Diszkrét matematika 1.

Hasonló dokumentumok
Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 1. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Kalkulus. Komplex számok

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

1. A komplex számok definíciója

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.

Matematika A1a Analízis

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

Analízis elo adások. Vajda István szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14

Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik

1. A komplex számok ábrázolása

Baran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 33

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

Nagy Gábor compalg.inf.elte.hu/ nagy

KOVÁCS BÉLA, MATEMATIKA I.

Nagy Gábor compalg.inf.elte.hu/ nagy

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

Baran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 16

Diszkrét matematika II., 3. előadás. Komplex számok

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Függvény fogalma, jelölések 15

Komplex számok (el adásvázlat, február 12.) Maróti Miklós

Lineáris algebra mérnököknek

Komplex számok trigonometrikus alakja

1. Komplex szám rendje

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Matematika 8. osztály

Kongruenciák. Waldhauser Tamás

7. gyakorlat megoldásai

Waldhauser Tamás szeptember 8.

Diszkrét matematika I.

1. Interpoláció. Egyértelműség (K2.4.10) Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

1. Analizis (A1) gyakorló feladatok megoldása

25 i, = i, z 1. (x y) + 2i xy 6.1

Diszkrét matematika I.

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

Függvények határértéke és folytonosság

17. előadás: Vektorok a térben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport

Bruder Györgyi és Láng Csabáné KOMPLEX SZÁMOK. Példák és feladatok. Szerkesztette Láng Csabáné

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

2. Algebrai átalakítások

Bruder Györgyi és Láng Csabáné KOMPLEX SZÁMOK. Példák és feladatok. Szerkesztette Láng Csabáné

Waldhauser Tamás szeptember 15.

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

2018/2019. Matematika 10.K

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Másodfokú egyenletek, egyenlőtlenségek

Diszkrét matematika 2.

Diszkrét matematika 2. estis képzés

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

8. előadás. Kúpszeletek

Matematika 1 mintafeladatok

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

Egyenletek, egyenlőtlenségek V.

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Abszolútértékes és gyökös kifejezések Megoldások

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Másodfokú egyenletek, egyenlőtlenségek

Magasabbfokú egyenletek

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

I. A négyzetgyökvonás

Tanmenet a Matematika 10. tankönyvhöz

Hatványozás. A hatványozás azonosságai

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Diszkrét matematika 2.C szakirány

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

1. Gyökvonás komplex számból

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

Átírás:

Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz

014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett időpontja: december 9. Fontos információk az alábbi linken találhatók: http://compalg.inf.elte.hu/ merai/edu/dm1/index-dm1-gy.html Ennek szerepét idővel átveszi: http://compalg.inf.elte.hu/ burcsi http://compalg.inf.elte.hu/ nagy Előadás: Fontos információk az alábbi linken találhatók: http://compalg.inf.elte.hu/ merai/edu/dm1/index-dm1-ea.html

Harmadfokú egyenlet Harmadfokú egyenlet megoldása Keressük meg az ax 3 + bx + cx + d = 0 egyenlet megoldásait (a 0)! Végigosztva a-val kapjuk az x 3 + b x + c x + d = 0 egyszerűbb egyenletet. Emlékeztető: másodfokú egyenlet megoldása: x + px + q = 0. Az x = y p helyettesítéssel eltűnik az x-es tag: y + q = 0. Innen átrendezéssel és gyökvonással megkapjuk a lehetséges megoldásokat y-ra, ahonnan kiszámolhatóak az x 1, x megoldások. Hasonló helyettesítéssel a harmadfokú egyenlet y 3 + py + q = 0 alakra hozható.

