Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit!



Hasonló dokumentumok
1. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! (E-book 29-34)

Sorolja fel a CAD rendszerekbe integrált végeselemes módszeren alapuló elemző szakmogulok alapvető lépéseit!

6. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! A CAD rendszerekbe egyre több funkció integrálódik, de maguk a CAD re

Bevezető. 1. előadás CAD alapjai A3CD. Bevezető. Piros Attila. Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1 / 22

Parametrikus tervezés

4. ALAKSAJÁTOSSÁGRA ALAPOZOTT GEOMETRIAI MODELLEZÉS

Termék modell. Definíció:

CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés

Lemezalkatrész modellezés. SolidEdge. alkatrészen

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

Lemezalkatrész modellezés. SolidEdge. alkatrészen

Lemezalkatrész modellezés. SolidEdge. alkatrészen

Autodesk Inventor Suite

4. Alaksajátosságra alapozott geometriai modellezés

Csatlakozás a végeselem modulhoz SolidWorks-ben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció

CAD technikák Mérnöki módszerek gépészeti alkalmazása

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

Az igény szerinti betöltés mindig aktív az egyszerűsített megjelenítéseknél. Memória megtakarítás 40%.

A felkészülés ideje alatt segédeszköz nem használható!

Modellek dokumentálása

3D-s számítógépes geometria és alakzatrekonstrukció

időpont? ütemterv számonkérés segédanyagok

CAD alapjai 1. előadás. CAD alapjai. előadás vázlat 1. előadás. B u d a p e s t 2006

CAD-CAM-CAE Példatár

A CAD rendszerek felépítése,szolgáltatások szintje Integrált gépészeti tervező rendszerek Analízis, technológiai modul Programozási lehetőségek

CAD alapjai Molnár, László

ELŐADÁSOK ANYAGA. 8. Alaksajátosságok transzformációja, kiosztások, tükrözések

Akusztikai tervezés a geometriai akusztika módszereivel

3D-S TERVEZÉS AZ ÓBUDAI EGYETEM REJTŐ SÁNDOR KARÁN

A hatékony mérnöki tervezés eszközei és módszerei a gyakorlatban

CAD technikák A számítógépes tervezési módszerek hatása a tervezési folyamatokra

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Felületminőség. 11. előadás

Alkatrész modellezés SolidWorks-szel - ismétlés

Az ömlesztő hegesztési eljárások típusai, jellemzése A fogyóelektródás védőgázas ívhegesztés elve, szabványos jelölése, a hegesztés alapfogalmai

New Default Standard.ipt

Tanszéki Általános Formai Követelmények

VisualNastran4D. kinematikai vizsgálata, szimuláció

Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére

Gépipari alkatrészgyártás és szerelés technológiai tervdokumentáció készítésének számítógépes támogatása

Lemezalkatrész modellezés SolidWorks-szel

Elektronikus adatbázis. CAD alapjai. Féléves projektfeladat Gördülőcsapágyazás modellezése

Tartalom C O N S T E E L 1 3 Ú J D O N S Á G O K

Foglalkozási napló. CAD-CAM informatikus 14. évfolyam

Gyakorlati segédlet a tervezési feladathoz

Tanszéki Általános Formai Követelmények

Végeselem módszer 7. gyakorlat

Ipari robotok megfogó szerkezetei

3 Technology Ltd Budapest, XI. Hengermalom 14 3/ Végeselem alkalmazások a tűzvédelmi tervezésben

A gyártástervezés modelljei. Dr. Mikó Balázs

Lemez 05 gyakorló feladat

KISSSoft. Mintafeladat. Fogaskerékpár méretezés Tengelyrendszer méretezés 3.1

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.

Számítógéppel segített tervezés oktatása BME Gép- és Terméktervezés Tanszékén. Dr. Körtélyesi Gábor Farkas Zsolt BME Gép és Terméktervezés Tanszék

Rajz 01 gyakorló feladat

INFORMATIKA CAD ismeretek (Inventor) A versenyrész időtartama: 120 perc. Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése:

GÉPÉSZETI ALAPISMERETEK

Technikai áttekintés SimDay H. Tóth Zsolt FEA üzletág igazgató

Revit alapozó tanfolyam

Lemez- és gerendaalapok méretezése

3.1. ábra. a) manifold modell (a hasáb is és a henger is test); b) nem manifold modell (a hasáb test, a henger felület).

