ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk az ábrán látható módon. dott a létra súlya valamint a létra és a verem méretei: m G ( 00 j )N. testek érintkező felülete sima. µ 0 0 G 5 m eladat: Határozza meg azt az max erőt amelynek hatására a létra még éppen nem mozdul el! a. zerkesztéssel (ulmann-szerkesztés) és b. számítással (Ritter-számítás)! egoldás: a. Elsőként vizsgáljuk meg azt az esetet mikor a létrára nem hat vízszintes erő vagyis 0. Ekkor három erő egyensúlyát vizsgálhatjuk a már tanult módon.
0 G + 0 + P G G zerkezeti ábra Erőábra másik határeset mikor a legnagyobb vízszintes erő működik a létra felső végében. Ebben az esetben a létra még éppen nem mozdul meg vagyis az pontban ébredő támasztóerő függőleges összetevője éppen nullává válik. Tehát ismert mind a négy erőnek az iránya egy erő a súlyerő ismeretében az ún. ulmann-módszer segítségével megszerkeszthetők az ismeretlen támasztóerők illetve a szintén ismeretlen max max terhelés. G + + + 0 R G ulmann-egyenes G max zerkezeti ábra Erőábra b. támasznál minden esetben a létra hossztengelyére merőleges támasztóerő ébred míg az sarokban ébredő támasztóerő nagysága és iránya függ az erő nagyságától. Nyomatéki egyenleteket és az erőre vonatkozó geometriai összefüggést fel lehet írni: 2
a c d 0 5 G 3 0 4 y 0 05G + 3 + 4 + 25G 3 x y y és ismerjük az erő irányát: tg45 y x y x. fenti egyenletekben az erő mint változó paraméter szerepel. Vizsgáljuk meg először azt az esetet mikor ez az erő zérussal egyenlő. Ekkor a c d x 0 5 G + 4 0 4 0 05G + 3 y. y y + 25G x z egyenletrendszer megoldása: ( 375i + 625 j ) N ( 375i + 375 j )N. y másik eset az amikor az erő eléri maximális értékét vagyis amikor a létra elveszti stabilitását és megmozdul. Ez az a pillanat mikor az erő függőleges összetevője zérussá válik vagyis 0. z egyenletrendszer ebben az esetben: a c d x 0 5 G 3 0 0 05G + 3 y megoldás: max. ( 8333i ) ( 666i ) 25G 3 N + 4 x N ( 00i + 00 j )N. y y z eredmények ellenőrzéséhez célszerű minden esetben a statika alapegyenleteit felhasználni. 3
6.2. Példa Egy hasáb-jellegű testet az ábrán látható módon egy verembe helyezünk. dott a hasáb súlya és az ábráról leolvasható geometria méretek. hasáb és a verem érintkezéseinél a súrlódás elhanyagolható: G ( 400 j ) N µ 0 0. eladat: Határozza meg a támasztóerőket a. szerkesztéssel b. számítással. 3 m 25 m G 3 m egoldás: a. támasztóerők megszerkesztéséhez a ulmann-módszert alkalmazzuk. G + + + 0. z ábrán az erő hatásvonala a ulmann-egyenes. ulmann-egyenes e G H E + G + G zerkezeti ábra Erőábra b. Nyomatéki egyenleteket felírva az alábbi egyenletrendszert kapjuk: 0 05G () e 0 05G (2) h 0 G + (3). y 4
z egyenletrendszer megoldása: () 05G 200 N ( ) ( 2) 05G 200 N ( ) () 3 G 400 N ( ). ( 200i )kn ( 400 j )kn ( 200i )kn. 5
6.3. Példa z ábrán látható merev E rudat három másik merev rúddal ( E és ) támasztottunk meg. z E rudat egy vonal mentén egyenletesen megoszló erőrendszer terheli. dott a szerkezet méretei és terhelése. 0 E m 0 4 kn/m m 25 m eladat: Határozza meg az a és a csuklókban ébredő támasztóerőket a. szerkesztéssel és b. számítással! egoldás: a. megoszló terhelő erőrendszer eredője: l 4 5 20 kn ahol l a megoszló terhelés hossza az eredő helye konstans megoszló terhelésnél a hossz felénél van. támasztóerők meghatározása a ulmann-szerkesztéssel történik. ulmann-egyenes e P 2 e E e e e + + 0 + e ulmann-egyenes P zerkezeti ábra Erőábra 6
b. támasztóerők kiszámíthatók az ún. Ritter-módszerrel melynek lényege az hogy a nyomatéki egyenleteket olyan keresztmetszetekre írjuk fel amelyek a támasztóerők hatásvonalainak metszéspontjaiban helyezkednek el. támasztó rudakban így a csuklókban is csakis rúdirányú erők ébrednek tehát a rudak iránya meghatározza a támasztóerők hatásvonalát. hatásvonalak az az E illetve egy távolabbi P pontban metszik egymást (ld. a fenti szerkezeti ábrát). nyomatéki egyenletek rendre: f f e p 0 3 0 6 y x 0 3 0 6 5 5 + 5 5 5 y 0 kn ( ) 3 5 x 5 kn ( ) 6 5 0 kn ( ) 3 5 5 kn( ). 6 z keresztmetszetre felírt nyomatéki egyenleteknél azt a tételt lehet kihasználni hogy egy erő a hatásvonala mentén bárhova eltolható így ha az E pontba toljuk először akkor csak az y irányú összetevőjének ha pedig a P pontba toljuk akkor az x összetevőjének lesz nyomatéka mert a másik összetevő hatásvonala keresztülmegy az keresztmetszeten. ( 0 j )kn ( 5i + 0 j )kn ( 5i )kn. 7
6.4. Példa z ábrán látható szerkezetet egy koncentrált nyomaték és egy vonal mentén egyenletesen növekvő megoszló erőrendszer terheli. z pontban az érintkező felület sima µ 0. dott a szerkezet méretei és terhelése. 0 0 max 4 kn/m 3 knm. 5 m 45 eladat: 3 m zámítsa ki az a és a csuklókban ébredő támasztóerőket! egoldás: y E 5 m 45 x 3 m Elsőként a megoszló erőrendszer eredőjét és az eredő helyét kell meghatározni. Ebben az esetben az eredő nagysága egyenlő a háromszög területével. Természetesen definíció 8
szerint a már ismertetett módon felírva a határozott integrált ugyanerre az eredményre jutunk tehát 0 max l 6 kn. 2 z eredő hatásvonala áthalad a háromszög súlypontján ami derékszögű háromszögek esetében a befogókat /3 2/3 arányban osztják (lásd a fenti ábrát). feladat Ritter-módszerrel megoldható. nyomatéki egyenleteket a az E és az keresztmetszetekre írjuk fel. z keresztmetszetnél ébredő támaszerő az érintkező felületek közös normálisával megegyező irányú. Esetünkben a támasztó síkra merőleges irányú vagyis 45 -os szöget zár be a vízszintessel ez az egyenletek felírásánál is figyelembe vehető. d e f 0 5 tg45 y x 0 5 0 5 y 2 x 05 2 y 0 kn y ( ) + 2 5 0 kn ( ) 05 4 kn 5 + 2 0 kn( ). 5 ( 0i + 0 j )kn ( 4 j )kn ( 0i )kn. ( ) 9