Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)



Hasonló dokumentumok
Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Diszkrét matematika 1. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:

KOVÁCS BÉLA, MATEMATIKA I.

Kalkulus. Komplex számok

1. A komplex számok definíciója

Komplex számok trigonometrikus alakja

Diszkrét matematika 1.

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

Komplex számok algebrai alakja

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

1. A komplex számok ábrázolása

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

2. gyakorlat. A polárkoordináta-rendszer

13. Trigonometria II.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Matematika A1a Analízis

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

ARCHIMEDES MATEMATIKA VERSENY

Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik

Waldhauser Tamás szeptember 8.

2018/2019. Matematika 10.K

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Hatványozás. A hatványozás azonosságai

25 i, = i, z 1. (x y) + 2i xy 6.1

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Húrnégyszögek, Ptolemaiosz tétele

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

TARTALOM. Előszó 9 HALMAZOK

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Komplex számok (el adásvázlat, február 12.) Maróti Miklós

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.

Az osztályozóvizsgák követelményrendszere MATEMATIKA

1. előadás: Halmazelmélet, számfogalom, teljes

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

Diszkrét matematika 2. estis képzés

Diszkrét matematika II., 3. előadás. Komplex számok

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Az osztályozóvizsgák követelményrendszere 9. évfolyam

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

A valós számok halmaza

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Kongruenciák. Waldhauser Tamás

Tanmenet a Matematika 10. tankönyvhöz

Juhász Tibor. Diszkrét matematika

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

Lineáris algebra mérnököknek

Matematika 1 mintafeladatok

Osztályozó- és javítóvizsga. Matematika tantárgyból

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA)

HALMAZELMÉLET feladatsor 1.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

Megoldások 9. osztály

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató

Typotex Kiadó. Bevezetés

Osztályozóvizsga követelményei

Matematika A1a Analízis

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Függvény fogalma, jelölések 15

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Függvények határértéke, folytonossága

A SZÁMFOGALOM KIALAKÍTÁSA

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Valasek Gábor

Intergrált Intenzív Matematika Érettségi

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. előadás. Skaláris szorzás

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika I.

Matematika (mesterképzés)

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Matematika tanmenet 11. évfolyam (középszintű csoport)

Átírás:

Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36

Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két mu veletet: A bevezeto fejezetben a komplex számok közötti mu veleteket más színnel jelöljük, mint az azonos nevu valós számok közötti mu veleteket. Összeadás: (a, b )+(c, d ) : (a + c, b + d ) Szorzás: (a, b ) (c, d ) : (ac bd, ad + bc ) Az így kapott struktúra elemeit (a valós számpárokat) komplex számoknak nevezük, és az általuk alkotott halmazra bevezetjük a C jelölést. A számpár elso elemét a komplex szám valós részének, a második elemét a komplex szám képzetes (imaginárius) részének nevezzük. Két komplex szám pontosan akkor egyezik meg egymással, ha a valós és a képzetes részük is megegyezik. 2 / 36

Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két mu veletet: A bevezeto fejezetben a komplex számok közötti mu veleteket más színnel jelöljük, mint az azonos nevu valós számok közötti mu veleteket. Összeadás: (a, b )+(c, d ) : (a + c, b + d ) Szorzás: (a, b ) (c, d ) : (ac bd, ad + bc ) Az így kapott struktúra elemeit (a valós számpárokat) komplex számoknak nevezük, és az általuk alkotott halmazra bevezetjük a C jelölést. A számpár elso elemét a komplex szám valós részének, a második elemét a komplex szám képzetes (imaginárius) részének nevezzük. Két komplex szám pontosan akkor egyezik meg egymással, ha a valós és a képzetes részük is megegyezik. 2 / 36

Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két mu veletet: A bevezeto fejezetben a komplex számok közötti mu veleteket más színnel jelöljük, mint az azonos nevu valós számok közötti mu veleteket. Összeadás: (a, b )+(c, d ) : (a + c, b + d ) Szorzás: (a, b ) (c, d ) : (ac bd, ad + bc ) Az így kapott struktúra elemeit (a valós számpárokat) komplex számoknak nevezük, és az általuk alkotott halmazra bevezetjük a C jelölést. A számpár elso elemét a komplex szám valós részének, a második elemét a komplex szám képzetes (imaginárius) részének nevezzük. Két komplex szám pontosan akkor egyezik meg egymással, ha a valós és a képzetes részük is megegyezik. 2 / 36

Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két mu veletet: A bevezeto fejezetben a komplex számok közötti mu veleteket más színnel jelöljük, mint az azonos nevu valós számok közötti mu veleteket. Összeadás: (a, b )+(c, d ) : (a + c, b + d ) Szorzás: (a, b ) (c, d ) : (ac bd, ad + bc ) Az így kapott struktúra elemeit (a valós számpárokat) komplex számoknak nevezük, és az általuk alkotott halmazra bevezetjük a C jelölést. A számpár elso elemét a komplex szám valós részének, a második elemét a komplex szám képzetes (imaginárius) részének nevezzük. Két komplex szám pontosan akkor egyezik meg egymással, ha a valós és a képzetes részük is megegyezik. 2 / 36

