λ 2 = 3, λ 3 = 5 d A λ sajátértékhez tartozó sajátvektorok azok az x vektorok, melykre Ax = λx teljesül Ezt átrendezve (A λex = adódik El ször meghatározzuk a λ 1 = 1 sajátértékhez tartozó sajátvektorokat Ekkor A 1 E = 1 2 1 3 4 1 1 = 2 1 2 4 5 1 4 Így meg kell oldanunk a 2 1 2 4 4 x 1 = egyenletrendszert Elimináljuk az egyenletrendszer mátrixát, azaz az els sor 1-szeresét adjuk hozzá a második sorhoz Ezután a második sor 4/3-szorosát adjuk hozzá a harmadik sorhoz: 2 1 2 4 4 2 1 3 4 2 1 3 Így az egyenletrendszer 2 = 3 = Az utolsó egyenletb l =, ezt behelyettesítve a második egyenletbe = adódik Legyen x 1 = t R \ {} Tehát a λ 1 = 1 sajátértékhez tartozó összes sajátvektorok halmaza S λ1 = t t R \ {} 9 Egy szerkezet valamely pontjához tartozó feszültségállapotot alábbi mátrix jellemez:
1 5 3 3 3 25 [MP a] Határozzuk meg a f feszültségek nagyságát és a hozzájuk tartozó feszültségi f irányokat! A f feszültségek a transzformációhoz tartozó sajátértékek, a f irányok pedig az egységnyi hosszúságú sajátvektorok A sajátértékek a karakterisztikus egyenlet gyökei A karakterisztikus polinom det(a λe = det A karakterisztikus egyenlet 5 λ 3 3 3 λ 25 λ = (5 λ(3 + λ(25 λ 9(25 λ = (25 λ ( (5 λ(3 + λ 9 = = (25 λ(λ 2 2λ 24 (25 λ(λ 2 2λ 24, melynek megoldásai, azaz a f feszültségek λ 1 = 6 [MPa], λ 2 = 25 [MPa], λ 3 = 4 [MPa] El ször meghatározzuk a λ 1 = 6 sajátértékhez tartozó sajátvektorokat Ekkor 5 3 A 6 E = 3 3 6 1 3 6 = 3 9 25 6 35 Így meg kell oldanunk a 1 3 3 9 35 x 1 =
egyenletrendszert Vegyük észre, hogy a második sor az els 3-szorosa, így az elhagyható A harmadik egyenletb l = adódik Az els egyenletb l x 1 = 3 Ha = t R \ {}, akkor x 1 = 3t Tehát a λ 1 = 6 sajátértékhez tartozó összes sajátvektorok halmaza S λ1 = 3t t t R \ {} Mivel a f iránynak egységnyi hosszúnak kell lenni, ezért 9t 2 + t 2 = 1 is kell, hogy teljesüljön, azaz t = 1/ 1 Így a λ 1 -hez tartozó f irány n 1 = Meghatározzuk a λ 2 = 25 sajátértékhez tartozó sajátvektorokat: 5 3 A 25 E = 3 3 25 25 3 25 = 3 55 25 25 3 1 1 1 11 Így meg kell oldanunk a 25 3 3 55 x 1 egyenletrendszert A harmadik egyenlet elhagyható Az els egyenletet 5-el osztva, majd annak 6-szorosát a második sorhoz hozzáadva 25 3 3 55 5 6 3 55 5 6 91 adódik Így a megoldandó egyenletrendszer 5x 1 + 6 = 91 = = A második egyenletb l = Ezt az els egyenletbe visszahelyettesítve x 1 = adódik Tehát a λ 2 = 25 sajátértékhez tartozó összes sajátvektorok halmaza S λ2 = t R \ {} t Mivel a f iránynak egységnyi hosszúnak kell lenni, ezért t 2 = 1 is kell, hogy teljesüljön, azaz t = 1 Így a λ 2 -höz tartozó f irány n 2 = 1
12 Meghatározzuk a λ 3 = 4 sajátértékhez tartozó sajátvektorokat: 5 3 A + 4 E = 3 3 + 4 9 3 4 = 3 1 25 4 65 Így meg kell oldanunk a 9 3 3 1 65 x 1 = egyenletrendszert Az els egyenlet a második 3-szorosa, így az elhagyható A harmadik egyenletb l = A második egyenletb l = 3x 1 adódik Legyen x 1 = t R \ {} Ekkor = 3t Tehát a λ 3 = 4 sajátértékhez tartozó összes sajátvektorok halmaza S λ3 = t 3t t R \ {} Mivel a f iránynak egységnyi hosszúnak kell lenni, ezért t 2 + 9t 2 = 1 is kell, hogy teljesüljön, azaz t = 1/ 1 Így a λ 3 -hoz tartozó f irány 1 1 n 3 = 3 1