MUNKAGÖDÖR TERVEZÉSE

Kerékagymotoros Formula Student versenyautó menetdinamikai szimulációja

Revit alaptanfolyam szerkezettervezőknek

7. Koordináta méréstechnika

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

Műszaki dokumentáció. Szabályok, eljárások II.

Autodesk Inventor Professional New Default Standard.ipt

Dr. Mikó Balázs

HELYI TANTERV. Mechanika

TERMÉKSZIMULÁCIÓ I. 9. elıadás

TERMÉKSZIMULÁCIÓ Modellek, szimuláció TERMÉKMODELL

FRÖCCSÖNTÉS SZIMULÁCIÓ A SZERKEZETI ANALÍZIS SZOLGÁLATÁBAN

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

Ejtési teszt modellezése a tervezés fázisában

Pere Balázs október 20.

CAD-CAM

Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: Épületgépészeti rendszerismeret

CAD-alapjai (jegyzet)

Tervezés SZÁMÍTÓGÉPES GÉPTERVEZÉS. CAD speciális alkalmazási területei. CAXX modulok kapcsolódási modellje CAM CAD

11. évfolyam gépészeti alapozó feladatok javítóvizsgára felkészítő kérdések forgácsolás

Összeállítás 01 gyakorló feladat

Herceg Esterházy Miklós Szakképző Iskola, Speciális Szakiskola és Kollégium TANMENET

Foglalkozási napló. Autógyártó 11. évfolyam

Legnagyobb anyagterjedelem feltétele

Elektronikai tervezés Dr. Burány, Nándor Dr. Zachár, András

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?

Gépipari minőségellenőr Gépipari minőségellenőr

Új prezentáció létrehozása az alapértelmezés szerinti sablon alapján.

CONSTEEL 8 ÚJDONSÁGOK

PÉCSI TUDOMÁNYEGYETEM

KÉRDÉSEK PROGRAMOZÁSBÓL_TKU (ESZTERGÁLÁS) 1. Írd le а CNC megmunkáló rendszerek jellemző pontjainak neveit: a) М 0,5 b) А 0,5 c) W 0,5 d) R 0,5

Gyártástechnológia II.

Gépszerkezettan III. (CAD) laboratóriumi gyakorlatok Borbély, Tibor, Pannon Egyetem

Házi feladat Dr Mikó Balázs - Gyártástechnológia II. 5

Számítógépes géptervezés Segédlet és feladatismertetés a gyakorlat feladataihoz

Átírás:

Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! A CAD rendszerek integrációjának kétféle iránya figyelhető meg. Egyrészt a CAD rendszerek bizonyos funkciói beépülnek más alkalmazásokba, melyek valamilyen módon kapcsolódnak a termék életciklusával kapcsolatos tevékenységekhez, másrészt a CAD rendszerek integrálnak magukba más alkalmazásokat. A grafikus kernel biztosítja a 3D-s objektumok kezelését és megjelenítését, valamint az adatkommunikációhoz szükséges funkciókat, melyek a CAD rendszeren belüli modulok és más CAD rendszerekkel való kommunikációt biztosítja. Sorolja fel a CAD rendszerekbe integrált végeselemes módszeren alapuló elemző szakmodulok alapvető lépéseit! - Modellalkotás (preprocesszálás): geometriai egyszerűsítések, terhelések, peremfeltételek megadása, hálózás test- vagy héjelemekkel - Elemzés (futtatás): preprocesszált adatok feldolgozása - Megjelenítés (postprocesszálás): elmozdulások, feszültségek megjelenítése, testreszabható színskálák, animált megjelenítés Sorolja fel a konkurens tervezés megvalósításának főbb lépéseit! - termék koncepció - termék- és modelltervezés - anyagválasztás - gyártási folyamat tervezése - gyártórendszer tervezése - részletes folyamat és gyártórendszer tervezés - implementáció - gyártás és kiszállítás Ismertesse az alulról fölfelé (bottom-up) történő tervezésen alapuló módszer előnyeit és Előnyök: egyszerűen kivitelezhető, nem igényel különösebb előkészítést Hátrányok: alapos ellenőrzés szükséges az összeszerelés után, ütközések esetén nehézkes a hibák javítása, magas a folyamat kommunikáció igénye Ismertesse a felülről lefelé (top-down) történő tervezésen alapuló módszer előnyeit és Előnyök: szinte kizárt az alkatrészek ütközése, változtatások könnyedén végigfutnak a struktúrán, automatikus kommunikáció Hátrányok: bizonyos szinten magasabb felkészülést és hosszabb előkészítést igényel, ami csak nagyobb változtatások esetén térül meg Sorolja fel milyen tipikus attributív információk rendelhetők egy számítógépes modellhez! alkatrész azonosító, cikkszám vagy szabványszám, megnevezés vagy beszállító azonosító, mértékegység rendszer, költség vagy beszerzési ár, anyagjellemzők, tervezési utasítások, előírások, technológiai követelmények, kapcsolódó egyéb dokumentumok

Sorolja fel, milyen alapvető problémákba ütközhet egy letöltött modell integrálása saját CAD modellünkbe? a geometria javításra szorul, modell átalakítása szükséges a rajzi megjelenítés miatt, paraméterek és egyéb attributív információk nincsenek hozzárendelve a letöltött modellhez Hasonlítsa össze a felület- és palástmodellezést! FM PM A modell egyértelműen szemlélteti a modellezett Igen Igen objektumot. Láthatóságot is meg lehet jeleníteni. Igen Igen Térfogat és tömeg jellemzők meghatározhatók. Nem Igen Ütközésvizsgálat végezhető. Nem Igen Mechanikai, gyártástechnológiai számítások elvégzésére használható. Nem Igen Ismetesse vázlattal is- a hasáblebontó modellezés lényegét, előnyeit és A hasáblebontáson alapuló modellezés a véges tértartományt nyolc részre osztja, majd megvizsgálja, hogy egy-egy tértartomány teljesen, vagy részlegesen feltöltöt-e, esetleg üres. Ferde és görbült felületek esetén csak közelítő leírásra alkalmas, a közelítés pontosságát a lebontás mélységével lehet befolyásolni. Egyszerűen algoritmizálható. Ismertesse a térfogat lebontásos félteres modellezés lényegét, előnyeit és Az objektum által elfoglalt térfogat behatárolását végtelen kiterjedésű felületekkel hajtja végre, amelyek a teret két végtelen kiterjedésű tartományra bontják. Az egyik félteret anyaggal tölti fel. Jellemzői, hogy a teret elválasztó felület nem csak sík, hanem tetszőleges felület lehet és létre lehet hozni nyílt objektumokat is, ami nem felel meg a testmodellezés alapfeltevéseinek. Ismertesse az elemi sejteke alapuló testmodellezés lényegét, előnyeit és Az alkatrészek a méretüknél több nagyságrenddel kisebb, ún. izomorf cellákból épülnek fel. Jellemzői, hogy követő módszert alkalmaznak így új geometria létrehozás nehézkes, az elemi sejtek alakja, mérete egy modellen belül is változhat, nagy tárolókapacitást és számítási teljesítményt igényel. Jellemzően a numerikus eljárások (végeselem, peremelem módszer) modellezési eszköze.

