A rektellipszis csavarmozgása során keletkező felületről

Hasonló dokumentumok
Ellipszis átszelése. 1. ábra

Az egyenes ellipszishenger ferde síkmetszeteiről

A hordófelület síkmetszeteiről

Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása

A Cassini - görbékről

A kör és ellipszis csavarmozgása során keletkező felületekről

Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát!

A szabályos sokszögek közelítő szerkesztéséhez

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

Henger és kúp metsződő tengelyekkel

A főtengelyproblémához

A gúla ~ projekthez 2. rész

Ellipszis perspektivikus képe 2. rész

A bifiláris felfüggesztésű rúd mozgásáról

Egy mozgástani feladat

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

t, u v. u v t A kúpra írt csavarvonalról I. rész

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Az elliptikus hengerre írt csavarvonalról

Ellipszissel kapcsolatos képletekről

A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról

Fa rudak forgatása II.

A kötélsúrlódás képletének egy általánosításáról

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]

Kocka perspektivikus ábrázolása. Bevezetés

Egy kötélstatikai alapfeladat megoldása másként

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.

Egy kinematikai feladathoz

Egy sajátos ábrázolási feladatról

Poncelet egy tételéről

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról

Szökőkút - feladat. 1. ábra. A fotók forrása:

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.

Egy újabb látószög - feladat

Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással

Egy geometriai szélsőérték - feladat

Egy általánosabb súrlódásos alapfeladat

A kettősbelű fatörzs keresztmetszeti rajzolatáról

Fénypont a falon Feladat

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához

További adalékok a merőleges axonometriához

A csavarvonal axonometrikus képéről

Érdekes geometriai számítások 10.

A csavart oszlop előállításáról

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.

Egy felszínszámítási feladat a tompaélű fagerendák témaköréből

Észrevételek a forgásfelületek síkmetszeteivel kapcsolatban. Bevezetés

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

A merőleges axonometria néhány régi - új összefüggéséről

Egy másik érdekes feladat. A feladat

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete

A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.

Egy nyíllövéses feladat

A lengőfűrészelésről

Profilmetsződésekről, avagy tórusz és körhenger áthatásáról

Aszimmetrikus nyeregtető ~ feladat 2.

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Egy érdekes statikai - geometriai feladat

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.

Egy kinematikai feladat

KOVÁCS BÉLA, MATEMATIKA I.

Vontatás III. A feladat

Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ]

A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra.

Kecskerágás már megint

A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra.

Síkbeli csuklós rúdnégyszög egyensúlya

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon

A magától becsukódó ajtó működéséről

Egy ismerős fizika - feladatról. Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra.

Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra.

Egy keveset a bolygók perihélium - elfordulásáról

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

KOVÁCS BÉLA, MATEMATIKA I.

w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!

Keresztezett pálcák II.

A térbeli mozgás leírásához

Kúp és kúp metsződő tengelyekkel

Ismét egy érdekes mechanizmusról. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával.

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész

Az egyköpenyű forgáshiperboloid síkmetszeteiről

Rönk kiemelése a vízből

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész

A közönséges csavarvonal érintőjének képeiről

Érdekes geometriai számítások Téma: Szimmetrikus kontytető tetősíkjai lapszögének meghatározásáról

Egy érdekes nyeregtetőről

Csavarokról és rokon témákról

A gúla ~ projekthez 1. rész

A fatörzs és az ágak alakjának leírásához. Szétnéztünk az interneten. A lábon főleg a szabadon álló fák alakja meglehetősen bonyolult; pl.: 1. ábra.

Kerekes kút 2.: A zuhanó vödör mozgásáról

Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra

Az arkhimédészi csőfelületről

4. Felületek Forgásfelületek. Felületek 1. Legyen adott egy paramétersíkbeli T tartomány. A paramétersíkot az u és v koordinátatengelyekkel

Egy újabb cérnás feladat

7. 17 éves 2 pont Összesen: 2 pont

Átírás:

1 A rektellipszis csavarmozgása során keletkező felületről Előző dolgozatunkban melynek címe: A kör és ellipszis csavarmozgása során keletkező felületekről felírtuk az általánosabb helyzetű ellipszis mint alkotó ~ síkidom csavarmozgásával származtatott csavarfelület paraméteres egyenletrendszerét, amely az alábbi: ( 1 ) ( 2 ) ( 3 ) ( 4 ) Itt mindegyik szögparaméter a 0 ~ 2π szögtartományban minden értéket felvesz, de a φ szög ezen kívül is eshet, tekintettel a z - koordinátára, ha z > h. Most azt a célt tűzzük magunk elé, hogy az alkotó ~ síkidom ellipszis helyett rektellip - szis legyen ld.: [ 1 ], [ 2 ]. A közvetlen feladat: a ( 4 ) képlet jobb oldalának felírása a rektellipszis esetére. Ezzel a síkgörbével már találkoztunk egy korábbi dolgozatunkban is, melynek címe: A lekerekített sarkú téglalapról. Ennek egyenleteit innen véve: ( 5 ) ( 6 ) Most előállítjuk a görbesereg polárkoordinátás egyenletét, illetve paraméteres egyenlet - rendszerét 1. ábra. 1. ábra