Bevezetés Mu veleti tulajdonságok A komplex számok halmaza mindkét mu veletre zárt, hiszen ha a, b, c, d valós számok, akkor a + c és b + d, illetve ac bd és ad + bc is valós számok. A komplex számokon értelmezett összeadás kommutatív (a, b )+(c, d ) (a + c, b + d ) (c + a, d + b ) (c, d )+(a, b ) asszociatív (a, b )+(c, d ) +(e, f ) (a + c, b + d )+(e, f ) (a + c ) + e, (b + d ) + f a + (c + e ), b + (d + f ) (a, b )+(c + e, d + f ) (a, b )+ (c, d )+(e, f ) 3 / 36

Bevezetés Mu veleti tulajdonságok A komplex számok halmaza mindkét mu veletre zárt, hiszen ha a, b, c, d valós számok, akkor a + c és b + d, illetve ac bd és ad + bc is valós számok. A komplex számokon értelmezett összeadás kommutatív (a, b )+(c, d ) (a + c, b + d ) (c + a, d + b ) (c, d )+(a, b ) asszociatív (a, b )+(c, d ) +(e, f ) (a + c, b + d )+(e, f ) (a + c ) + e, (b + d ) + f a + (c + e ), b + (d + f ) (a, b )+(c + e, d + f ) (a, b )+ (c, d )+(e, f ) 3 / 36

Bevezetés Mu veleti tulajdonságok A komplex számok összeadásának létezik neutrális eleme (zéruselem), mégpedig a (0, 0) komplex szám, hiszen a, b R esetén: (a, b )+(0, 0) (a + 0, b + 0) (a, b ) Minden komplex számnak létezik additív inverze, mert a, b R esetén: (a, b )+( a, b ) a + ( a ), b + ( b ) (0, 0) 4 / 36

Bevezetés Mu veleti tulajdonságok A komplex számok összeadásának létezik neutrális eleme (zéruselem), mégpedig a (0, 0) komplex szám, hiszen a, b R esetén: (a, b )+(0, 0) (a + 0, b + 0) (a, b ) Minden komplex számnak létezik additív inverze, mert a, b R esetén: (a, b )+( a, b ) a + ( a ), b + ( b ) (0, 0) 4 / 36

Bevezetés Mu veleti tulajdonságok A komplex számokon értelmezett szorzás kommutatív (a, b ) (c, d ) (ac bd, ad + bc ) (ca db, cb + da ) (c, d ) (a, b ) asszociatív (a, b ) (c, d ) (e, f ) (ac bd, ad + bc ) (e, f ) (ac bd )e (ad + bc )f, (ac bd )f + (ad + bc )e (ace bde adf bcf, acf bdf + ade + bce ) (ace adf bcf bde, acf + ade + bce bdf ) a (ce df ) b (cf + de ), a (cf + de ) + b (ce df ) (a, b ) ce df, cf + de (a, b ) (c, d ) (e, f ) 5 / 36

Bevezetés Mu veleti tulajdonságok A komplex számok szorzásának létezik neutrális eleme (egységelem), mégpedig az (1, 0) komplex szám, hiszen a, b R esetén: (a, b ) (1, 0) (a 1 b 0, a 0 + b 1) (a, b ) Minden a (0, 0) számtól különbözo komplex számnak létezik multiplikatív inverze, mert a, b R esetén: (a, b ) a a2 + b2,! b (1, 0) a2 + b2 Bizonyítás: (a, b ) a a2 + b, 2 a2 + b2 a2 a2! b + b2 + a b2 a2 + b2 a a2 + b2, b ab a2 + b2 + a2 + b2! ab a2! b + b2,a! b a2 + b2 +b a a2 + b2! a 2 + b 2 ab + ab, (1, 0) a2 + b2 a2 + b2! 6 / 36

Bevezetés Mu veleti tulajdonságok A komplex számok szorzásának létezik neutrális eleme (egységelem), mégpedig az (1, 0) komplex szám, hiszen a, b R esetén: (a, b ) (1, 0) (a 1 b 0, a 0 + b 1) (a, b ) Minden a (0, 0) számtól különbözo komplex számnak létezik multiplikatív inverze, mert a, b R esetén: (a, b ) a a2 + b2,! b (1, 0) a2 + b2 Bizonyítás: (a, b ) a a2 + b, 2 a2 + b2 a2 a2! b + b2 + a b2 a2 + b2 a a2 + b2, b ab a2 + b2 + a2 + b2! ab a2! b + b2,a! b a2 + b2 +b a a2 + b2! a 2 + b 2 ab + ab, (1, 0) a2 + b2 a2 + b2! 6 / 36

Bevezetés Mu veleti tulajdonságok A komplex számok szorzásának létezik neutrális eleme (egységelem), mégpedig az (1, 0) komplex szám, hiszen a, b R esetén: (a, b ) (1, 0) (a 1 b 0, a 0 + b 1) (a, b ) Minden a (0, 0) számtól különbözo komplex számnak létezik multiplikatív inverze, mert a, b R esetén: (a, b ) a a2 + b2,! b (1, 0) a2 + b2 Bizonyítás: (a, b ) a a2 + b, 2 a2 + b2 a2 a2! b + b2 + a b2 a2 + b2 a a2 + b2, b ab a2 + b2 + a2 + b2! ab a2! b + b2,a! b a2 + b2 +b a a2 + b2! a 2 + b 2 ab + ab, (1, 0) a2 + b2 a2 + b2! 6 / 36