Harmadfokú egyenlet Keressük meg az y 3 + py + q = 0 egyenlet megoldásait! Ötlet: keressük a megoldásokat y = u + v alakban! Most (u + v) 3 = u 3 + 3u v + 3uv + v 3. A harmadfokú egyenlet: (u + v) 3 3uv(u + v) (u 3 + v 3 ) = 0 y 3 +py +q = 0 Célunk olyan u, v találása, melyekre 3uv = p, (u 3 + v 3 ) = q. Ekkor u + v megoldás lesz! u, v megtalálása: u 3 v 3 = ( p 3 )3, u 3 + v 3 = q, u 3, v 3 gyökei lesznek a z + qz + ( p 3 )3 = 0 másodfokú egyenletnek. A gyökökből u, v köbgyökvonással kijön: ( q ) y = 3 p ( p + + 3 ) 3 3 + p ( q ) ( p ) 3 + 3

Harmadfokú egyenlet Keressük meg az x 3 1x + 0 = 0 egyenlet megoldásait! (Most x = y, és rögtön látszik, hogy az x = 1 gyök lesz.) p = 1, q = 0 helyettesítéssel az ( q ) x = 3 p ( p + + 3 ) 3 3 + p ( q képletbe azt kapjuk, hogy x = 3 10 + 43 + 3 10 43 A négyzetgyök alatt negatív! Meg lehet-e menteni a megoldóképletet? ) ( p ) 3 + 3

Harmadfokú egyenlet x = 3 10 + 43 + 3 10 43 Formálisan számolva, a ( 3) = 3 feltétellel: 10 + 43 = 10 + 9 3 = 3 + 3 3 + 3 ( 3) + ( 3) 3 = ( + 3) 3. Hasonlóan 10 43 = ( 3) 3. Ezzel a megoldás: x = ( + 3) + ( 3) = 4. Felmerülő kérdések Számolhatunk-e 3-mal formálisan? Miért épp így kell számolni a 10 + 43 értékét? Hova tűnt az x = 1 megoldás? Mi a harmadik gyöke az egyenletnek?

Számfogalom bővítése Természetes számok: N = {0, 1,,... } Nincs olyan x N természetes szám, melyre x + = 1! N halmazon a kivonás nem értelmezett! Egész számok: Z = {...,, 1, 0, 1,,... } A kivonás elvégezhető: x = 1. Nincs olyan x Z egész szám, melyre x = 1! Z halmazon az osztás nem értelmezett! { } Racionális számok: Q = p q : p, q Z, q 0 Az osztás elvégezhető: x = 1. Nincs olyan x Q racionális szám, melyre x =! Q halmazon a négyzetgyökvonás nem (mindig) elvégezhető! Valós számok: R. Nincs olyan x R valós szám, melyre x = 1! U.i.: Ha x 0, akkor x 0. Ha x < 0, akkor x = ( x) > 0.

Számfogalom bővítése Komplex számok körében az x = 1 egyenlet megoldható! Komplex számok alkalmazása: egyenletek megoldása; geometria; fizika (áramlástan, kvantummechanika, relativitáselmélet); grafika, kvantumszámítógépek. Komplex számok bevezetése Legyen i az x = 1 egyenlet megoldása. A szokásos számolási szabályok szerint számoljunk az i szimbólummal formálisan, i = 1 helyettesítéssel: Általában (1 + i) = 1 + i + i = 1 + i + ( 1) = i. (a + bi)(c + di) = ac bd + i(ad + bc).

A komplex számok definíciója Definíció Az a + bi alakú kifejezéseket, ahol a, b R, komplex számoknak (C) hívjuk. összeadás: (a + bi) + (c + di) = a + c + i(b + d). Szorzás: (a + bi)(c + di) = ac bd + i(ad + bc). A z = a + bi C komplex szám, valós része: Re(z) = a. A z = a + bi C komplex szám képzetes része:im(z) = b. Figyelem! Im(z) bi Az a + i0 alakú komplex számok a valós számok. A 0 + ib alakú komplex számok a tisztán képzetes számok. Az a + bi és a c + di komplex számok egyenlőek: a + bi = c + di, ha a = c és b = d.

