Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede
. Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T! xy út. A körmentességet megmagyarázva (illetve egy G gráfra azt mondjuk, hogy van benne kör): Egy S kör a gráfban (v, e, v, e 2,, e l, v l ), l, ha: (i) Záródó, az az v = v l. (ii) Az élek nem ismétlődnek (iii) Csúcsismétlés csak záródásnál, v, v, v l csúcsok különbözőek A kis köröket az alábbi ábra mutatja: Definíció. : T gráf FA, ha az.-es tételből (i) vagy (ii) vagy (iii) teljesül Definíció.2 : G T, T feszítőfa : (i) V T = V(G) (ii) T fa Megjegyzés: jelölés részgráfot jelent. H R : R megkapható H-ból csúcsok, élek elhagyásával. H R feszítő részgráf akkor, ha R csak élek elhagyásával kapható meg H-ból. Élelhagyás: Például az -es él elhagyása. Tétel.2 : G-nek feszítőfája, ha G összefüggő. Definíció.3 : (T,r) gyökeres fa: (i) T fa (ii) r V(T), ahol r (root) egy speciális csúcs, és a neve gyökér. 2
Reprezentáció: L L L 2 r L 3 Ahol L, L, L 2, L 3 szintek vagy generációk. L i = v V T : v távolsága r től = i, ahol két csúcs (v és r) távolsága a legrövidebb. Fák esetén a minimalizálás nem gond: egyetlen vr út van. Megjegyés: francia irodalomban szokás a fordított ábrázolási mód, az az a gyökér van alul. Ha x,y szomszédos csúcsok egy gyökeres fában, akkor szomszédos szintekhez (L i és L i+ ) tartoznak. Amennyiben az xy élre x L i és y L i+ azt mondjuk, hogy x és y csúcs apja és y az x csúcs fia. Definíció.4 : T fa v V levél d(v) =. (T,r) gyökeres fa v V levél nincs fia ( lefok = ). Példák: Nem levél A gyökérnek nincs apja r Levél Nem levél, gráfként szemlélve Levél, ha nem gyökeres gráfként szemléljük Másféle megközelítésből: Definíció.5 : G G i+, ághajtás operáció. Egy G gráf esetén azt mondjuk, hogy a G gráfot egy ághajtás operációval képeztük G-ből, ha V(G ) = V(G) u, és E(G ) = E(G) e, ahol e két végpontja közötti u és egy előző, V(G)-beli pont. 3
G r(g) u u Definíció.6 : G ághajtásokkal felépíthető, ha G, G,, G l sorozat: (i) G egypontú, él nélküli gráf, (ii) G l = G, (iii) i=,,2,...,l-, esetén G i+ a G i gráfból egy ághajtással kapható. Tétel.3 : T fa T felépíthető ághajtásokkal Bizonyítás:, a nehezebbik része, a bizonyítás a következő lemmán alapul: Lemma. : Minden F fára, ha V(F) 2 2 levél (elsőfokú pont). Bizonyítás: Leghosszabb l és l út két végpontja. l és l is levél: az útbeli szomszédján kívül nem lehet más szomszédja. Ezek után amíg legalább két csúcsunk van, hagyjunk el egy levelet (ezt megtehetjük). Amikor egy csúcs marad (szükségszerűen éllel) leállunk. Csonkítási eljárásunk megfordítása egy ághajtásos feléptés. Következmény.: (T,r) gyökeres fa, akkor T felépíthető ághajtásokkal r-ből. Alapkérdés Adott G, F E, van-e F-ben kör (élhalmaz)? Definíció.7 : G ( - pont-él-illeszkedési mátrix, G pedig hurok él mentes) 4
élek l csúcsok v vie kül Definíció.8 : G irányított gráf (V,E,K,B) e! u : ube és e! v : vke,ahol V-csúcshalmaz, E-élhalmaz, K- ki, B- be. vie vke vagy vbe u Irányítás elfelejtése(formálisan) Irányítatlan gráf G G v e u = v esete Irányítás (általában sokféle lehet) Irányított gráfra is lehet definiálni pont-él-illeszkedési mátrixot: G, ahol G hurokél mentes. élek csúcsok v l vbe vke kül v 2 e v oszlopban db -es, db (-)-es és tobább -ák találhatók, azaz -t -ből úgy kapjuk, hogy minden oszlopból kiválastunk egy -est és előjelét megváltoztatjuk. Tétel.4 : G G, e : e-nek megfelelő oszlopa. F E : (i) F-ben van kör e : e F, lineárisan függőek. (ii) F-ben nincs kör e : e F, lineárisan függetlenek. Bizonyítás: (i). eset: f f 2 f 3 f 4 kör f i irányított élei csatlakoznak f f 2 - k i= f i =, és ebből következik az állítás. 5
(i) 2. eset: f f 2 f 3 f 4 Vannak irányítás váltások az előző eset irányításaihoz viszonyítva. Irányítás váltás megfelelő oszlop (- )szerezése, de az utóbbi nem változtat a lineáris függőségen, így vissza vezethető az első esetre. (ii) F-ben nincs kör F élei R részgráörmentes komponensei fák erdő V f i k k k.komponens csúcsai c.komponens csúcsai.komponens élei c.komponens élei ahol, c a komponensek száma A komponensek blokkosítják a f f F oszlopokból összerakott mátrixot. A főátlós blokkokon kívül -ák szerepelnek. Elég ezekben (nem ) blokkokban látni, hogy az oszlopok lineárisan függetlenek, azon feltehető, hogy F feszítő fa élhalmaza: r V, tetszőleges gyökér f f 3 f 2 Például k=3 v v 2 v 3 f i -k indexelése egy ághajtási felépítésben az idő. Továbbá v i csúcsokat is indexeljük. f f 2 v v 2 ±?? ± v k r ± ± ±???????? Ezeket a viszonyokat nem tudjuk r sorát letörölve négyzetes mátrixot kapunk. Ez felső trianguláris mátrix ±-ekkel a főátlón, azaz det ± 6
Következmény.2: G G,ahol az utolsó lépésben r csúcs sorának elhagyásával a keletkező (n-)xm dimenziójú mátrix, V = n, E = m, F = n, F E F részmátrixa -nek, amit F-nek megfelelő oszlopok alkotnak. (i) F feszítőfa élhalmaza: det F ±. (ii) F nem feszítőfa élhalmaza: det F =. Tétel.4 : (Cauchy-Binet formula) A, B R kxl det AB T = det A F det B F kxk l ahol az összes olyan F-ekre történik, ahol F k elemű oszlophalmaz(az az a szummába db tag van ) k A B T G mátrix determinánsát a Cauchy-Binet formulával kifejezve és a Következmény.2-t használva kapjuk, a következő tételt: Következmény.3: (Kirchoff-tétel) det T = det A d d n G = G feszítőfáinak száma 7