Bevezetés Mu veleti tulajdonságok A komplex számok szorzására és összeadására érvényes a következo disztributív szabály: (a, b ) (c, d )+(e, f ) (a, b ) (c, d )+(a, b ) (e, f ) Bizonyítás: A bal és jobboldal egyenlo, mert: (a, b ) (c, d )+(e, f ) (a, b ) (c + e, d + f ) a (c +e ) b (d +f ), a (d +f )+b (c +e ) (ac +ae bd bf, ad +af +bc +be ) és (a, b ) (c, d )+(a, b ) (e, f ) (ac bd, ad + bc )+(ae bf, af + be ) (ac bd + ae bf, ad + bc + af + be ) (ac + ae bd bf, ad + af + bc + be ) 7 / 36

Bevezetés Ábrázolás A valós számpároknak megfeleltethetjük a koordinátasík egy-egy pontját, illetve az ahhoz tartozó helyvektort. A komplex számot gyakran jelölik zvel. A komplex szám valós része egyenlo az ábrázoló vektor, illetve pont elso koordinátájával, képzetes része pedig azok második koordinátájával. képzetes tengely képzetes rész z (a, b ) b a valós tengely valós rész 8 / 36

Bevezetés Ábrázolás A valós számpároknak megfeleltethetjük a koordinátasík egy-egy pontját, illetve az ahhoz tartozó helyvektort. A komplex számot gyakran jelölik zvel. A komplex szám valós része egyenlo az ábrázoló vektor, illetve pont elso koordinátájával, képzetes része pedig azok második koordinátájával. képzetes tengely képzetes rész z (a, b ) b a valós tengely valós rész 8 / 36

Bevezetés A komplex szám abszolút értéke és irányszöge A komplex számot ábrázoló vektor hosszát a komplex szám abszolút értékének nevezzük. A z (a, b ) komplex szám abszolút értéke Pithagorasz tétele alapján: z képzetes tengely z (a, b ) b ϕ p a2 + b2 valós tengely a A valós tengely pozitív fele és a komplex számot ábrázoló vektor által meghatározott irányított szöget a komplex szám irányszögének, (argumentumának) nevezzük. A komplex szám irányszöge nem egyértelmu, a lehetséges irányszögek a teljesszög egész számú többszörösével térnek el egymástól. 9 / 36

Bevezetés A komplex szám abszolút értéke és irányszöge A komplex számot ábrázoló vektor hosszát a komplex szám abszolút értékének nevezzük. A z (a, b ) komplex szám abszolút értéke Pithagorasz tétele alapján: z képzetes tengely z (a, b ) b ϕ p a2 + b2 valós tengely a A valós tengely pozitív fele és a komplex számot ábrázoló vektor által meghatározott irányított szöget a komplex szám irányszögének, (argumentumának) nevezzük. A komplex szám irányszöge nem egyértelmu, a lehetséges irányszögek a teljesszög egész számú többszörösével térnek el egymástól. 9 / 36

A komplex számok algebrai alakja Az algebrai alak bevezetése Tekintsük a komplex számok halmazának S {z z C, Im(z ) 0} részhalmazát! Ennek elemei (a, 0) alakúak, ahol a R. Mivel (a, 0)+(b, 0) (a + b, 0 + 0) (a + b, 0) és (a, 0) (b, 0) (ab 0 0, a 0 + 0 b ) (ab, 0), ezért a ϕ : S R, (a, 0) 7 a függvény egy mu velettartó, kölcsönösen egyértelmu leképezés S és R között. A továbbiakban S elemeit (a, 0) helyett egyszeru en a-val jelöljük. 10 / 36

A komplex számok algebrai alakja Az algebrai alak bevezetése Jelölés: Vezessük be a j (0, 1) jelölést! (Ezt a számot szokás képzetes (imaginárius) egységnek nevezni. Könnyen elleno rizheto, hogy j 2 1. Valóban: (0, 1) (0, 1) (0 0 1 1, 0 1 + 1 0) ( 1, 0) Tekintsük a komplex számok halmazának T {z z C, Re(z ) 0} részhalmazát! Ennek elemei (0, b ) alakúak, ahol b R. Mivel (b, 0) (0, 1) (b 0 0 1, b 1 + 0 0) (0, b ), ezért (0, b ) helyett használhatjuk a bj jelölést. Figyeljük meg, hogy bj +dj (0, b )+(0, d ) (0, b + d ) (b + d )j és a +bj (a, 0)+(0, b ) (a, b ) 11 / 36

A komplex számok algebrai alakja Az algebrai alak bevezetése Jelölés: Vezessük be a j (0, 1) jelölést! (Ezt a számot szokás képzetes (imaginárius) egységnek nevezni. Könnyen elleno rizheto, hogy j 2 1. Valóban: (0, 1) (0, 1) (0 0 1 1, 0 1 + 1 0) ( 1, 0) Tekintsük a komplex számok halmazának T {z z C, Re(z ) 0} részhalmazát! Ennek elemei (0, b ) alakúak, ahol b R. Mivel (b, 0) (0, 1) (b 0 0 1, b 1 + 0 0) (0, b ), ezért (0, b ) helyett használhatjuk a bj jelölést. Figyeljük meg, hogy bj +dj (0, b )+(0, d ) (0, b + d ) (b + d )j és a +bj (a, 0)+(0, b ) (a, b ) 11 / 36