A komplex számok definíciója Megjegyzés A komplex számok alternatív definíciója: (a, b) R R párok halmaza, ahol az összeadás koordinátánként: (a, b) + (c, d) = (a + c, d + b); szorzás (a, b) (c, d) = (ac bd, ad + bc). A két definíció ekvivalens: i (0, 1). Az a + bi formátum kényelmesebb számoláshoz. Az (a, b) formátum kényelmesebb ábrázoláshoz (grafikusan, számítógépen). További formális számokra nincs szükség: Tétel(Algebra alaptétele, NB) Minden a 0 + a 1 x + a x + + a n x n kifejezés esetén, ahol a 0,..., a n C, a n 0, akkor létezik olyan z C komplex szám, hogy a 0 + a 1 z + a z + + a n z n = 0.

Számolás komplex számokkal Definíció Egy x szám ellentettje az az ^x szám, melyre x + ^x = 0. Egy r R szám ellentettje: r. Állítás (HF) Egy z = a + bi C szám ellentettje a z = a bi komplex szám. Definíció Egy z = a + bi C komplex szám abszolút értéke: z = a + bi = a + b. Valós számok esetében ez a hagyományos abszolút érték: a = a. Állítás(HF) z = a + bi 0, z = a + bi = 0 z = a + bi = 0.

Számolás komplex számokkal Definíció Egy x szám reciproka az az ^x szám, melyre x ^x = 1. Egy r R nemnulla szám reciproka: 1 r. Mi lesz 1 1+i? Ötlet: gyöktelenítés, kunjugálttal való bővítés: 1 1 + = 1 1 + 1 1 = 1 (1 + )(1 ) = 1 1 ( ) Hasonlóan: 1 1 + i = 1 1 = 1 +. = 1 1 i 1 + i 1 i = = 1 i 1 i = 1 i 1 ( 1) = 1 i 1 i (1 + i)(1 i) = = 1 1 i.

Számolás komplex számokkal Definíció Egy z = a + bi komplex szám konjugáltja a z = a + bi = a bi szám. Állítás(HF) Egy z nemnulla komplex szám reciproka 1 z = z z z A definíció értelmes, hiszen a nevezőben: z z = (a + bi)(a bi) = a (bi) = a + b = z. Nullosztómentesség: z w = 0 z = 0 vagy w = 0. Két komplex szám hányadosa: z w = z 1 w.

Számolás komplex számokkal Tétel (HF) 1 z = z; z + w = z + w; 3 z w = z w; 4 z + z = Re(z); 5 z z = i Im(z); 6 z z = z ; 7 z 0 esetén z 1 = z z ; 8 0 = 0 és z 0 esetén z > 0; 9 z = z ; 10 z w = z w ; 11 z + w z + w (háromszög egyenlőtlenség).

Számolás komplex számokkal Tétel(HF). z w = z w ;. Bizonyítás z w = z w z w = z w z w = z z w w = z w = ( z w ).

Komplex számok ábrázolása A komplex számok a komplex számsíkon: Im(z) z= r(cos ϕ + i sin ϕ) r ϕ Re(z) Ha z = a + bi C, akkor Re(z) = a, Im(z) = b. A (Re(z), Im(z)) vektor hossza: r = a + b = z. A z nemnulla szám argumentuma ϕ = arg(z) [0, π) A koordináták trigonometrikus függvényekkel kifejezve: Re(z) = a = r cos ϕ, Im(z) = b = r sin ϕ.

Komplex számok trigonometrikus alakja Definíció z C nemnulla szám trigonometrikus alakja a z = r(cos ϕ + i sin ϕ), ahol r > 0 a szám abszolút értéke. Figyelem! A 0-nak nem használjuk a trigonometrikus alakját. A trigonometrikus alak nem egyértelmű: r(cos ϕ + i sin ϕ) = r(cos(ϕ + π) + i sin(ϕ + π)). Definíció Egy z C nemnulla argumentuma: az a ϕ = arg(z) [0, π), melyre z = z (cos ϕ + i sin ϕ). z = a + bi algebrai alak; z = r(cos ϕ + i sin ϕ) trigonometrikus alak. Itt a = r cos ϕ, b = r sin ϕ.