2 Ez utóbbival a normált görbe egy tetszőleges P* pontjának adatai: ( 7 / 1 ) ( 7 / 2 ) ( 7 / 3 ) Most meghatározzuk kifejezését. ( 6 ) - ból, a P indexet már elhagyva: rendezve: ( r ) most ( 7 ) - tel is: ( 8 ) Most el kell döntenünk, hogy a + vagy a előjel használandó. Ehhez térjünk vissza az 1. ábrához! Erről: ( 9 ) most ( 8 ) és ( 9 ) - cel: ( 10 )

3 ez mindig teljesül, ha a gyökjel előtti előjellel dolgozunk. Ez pl. úgy is belátható, hogy esetén ( 10 ) - ben csak ekkor állhat elő a 0 = 0 = 0 reláció. Eszerint ( 8 ) így alakul: ( 11 ) Mi az ( 1 ), ( 2 ), ( 3 ) képletekben nem ρ*( ψ*) - ot, hanem ρ( ψ ) - t szeretnénk látni, ezért további számításokat kell végeznünk. Ennek során felírjuk a közönséges és a normált görbe - adatok közti összefüggéseket. ~ A közönséges görbe - adatok: ( 12 ) ~ a normált görbe - adatok: ( 13 ) ~ a normálás összefüggései:. ( 14 ) Most ( 12 / 1 ), ( 13 / 1 ) és ( 14 / 1 ) - ből: ( 15 ) majd ( 12 / 2 ), ( 13 / 2 ) és ( 14 /2 ) - ből: ( 16 ) ezután ( 15 ) és ( 16 ) négyzetre emelésével és összeadásával: ( 17 ) továbbá ( 16 ) és ( 15 ) hányadosából: ( 18 ) Most ( 17 ) és ( 18 ) - cal: tehát:

4 ( 19 ) Most ( 11 ) és ( 18 ) szerint: ( 20 ) Majd ( 19 ) és ( 20 ) - szal: ( 21 ) Ezzel a rektellipszis alkotó - görbéjű csavarfelület egyenletei az alábbiak: ( 1 ) ( 2 ) ( 3 ) ( 21 ) Ha m = 0, akkor ( r ) szerint ellipszisről, ha m = 1, akkor téglalapról van szó. Az első esetben ( 21 ) helyett az eredeti ( 4 ) kifejezést használjuk. Most nézzük meg a ( 21 ) képlet működését két esetben! Adatok: a = 6 cm ; b = 3 cm ; m 1 = 0,5 ; m 2 = 15. ( a ) Az eredmények a 2. ábrán láthatók. E grafikonok a Graph ingyenesen letölthető program alkalmazásával készültek. Ezzel kitűzött feladatunkat megoldottuk.

5 Megjegyzések: 2. ábra M1. A teljesség kedvéért idetesszük még a következő számítást is. ( 15 ) és ( 19 ) - cel: ( 22 ) majd ( 16 ) és ( 19 ) - cel: ( 23 ) Könnyen ellenőrizhető, hogy ( 23 ) és ( 22 ) négyzetösszege 1, hányadosuk pedig kiadja ( 18 / 2 ) - t. M2. Érdekessége a fenti számításoknak, hogy a normált egyenletekkel sokkal egyszerűbb képlet - alakok állnak elő, mint anélkül.

6 M3. A rektellipszis paraméteres egyenletrendszere ( 12 ) és ( 21 ) szerint: ( 24 ) ( 25 ) M4. Egy fontos speciális eset: b = a. Ezt squircle - nek is nevezik. Ekkor ( 24 ) és ( 25 ) az alábbiak szerint alakul., tehát: ( 24 / 1 ) Itt felhasználtuk az ( 26 ) összefüggést is. Hasonlóan: tehát: ( 25 / 1 ) A ( 24 / 1 ) és a ( 25 / 1 ) képletek megegyeznek a [ 3 ] - ban találtakkal.