A komplex számok algebrai alakja Az algebrai alak bevezetése Jelölés: Vezessük be a j (0, 1) jelölést! (Ezt a számot szokás képzetes (imaginárius) egységnek nevezni. Könnyen elleno rizheto, hogy j 2 1. Valóban: (0, 1) (0, 1) (0 0 1 1, 0 1 + 1 0) ( 1, 0) Tekintsük a komplex számok halmazának T {z z C, Re(z ) 0} részhalmazát! Ennek elemei (0, b ) alakúak, ahol b R. Mivel (b, 0) (0, 1) (b 0 0 1, b 1 + 0 0) (0, b ), ezért (0, b ) helyett használhatjuk a bj jelölést. Figyeljük meg, hogy bj +dj (0, b )+(0, d ) (0, b + d ) (b + d )j és a +bj (a, 0)+(0, b ) (a, b ) 11 / 36

A komplex számok algebrai alakja Az algebrai alak bevezetése Jelölés: Vezessük be a j (0, 1) jelölést! (Ezt a számot szokás képzetes (imaginárius) egységnek nevezni. Könnyen elleno rizheto, hogy j 2 1. Valóban: (0, 1) (0, 1) (0 0 1 1, 0 1 + 1 0) ( 1, 0) Tekintsük a komplex számok halmazának T {z z C, Re(z ) 0} részhalmazát! Ennek elemei (0, b ) alakúak, ahol b R. Mivel (b, 0) (0, 1) (b 0 0 1, b 1 + 0 0) (0, b ), ezért (0, b ) helyett használhatjuk a bj jelölést. Figyeljük meg, hogy bj +dj (0, b )+(0, d ) (0, b + d ) (b + d )j és a +bj (a, 0)+(0, b ) (a, b ) 11 / 36

A komplex számok algebrai alakja Az algebrai alak Az (a, b ) komplex szám algebrai (kanonikus) alakján az a + bj kifejezést értjük. Ebben a a komplex szám valós része, b a komplex szám képzetes része és j az imaginárius egység. Az algebrai alak elo nye, hogy az algebrai kifejezéseknél megszokott szabályoknak megfelelo en számolhatunk vele. 12 / 36

A komplex számok algebrai alakja Összeadás algebrai alakban megadott komplex számokkal (a + bj ) + (c + dj ) (a + c ) + (b + d )j Azaz az összeadás során a valós és a képzetes részek is összeadódnak. képzetes tengely A komplex számok összeadását szemléltethetjük az o ket ábrázoló vektorok összeadásával. z1 + z2 z2 Példa: z1 (3 + j ) + ( 2 + 3j ) 1 + 4j valós tengely 13 / 36

A komplex számok algebrai alakja Összeadás algebrai alakban megadott komplex számokkal (a + bj ) + (c + dj ) (a + c ) + (b + d )j Azaz az összeadás során a valós és a képzetes részek is összeadódnak. képzetes tengely A komplex számok összeadását szemléltethetjük az o ket ábrázoló vektorok összeadásával. z1 + z2 z2 Példa: z1 (3 + j ) + ( 2 + 3j ) 1 + 4j valós tengely 13 / 36

A komplex számok algebrai alakja Összeadás algebrai alakban megadott komplex számokkal (a + bj ) + (c + dj ) (a + c ) + (b + d )j Azaz az összeadás során a valós és a képzetes részek is összeadódnak. képzetes tengely A komplex számok összeadását szemléltethetjük az o ket ábrázoló vektorok összeadásával. z1 + z2 z2 Példa: z1 (3 + j ) + ( 2 + 3j ) 1 + 4j valós tengely 13 / 36

A komplex számok algebrai alakja Kivonás algebrai alakban megadott komplex számokkal (a + bj ) (c + dj ) (a c ) + (b d )j A komplex számok kivonását szemléltethetjük az o ket ábrázoló vektorok kivonásával. képzetes tengely z2 z2 z1 Példa: z1 ( 2 + 3j ) (3 + j ) 5 + 2j valós tengely 14 / 36

A komplex számok algebrai alakja Kivonás algebrai alakban megadott komplex számokkal (a + bj ) (c + dj ) (a c ) + (b d )j A komplex számok kivonását szemléltethetjük az o ket ábrázoló vektorok kivonásával. képzetes tengely z2 z2 z1 Példa: z1 ( 2 + 3j ) (3 + j ) 5 + 2j valós tengely 14 / 36