Számolás trigonometrikus alakkal Legyen z, w C nemnulla komplex számok: z = z (cos ϕ + i sin ϕ), w = w (cos ψ + i sin ψ). A szorzatuk: zw = z (cos ϕ + i sin ϕ) w (cos ψ + i sin ψ) = = z w (cos ϕ cos ψ sin ϕ sin ψ + i(cos ϕ sin ψ + sin ϕ cos ψ)) = addíciós képletek: cos(ϕ + ψ) = cos ϕ cos ψ sin ϕ sin ψ sin(ϕ + ψ) = cos ϕ sin ψ + sin ϕ cos ψ = z w (cos(ϕ + ψ) + i sin(ϕ + ψ)). A szorzat abszolút értéke: zw = z w. A szorzat argumentuma: ha 0 arg(z) + arg(w) < π, akkor arg(zw) = arg(z) + arg(w); ha π arg(z) + arg(w) < 4π, akkor arg(zw) = arg(z) + arg(w) π. A sin, cos függvények π szerint periodikusak, az argumentum meghatározásánál redukálni kell az argumentumok összegét.

Moivre-azonosságok Tétel HF Legyen z, w C nemnulla komplex számok: z = z (cos ϕ + i sin ϕ), w = w (cos ψ + i sin ψ), és legyen n N. Ekkor zw = z w (cos(ϕ + ψ) + i(sin(ϕ + ψ)); z w = z w (cos(ϕ ψ) + i sin(ϕ ψ)); z n = z n (cos nϕ + i sin nϕ). A szögek összeadódnak, kivonódnak, szorzódnak. Az argumentumot ezek után redukcióval kapjuk! Geometriai jelentés Egy z C komplex szám a komplex számsíkon mint nyújtva forgatás hat. z -kel nyújt, arg(z) szöggel forgat.

Komplex számok gyökei Példa Számoljuk ki a ( 1+i ( ) 1+i 8-t: ) 8 ( ) 8 = 1 ( 1 + i = cos π 4 + i sin π ) 8 4 = = cos ( 8 π ) ( ) 4 + i sin 8 π 4 = cos π + i sin π = 1. További komplex számok, melyeknek a 8-adik hatványa 1: 1; 1; i : i 8 = (i ) 4 = ( 1) 4 = 1; i; 1+i ; 1+i ; sőt: ±i 1+i : ( i 1+i ) 8 = i 8 ( 1+i ) 8 = 1 1 = 1.

Gyökvonás A z = z (cos ϕ + i sin ϕ) és w = w (cos ψ + i sin ψ) számok egyenlőek: z (cos ϕ + i sin ϕ) = w (cos ψ + i sin ψ), ha z = w ϕ = ψ + k π valamely k Z szám esetén. n-edik gyökvonás: Legyen z n = w: z n = z n (cos nϕ + i sin nϕ) = w (cos ψ + i sin ψ). Ekkor z n = w z = n w nϕ = ψ + k π valamely k Z esetén ϕ = ψ n + k π n valamely k Z esetén ha k {0, 1,..., n 1}, akkor ezek mind különböző komplex számot adnak.

Gyökvonás Tétel Legyen z = z (cos ϕ + i sin ϕ), n N. Ekkor a z n-edik gyökei w n = z: w = n ( ( ϕ z cos n + kπ ) ( ϕ + i sin n n + kπ )) n k = 0, 1,..., n 1.