7 M5. m = 0 esetén ( 6 ) szerint ellipszisről van szó. Ekkor azonban pl. a ( 20 ) és ( 21 ) képletek 0 / 0 határozatlan alakúak. Ahelyett, hogy nekilátnánk a L Hospital ~ szabály alkalmazásával, rengeteg vesződség árán feloldani e határozatlanságot, könnyebb úton járva is eredményhez juthatunk. Ehhez csak annyit kell tennünk, hogy összehasonlítjuk az ellipszis ( 4 ) és a rektellipszis ( 19 ) polárkoordinátás egyenleteit. ( 19 ) - ből: ( 19 / 1 ) mivel m = 0 esetén így ( 19 / 1 ) - ből: ( 20 / 1 ) Eszerint ( 20 ) és ( 20 / 1 ) alapján írhatjuk, hogy: ( 20 / 2 ) Ez megfelel annak is, hogy ( r ) - ből m = 0 - val és ( 7 / 3 ) - mal ( 20 / 1 ) adódik. 3. ábra

8 Most már arra is kíváncsiak vagyunk, hogy mire megy a Graph rajzoló program a határ - esetekkel. Erre a választ a 3. ábra adja meg: ~ az m 0 esetet elfogadja, az m = 0 - t nem; itt m 3 = 00001 - del készítettünk grafikont, mely gyakorlatilag egy ellipszist ábrázol; ~ az m 1 = 1 eset nem okoz gondot: számunkra a téglalap rajzolása a legmeglepőbb. Kiegészítettük ezeket egy még negatívabb, m 4 = 150 - nel készült ábrával is. Érdemes megfigyelni a fekete, a kék és a türkiz színű görbéket, az 0 < m 1 - nek meg - felelő viselkedésüket! M6. Egy további érdekes speciális esetre jutunk, ha ( 24 / 1 ) és ( 25 / 1 ) - ben az s = 1 választással élünk; ez a négyzetet leíró képletekre vezet: ( 24 / 2 ) ( 25 / 2 ) A ( 24 / 2 ) és a ( 25 / 2 ) képletek megegyeznek a [ 3 ] - ban talált megfelelőikkel. 4. ábra A 4. ábrán a = 6 ( cm ) fél - oldalhosszal rajzoltunk egy négyzetet, a Graph programmal.

9 M7. Most az van, hogy tudunk téglalapot és négyzetet is rajzoltatni a Graph programmal, de nem csak a határoló egyenesek megadásával, hanem egyetlen függvény, illetve egy paraméteres egyenletrendszer megadásával. Ezzel régi vágyunk teljesült. M8. A 3. ábra láttán elmondhatjuk, hogy a rektellipszis - feladatot sikeresen megoldottuk. Ne feledjük: az ábrázolt polárkoordinátás megadású görbék mindegyike egy darabból áll, nem úgy, mint pl. a ( 6 ) függvény szerintiek, melyeknek két ága van, a kétféle előjelnek megfelelően! Utóbbiak ábrázolása csak két külön grafikonnal sikerül. M9. A ( 26 ) szerinti m egy pozitív valós szám. Ámde a 2. és 3. ábra lila görbéje negatív m - mel készült, vagyis m - nek nem kell feltétlenül pozitívnak lennie. Ekkor s képzetes. M10. Az általunk látott [ 4 ] orosz munkában nem használják a rectellipse vagy squircle elnevezéseket. Helyette speciális kontúr néven nevezik a szóban forgó alakú határolással bíró síkidomokat. Továbbá megemlítik a ( 6 ) - ból kapott, az m m( ξ ) cserével előálló ( 27 ) általánosabb képlet - alakot. Az ilyen síkidom - határolást az általánosított speciális kontúr névvel illetik. Például az ( 28 ) alakú alkalmazást említik, repülőgépszárny - profil határgörbéje közelítő matematikai le - írására, ahol a ( 28 ) függvény paramétereit a legkisebb négyzetek módszerével állítják elő, mérési eredmények adatsorai alapján. M11. Furcsa, de még mindig nem találjuk a rektellipszis elfogadott magyar megfelelőjét; talán ezért is használjuk a rectellipse - et így magyarítva. Esetleg szóba jöhetne az FG - ellipszis, illetve az FG - kör elnevezés is, a feltalálójukról elnevezve: Manuel Fernandez - Guasti ( 1992 ) [ 3 ]. M12. Mostanra már igen általános zárt alkotó - görbével bíró csavarfelületeket ábrázolha - tunk, saját képleteinkkel is, az elfajuló eseteket is ide számítva; pl.: tórusz, gömb, henger. M13. Az általánosításokról szólva: nem mehetünk el a [ 2 ] és [ 3 ] - ban talált figyelemre - méltó általánosítások mellett sem. Meglehet, tanulmányoznunk kell majd ezt a témakört is.

10 Források: [ 1 ] Weisstein, Eric W. "Rectellipse." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/rectellipse.html [ 2 ] Fernandez Guasti, M. "Analytic Geometry of Some Rectilinear Figures." Int. J. Educ. Sci. Technol. 23, 895-901, 1992. vagy: http://investigacion.izt.uam.mx/mfg/arti/90-94/agrec_ijmest92.pdf [ 3 ] Chamberlain Fong: Squircular Calculations https://arxiv.org/ftp/arxiv/papers/1604/1604.02174.pdf [ 4 ] Ju. V. Dabüdov ~ V. A. Zlügarjev: Geometrija krüla Moszkva, Masinosztrojenyije, 1987. Sződliget, 2016. 08. 16. Összeállította: Galgóczi Gyula mérnöktanár