A komplex számok algebrai alakja Kivonás algebrai alakban megadott komplex számokkal (a + bj ) (c + dj ) (a c ) + (b d )j A komplex számok kivonását szemléltethetjük az o ket ábrázoló vektorok kivonásával. képzetes tengely z2 z2 z1 Példa: z1 ( 2 + 3j ) (3 + j ) 5 + 2j valós tengely 14 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal ac bd (a + bj )(c + dj ) (ac bd ) + (ad + bc )j bcj adj Példa: (6 5j )( 1 + 3j ) 6 + 15 + 18j + 5j 9 + 23j Figyeljük meg, hogy: 6 5j 1 + 3j 36 + 25 1+9 81 + 529 61 10 610 p 92 + 232 9 + 23j 15 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal ac bd (a + bj )(c + dj ) (ac bd ) + (ad + bc )j bcj adj Példa: (6 5j )( 1 + 3j ) 6 + 15 + 18j + 5j 9 + 23j Figyeljük meg, hogy: 6 5j 1 + 3j 36 + 25 1+9 81 + 529 61 10 610 p 92 + 232 9 + 23j 15 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal ac bd (a + bj )(c + dj ) (ac bd ) + (ad + bc )j bcj adj Példa: (6 5j )( 1 + 3j ) 6 + 15 + 18j + 5j 9 + 23j Figyeljük meg, hogy: 6 5j 1 + 3j 36 + 25 1+9 81 + 529 61 10 610 p 92 + 232 9 + 23j 15 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal A szorzás szemléltetése speciális esetekben: Ha az egyik tényezo valós (képzetes része 0): a (c + dj ) ac + adj A szorzatot ábrázoló vektort a z c + dj-t ábrázoló vektorból a arányú középpontos hasonlósági transzformációval nyerjük. kt 2z 2d z d c c z 2c vt d 16 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal A szorzás szemléltetése speciális esetekben: Ha az egyik tényezo valós (képzetes része 0): a (c + dj ) ac + adj A szorzatot ábrázoló vektort a z c + dj-t ábrázoló vektorból a arányú középpontos hasonlósági transzformációval nyerjük. kt 2z 2d z d c c z 2c vt d 16 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal A szorzás szemléltetése speciális esetekben: Ha az egyik tényezo j: j (c + dj ) cj + dj 2 d + cj A szorzatot ábrázoló vektort a z c + dj-t ábrázoló vektorból 90 -os forgatással nyerjük. kt c jz d d z c vt Megjegyzés: Ha az egyik tényezo bj alakú (b R), akkor a szorzás asszociatív tulajdonsága miatt (bj )z b (jz ), tehát a szorzathoz tartozó vektort a z-t ábrázoló vektorból egy 90 -os elforgatás és egy b arányú középpontos hasonlóság egymásután alkalmazásával nyerjük. 17 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal A szorzás szemléltetése speciális esetekben: Ha az egyik tényezo j: j (c + dj ) cj + dj 2 d + cj A szorzatot ábrázoló vektort a z c + dj-t ábrázoló vektorból 90 -os forgatással nyerjük. kt c jz d d z c vt Megjegyzés: Ha az egyik tényezo bj alakú (b R), akkor a szorzás asszociatív tulajdonsága miatt (bj )z b (jz ), tehát a szorzathoz tartozó vektort a z-t ábrázoló vektorból egy 90 -os elforgatás és egy b arányú középpontos hasonlóság egymásután alkalmazásával nyerjük. 17 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal A szorzás szemléltetése speciális esetekben: Ha az egyik tényezo j: j (c + dj ) cj + dj 2 d + cj A szorzatot ábrázoló vektort a z c + dj-t ábrázoló vektorból 90 -os forgatással nyerjük. kt c jz d d z c vt Megjegyzés: Ha az egyik tényezo bj alakú (b R), akkor a szorzás asszociatív tulajdonsága miatt (bj )z b (jz ), tehát a szorzathoz tartozó vektort a z-t ábrázoló vektorból egy 90 -os elforgatás és egy b arányú középpontos hasonlóság egymásután alkalmazásával nyerjük. 17 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal A szorzás szemléltetése: (a + bj ) z az + bjz bjz kt (a + bj )z az Az ábrán árnyalással jelzett két háromszög hasonló, mert mindegyiknek van egy derékszöge, z a + bj α a derékszögeket közrefogó oldalak aránya a két háromszögben megegyezik. A két háromszög hasonlósági aránya z. β α vt 18 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal A szorzás szemléltetése: (a + bj ) z az + bjz bjz kt Ezzel azt mutattuk meg, hogy (a + bj )z az két komplex szám szorzatának abszolút értéke megegyezik az eredeti komplex számok abszolút értékeinek szorzatával, két komplex szám szorzatának irányszöge megegyezik az eredeti komplex számok irányszögeinek összegével. z a + bj α β α vt Megjegyzés: Ha a szorzó irányszöge nem hegyesszög, akkor a bizonyítás menete kis mértékben módosul. 18 / 36

A komplex számok algebrai alakja Szorzás algebrai alakban megadott komplex számokkal Az elo bbi eredmények a következo algebrai formában is leírhatók: z1, z2 C : z1 z2 z1 z2, illetve z1, z2 C : arg(z1 z2 ) arg(z1 ) + arg(z2 ) (a teljesszög egész számú többszöröseito l eltekintve). 19 / 36

A komplex számok algebrai alakja Osztás algebrai alakban megadott komplex számokkal Osztás: Ha az osztó 0-tól külöbözo valós szám, akkor az osztás tagonként elvégezheto : a b a + bj + j c c c Ha az osztó képzetes része nem 0, akkor a törtet elo ször alkalmas kifejezéssel bo vítjük, így visszavezetjük az elo zo esetre: a + bj a + bj c dj ac adj + bcj + bd c + dj c + dj c dj c 2 (dj )2 (ac + bd ) + (bc ad )j ac + bd c2 + d2 c2 + d2 + bc ad j c2 + d2 Példa: 4 + 3j 4 + 3j 2 5j 8 20j + 6j + 15 23 14j 2 2 + 5j 2 + 5j 2 5j 29 4 (5j ) 20 / 36