Gyökvonás w = n ( ( ϕ z cos n + kπ ) ( ϕ + i sin n n + kπ )) : k = 0, 1,..., n 1. n Példa Számítsuk ki a 6 1 i 3+i értékét! 1 i = ( ) i = ( cos 7π 4 + i sin 7π 4 ( 3 ) 3 + i = + i 1 = ( cos π 6 + i sin π ) 6 Mivel 7π 4 π 6 = 19π 1 6 1 i 3+i = 6 1 ( ) cos 19π 19π 1 + i sin 1 = ( cos 19π+kπ 7 + i sin 19π+kπ ) 7 : k = 0, 1,..., 5. = 1 1 )

Komplex egységgyökök Definíció Az ε n = 1 feltételnek eleget tevő komplex számok az n-edik egységgyökök: ( ε k = ε (n) k = cos kπ n + i sin kπ ) : k = 0, 1,..., n 1. n Nyolcadik komplex egységgyökök ε ε 3 ε 1 ε 4 ε 0 = 1 ε 5 ε 7 ε 6

Gyökvonás Pozitív valós számok négyzetgyöke: legyen r > 0 valós. Ekkor az x = r megoldása: ± r. Tétel Legyen z C nem-nulla komplex szám. n N és w C olyan, hogy w n = z. Ekkor az n-edik gyökök: wε k : k = 0, 1,... n 1. Bizonyítás A wε k számok mind n-edik gyökök: (wε k ) n = w n ε n k = w n = z. Ez n különböző szám, így az összes gyököt megkaptuk.

Rend Bizonyos komplex számok hatványai periodikusan ismétlődnek: 1, 1, 1... 1, 1, 1, 1... i, 1, i, 1, i, 1,... 1+i, i, 1+i, 1, 1 i, i, 1 i, 1, 1+i, i... Általában: cos( π n ) + i sin( π n )-nek n darab különböző hatványa van. Definíció Egy z komplex szám különböző (egész kitevős) hatványainak számát a z rendjének nevezzük és o(z)-vel jelöljük. Példa 1 rendje 1 rendje :, 4, 8, 16,... 1 rendje : 1, 1 i rendje 4: 1, i, 1, i

Rend Tétel Egy z komplex számnak vagy bármely két egész kitevős hatványa különböző (ilyenkor a rendje végtelen), vagy pedig a hatványok a rend szerint periodikusan ismétlődnek. A rend a legkisebb olyan pozitív d szám, melyre z d = 1. Továbbá z k = z l o(z) k l. Speciálisan z k = 1 o(z) k Bizonyítás Tegyük fel, hogy z rendje véges. Ekkor léteznek olyan k, l különböző egészek, melyekre z k = z l. Legyen k > l. Ekkor z k l = 1. Legyen d legkisebb olyan pozitív szám, melyre z d = 1. Ha z n = 1, akkor osszuk el maradékosan n-et d-vel: n = q d + r, ahol 0 r < d. Tehát 1 = z n = z q d+r = (z d ) q z r = 1 q z r = z r. A d minimalitása miatt r = 0 azaz d n. Visszafelé is igaz: d n z n = 1. Beláttuk: d n z n = 1.

Primitív gyökök Az n-edik egységgyökök rendje nem feltétlenül n: 4-edik egységgyökök: 1, i, 1, i. Definíció 1 rendje 1; 1 rendje ; i rendje 4. Az n-ed rendű n-edik egységgyökök a primitív n-edik egységgyökök. A tétel következményei: Következmény(HF) Egy primitív n-edik egységgyök hatványai pontosan az n-edik egységgyökök. Egy primitív n-edik egységgyök pontosan akkor k-adik egységgyök, ha n k.

Primitív egységgyökök Példa Primitív 1. egységgyök: 1; Primitív. egységgyök: 1; Primitív 3. egységgyökök: 1±i 3 ; Primitív 4. egységgyökök: ±i; Primitív 5. egységgyökök:... (HF) Primitív 6. egységgyökök: 1±i 3 ; Állítás(HF) Egy cos ( ) ( kπ n + i sin kπ ) n n-edik egységgyök pontosan akkor primitív n-edik egységgyök, ha (n, k) = 1.