A komplex számok algebrai alakja Osztás algebrai alakban megadott komplex számokkal Osztás: Ha az osztó 0-tól külöbözo valós szám, akkor az osztás tagonként elvégezheto : a b a + bj + j c c c Ha az osztó képzetes része nem 0, akkor a törtet elo ször alkalmas kifejezéssel bo vítjük, így visszavezetjük az elo zo esetre: a + bj a + bj c dj ac adj + bcj + bd c + dj c + dj c dj c 2 (dj )2 (ac + bd ) + (bc ad )j ac + bd c2 + d2 c2 + d2 + bc ad j c2 + d2 Példa: 4 + 3j 4 + 3j 2 5j 8 20j + 6j + 15 23 14j 2 2 + 5j 2 + 5j 2 5j 29 4 (5j ) 20 / 36

A komplex számok algebrai alakja A komplex konjugált Definíció: Az a bj komplex számot a z a + bj komplex szám konjugáltjának nevezzük és z -vel jelöljük. Megjegyzések: kt z b ϕ ϕ b a vt z Az algebrai alakban megadott komplex szám konjugáltját tehát úgy kapjuk, hogy a képzetes részét az ellentettjére változtatjuk. A komplex szám konjugáltjának abszolút értéke megegyezik az eredeti szám abszolút értékével: z z. A komplex szám konjugáltjának irányszöge az eredeti komplex szám irányszögének ellentettje (a teljesszög egész számú többszöröseito l eltekintve). 21 / 36

A komplex számok algebrai alakja A komplex konjugált Definíció: Az a bj komplex számot a z a + bj komplex szám konjugáltjának nevezzük és z -vel jelöljük. Megjegyzések: kt z b ϕ ϕ b a vt z Az algebrai alakban megadott komplex szám konjugáltját tehát úgy kapjuk, hogy a képzetes részét az ellentettjére változtatjuk. A komplex szám konjugáltjának abszolút értéke megegyezik az eredeti szám abszolút értékével: z z. A komplex szám konjugáltjának irányszöge az eredeti komplex szám irányszögének ellentettje (a teljesszög egész számú többszöröseito l eltekintve). 21 / 36

A komplex számok algebrai alakja Hatványozás Definíció: Ha n Z és n 1, akkor a z C szám n-edik hatványán a z z... z szorzatot értjük, amely pontosan n tényezo t tartalmaz és minden tényezo je z-vel egyenlo. Jelölés: Az így értelmezett hatványt z n -nel jelöljük. Definíció: z 0 : 1 A j szám hatványai: j 0 1, j 3 j 2 j ( 1) j j, j 5 j 4 j 1 j j, j1 j, j 2 1 j 4 j 2 j 2 ( 1) ( 1) 1 j 6 j 4 j 2 1 ( 1) 1,... Látható, hogy a j hatványai periodikusan ismétlo dnek: 1 j jn 1 j ha ha ha ha n n n n osztható 4-gyel, 4-gyel osztva 1 maradékot ad, 4-gyel osztva 2 maradékot ad, 4-gyel osztva 3 maradékot ad. 22 / 36

A komplex számok algebrai alakja Hatványozás Definíció: Ha n Z és n 1, akkor a z C szám n-edik hatványán a z z... z szorzatot értjük, amely pontosan n tényezo t tartalmaz és minden tényezo je z-vel egyenlo. Jelölés: Az így értelmezett hatványt z n -nel jelöljük. Definíció: z 0 : 1 A j szám hatványai: j 0 1, j 3 j 2 j ( 1) j j, j 5 j 4 j 1 j j, j1 j, j 2 1 j 4 j 2 j 2 ( 1) ( 1) 1 j 6 j 4 j 2 1 ( 1) 1,... Látható, hogy a j hatványai periodikusan ismétlo dnek: 1 j jn 1 j ha ha ha ha n n n n osztható 4-gyel, 4-gyel osztva 1 maradékot ad, 4-gyel osztva 2 maradékot ad, 4-gyel osztva 3 maradékot ad. 22 / 36

A komplex számok algebrai alakja Hatványozás Definíció: Ha n Z és n 1, akkor a z C szám n-edik hatványán a z z... z szorzatot értjük, amely pontosan n tényezo t tartalmaz és minden tényezo je z-vel egyenlo. Jelölés: Az így értelmezett hatványt z n -nel jelöljük. Definíció: z 0 : 1 A j szám hatványai: j 0 1, j 3 j 2 j ( 1) j j, j 5 j 4 j 1 j j, j1 j, j 2 1 j 4 j 2 j 2 ( 1) ( 1) 1 j 6 j 4 j 2 1 ( 1) 1,... Látható, hogy a j hatványai periodikusan ismétlo dnek: 1 j jn 1 j ha ha ha ha n n n n osztható 4-gyel, 4-gyel osztva 1 maradékot ad, 4-gyel osztva 2 maradékot ad, 4-gyel osztva 3 maradékot ad. 22 / 36

A komplex számok algebrai alakja Hatványozás Tétel: Binomiális tétel!!!! n n n n 1 n n 2 2 n n (a + b ) a + a b+ a b +... + b 0 1 2 n n ahol n k -t binomiális együtthatónak nevezzük. Jelentése: hány k -elemu részhalmaza van egy n-elemu halmaznak? Kiszámítása pl. az! n! n k k!(n k )! összefüggés segítségével történhet, ahol n! : 1 2 3... n 23 / 36

A komplex számok algebrai alakja Hatványozás Példák: (2 + 3j )2 22 + 2 2 3j + (3j )2 4 + 12j 9 5 + 12j (3 2j )3 33 3 32 2j + 3 3 (2j )2 (2j )3 27 54j 36 + 8j 9 46j!!!!! 10 10 10 2 10 3 10 10 10 (1 + j ) + j+ j + j +... + j 0! 1! 2!!3!!10 10 10 10 10 10 10 + + + 0 2! 4! 6! 8! 10!! 10 10 10 10 10 + + j 32j 1 3 5 7 9 24 / 36

A komplex számok algebrai alakja Hatványozás Példák: (2 + 3j )2 22 + 2 2 3j + (3j )2 4 + 12j 9 5 + 12j (3 2j )3 33 3 32 2j + 3 3 (2j )2 (2j )3 27 54j 36 + 8j 9 46j!!!!! 10 10 10 2 10 3 10 10 10 (1 + j ) + j+ j + j +... + j 0! 1! 2!!3!!10 10 10 10 10 10 10 + + + 0 2! 4! 6! 8! 10!! 10 10 10 10 10 + + j 32j 1 3 5 7 9 24 / 36

A komplex számok algebrai alakja Hatványozás Példák: (2 + 3j )2 22 + 2 2 3j + (3j )2 4 + 12j 9 5 + 12j (3 2j )3 33 3 32 2j + 3 3 (2j )2 (2j )3 27 54j 36 + 8j 9 46j!!!!! 10 10 10 2 10 3 10 10 10 (1 + j ) + j+ j + j +... + j 0! 1! 2!!3!!10 10 10 10 10 10 10 + + + 0 2! 4! 6! 8! 10!! 10 10 10 10 10 + + j 32j 1 3 5 7 9 24 / 36

A komplex számok trigonometrikus alakja A trigonometrikus alak kt A szögfüggvények definíciója alapján a z a + bj komplex szám valós része a r cos(ϕ), képzetes része pedig b r sin(ϕ), ahol r z a komplex szám abszolút értéke, ϕ pedig az irányszöge. z a + bj b r ϕ a vt Tehát z r cos(ϕ) + r sin(ϕ)j, azaz z r cos(ϕ) + j sin(ϕ) Az utóbbit a z komplex szám trigonometrikus alakjának nevezzük. Megjegyzés: Figyeljük meg, hogy a trigonometrikus alak felírásához a komplex számot ábrázoló vektor polárkoordinátáira van szükség! 25 / 36

A komplex számok trigonometrikus alakja A trigonometrikus alak kt A szögfüggvények definíciója alapján a z a + bj komplex szám valós része a r cos(ϕ), képzetes része pedig b r sin(ϕ), ahol r z a komplex szám abszolút értéke, ϕ pedig az irányszöge. z a + bj b r ϕ a vt Tehát z r cos(ϕ) + r sin(ϕ)j, azaz z r cos(ϕ) + j sin(ϕ) Az utóbbit a z komplex szám trigonometrikus alakjának nevezzük. Megjegyzés: Figyeljük meg, hogy a trigonometrikus alak felírásához a komplex számot ábrázoló vektor polárkoordinátáira van szükség! 25 / 36

A komplex számok trigonometrikus alakja A trigonometrikus alak kt A szögfüggvények definíciója alapján a z a + bj komplex szám valós része a r cos(ϕ), képzetes része pedig b r sin(ϕ), ahol r z a komplex szám abszolút értéke, ϕ pedig az irányszöge. z a + bj b r ϕ a vt Tehát z r cos(ϕ) + r sin(ϕ)j, azaz z r cos(ϕ) + j sin(ϕ) Az utóbbit a z komplex szám trigonometrikus alakjának nevezzük. Megjegyzés: Figyeljük meg, hogy a trigonometrikus alak felírásához a komplex számot ábrázoló vektor polárkoordinátáira van szükség! 25 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között trigonometrikus algebrai A trigonometrikus alakból az algebrai alakot megkapjuk, ha a szögfüggvények értékeit behelyettesítjük, majd a kifejezést egyszeru bb alakra hozzuk. Példák: 2 cos(30 ) + j sin(30 ) 2 3 2 + 12 j 3 + j 1.73 + j 13 cos(213 ) + j sin(213 ) 13( 0.839 0.545j ) 10.9 7.09j 7.5 cos π 5 π 7.5(0.809 + 0.588) 6.07 + 4.41j 2 cos(30) + j sin(30) 2(0.154 0.988j ) 0.308 1.98 + j sin 5 26 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között trigonometrikus algebrai A trigonometrikus alakból az algebrai alakot megkapjuk, ha a szögfüggvények értékeit behelyettesítjük, majd a kifejezést egyszeru bb alakra hozzuk. Példák: 2 cos(30 ) + j sin(30 ) 2 3 2 + 12 j 3 + j 1.73 + j 13 cos(213 ) + j sin(213 ) 13( 0.839 0.545j ) 10.9 7.09j 7.5 cos π 5 π 7.5(0.809 + 0.588) 6.07 + 4.41j 2 cos(30) + j sin(30) 2(0.154 0.988j ) 0.308 1.98 + j sin 5 26 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között trigonometrikus algebrai A trigonometrikus alakból az algebrai alakot megkapjuk, ha a szögfüggvények értékeit behelyettesítjük, majd a kifejezést egyszeru bb alakra hozzuk. Példák: 2 cos(30 ) + j sin(30 ) 2 3 2 + 12 j 3 + j 1.73 + j 13 cos(213 ) + j sin(213 ) 13( 0.839 0.545j ) 10.9 7.09j 7.5 cos π 5 π 7.5(0.809 + 0.588) 6.07 + 4.41j 2 cos(30) + j sin(30) 2(0.154 0.988j ) 0.308 1.98 + j sin 5 26 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között trigonometrikus algebrai A trigonometrikus alakból az algebrai alakot megkapjuk, ha a szögfüggvények értékeit behelyettesítjük, majd a kifejezést egyszeru bb alakra hozzuk. Példák: 2 cos(30 ) + j sin(30 ) 2 3 2 + 12 j 3 + j 1.73 + j 13 cos(213 ) + j sin(213 ) 13( 0.839 0.545j ) 10.9 7.09j 7.5 cos π 5 π 7.5(0.809 + 0.588) 6.07 + 4.41j 2 cos(30) + j sin(30) 2(0.154 0.988j ) 0.308 1.98 + j sin 5 26 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között trigonometrikus algebrai A trigonometrikus alakból az algebrai alakot megkapjuk, ha a szögfüggvények értékeit behelyettesítjük, majd a kifejezést egyszeru bb alakra hozzuk. Példák: 2 cos(30 ) + j sin(30 ) 2 3 2 + 12 j 3 + j 1.73 + j 13 cos(213 ) + j sin(213 ) 13( 0.839 0.545j ) 10.9 7.09j 7.5 cos π 5 π 7.5(0.809 + 0.588) 6.07 + 4.41j 2 cos(30) + j sin(30) 2(0.154 0.988j ) 0.308 1.98 + j sin 5 26 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között algebrai trigonometrikus Az algebrai alakból kiszámíthatjuk a komplex szám abszolút értékét és irányszögét, majd ezek segítségével felírhatjuk a trigonometrikus alakot. Példa: kt 4 z ϕ vt 1 27 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között algebrai trigonometrikus Az algebrai alakból kiszámíthatjuk a komplex szám abszolút értékét és irányszögét, majd ezek segítségével felírhatjuk a trigonometrikus alakot. Példa: kt 4 z Legyen z 1 + 4j Ekkor z abszolút értéke: z ϕ p q a2 + b2 ( 1)2 + 42 17 4.12 vt 1 27 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között algebrai trigonometrikus Az algebrai alakból kiszámíthatjuk a komplex szám abszolút értékét és irányszögét, majd ezek segítségével felírhatjuk a trigonometrikus alakot. Példa: Az irányszög: kt 4 z tg(ϕ) 4 1 4 Innen: ϕ vt ϕ 76 + k 180 ahol k Z 1 27 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között algebrai trigonometrikus Az algebrai alakból kiszámíthatjuk a komplex szám abszolút értékét és irányszögét, majd ezek segítségével felírhatjuk a trigonometrikus alakot. Példa: Megjegyzés: A számológép a 76 alapmegoldást adja meg, de tudjuk, hogy végtelen sok megoldás van, hiszen a tangensfüggvény periodikus. kt 4 z ϕ vt 1 A 76 nem lehet a komplex számnak irányszöge, hiszen a komplex számot ábrázoló vektor a II. síknegyedbe esik. A k helyébe 1-et írva azonban a kapott 104 már helyes. 27 / 36

A komplex számok trigonometrikus alakja Átváltás a trigonometrikus és az algebrai alak között algebrai trigonometrikus Az algebrai alakból kiszámíthatjuk a komplex szám abszolút értékét és irányszögét, majd ezek segítségével felírhatjuk a trigonometrikus alakot. Példa: kt 4 z A trigonometrikus alak tehát: z 4.12 cos(104 ) + j sin(104 ) ϕ vt 1 27 / 36

A komplex számok trigonometrikus alakja Összeadás és kivonás Trigonometrikus alakban nem végezheto k el. Két ilyen szám összeadásához (kivonásához) elo ször át kell írni o ket algebrai alakba: Példa: z1 3 cos(40 ) + j sin(40 ), z2 5 cos(154 ) + j sin(154 ) z1 3 cos(40 ) + j sin(40 ) 3 (0.766 + 0.643j ) 2.3 + 1.93j z2 5 cos(154 ) + j sin(154 ) 5 ( 0.899 + 0.483j ) 4.5 + 2.19j z1 + z2 (2.3 + 1.93) + ( 4.5 + 2.19)j 2.2 + 4.12j z1 z2 (2.3 + 1.93) ( 4.5 + 2.19)j 6.8 0.26j 28 / 36