Ismertesse az elemi testeken alapuló testmodellezés lényegét, előnyeit, Elemi testekkel történő modellezés (Constructive Solid Geometry /CSG) esetén az alkatrészek a méretük nagyságrendjébe eső, meghatározott geometriájú, ún. testprimitívekből épülnek fel a kompozíciós műveletek felhasználásával. Jellemzői, hogy viszonylag elterjedt eljárásnak számít és a testmodell teljes, jellemző tömör leírása az objektumnak, amely lehetővé teszi az integrált és automatizált tervezést. Ismertesse definíciószerűen, mit értünk alaksajátosság alatt! Az alaksajátosságok olyan információhalmaznak tekinthetők, amelyek az alkatrész pontjainak, éleinek, felületeinek logikai összerendelését tartalmazzák. Ismertesse a geometriai alaksajátosságok alkalmazástechnikai értelmezését! Az alaksajátosság olyan geometriai alapegység, amelyik a modellezett objektum alakjának azon adott tartományát képezi, amelyik a termék megvalósítása szempontjából jelentőséggel bír. Ismertesse, és példákon keresztül mutassa be az alakmódosító sajátosságok Az alakmódosító alaksajátosságok gyárthatóság, szerelhetőség, szilárdsági szempontok stb. alapján módosítják a hordozó sajátosságokat. Pl.: - A bal oldali menet elején a letörés a csapágyanya szerelését könnyíti meg. - A végén a beszúrás a menet gyártását teszi lehetővé. - A tengelycsapok végén a beszúrások a köszörűkő kifutását biztosítják. - A tengelyvállnál kialakított lekerekítések a tengely szilárdsági viselkedését teszik kedvezőbbé Ismertesse, és példákon keresztül mutassa be az alakfüggetlen sajátosságok Az alakfüggetlen alaksajátosságok hozzákapcsolódnak a névleges alakhoz, de annak csak másodlagos módosulását okozzák. Ezek az alaksajátosságok felületekhez, felületcsoportokhoz vagy alaksajátosságokhoz rendeltek. Pl.:

- méret- és alaktűrések - felület érdességek - felület kezelések Ismertesse, és példákon keresztül mutassa be az alaksemleges sajátosságok Az alaksemleges alaksajátosságoknak nincs közvetlen kapcsolata a geometriával. Az alaksemleges alaksajátosságok alkatrészekhez vagy alkatrész-csoportokhoz rendeltek. Pl.: - modell anyaga - hőkezelési előírások Ismertesse az alaksajátosságok szemantikai csoportosítását! Valamennyi csoportelemre írjon példákat is! - konstrukciós alaksajátosságok: a szerkezet működését meghatározó geometriai alakzatok - szerelési alaksajátosságok: az alkatrészek összeállításbeli viszonya - elemzési alaksajátosságok: a modell megtámasztása és terhelése Ismertesse az alkatrész modellezés főbb munkafázisait, részletezve a bázis alaksajátosság létrehozásának lépéseit is! - vázlatkészítés - bázis, és további alaksajátosságok létrehozása anyag hozzáadásával 1. rajzelemek létrehozása 2. rajzelemek módosítása 3. geometriai kényszerek definiálása 4. vázlat méretezése - az alkatrész módosítása - anyag és más attributív információk hozzárendelése Ismertesse a vázlatkészítés jellemzőit a modern CAD rendszerekben! - Csak geometriai kényszerek alkalmazásával a profilvázlat nem tehető határozottá, a teljes határozottsághoz legalább egy méret megadása is szükséges. - A geometriai- és méretkényszerek egymást kiválthatják, illetve egymást helyettesíthetik. - A programok a vázlat túlhatározottá tételét általában nem engedik meg. - A méretkényszerek megadhatók numerikus konstansként vagy egyenlet formájában, tervezési összefüggésként.

Ismertesse, és példákon keresztül mutassa be az elhelyezett alaksajátosságok - furat (Hole); pl.: csavarfurat - lekerekítés (Fillet); pl.: fedél illeszések - letörés (Chamfer) - héj (Shell) - Kilökési ferdeség (Draft) - Menet (Thread) - Szétvágás (Split) - Összevonás (Combine) Ismertesse, és példákon keresztül mutassa be a munka alaksajátosságok A munka alaksajátosságok referenciaelemek, közvetlenül nem részei az alkatrésznek, csak segítik a modellezést. Ilyen alaksajátosságok lehetnek pl.: a munkasík (plane), a munkatengely (axis), a munkapont (point) és a felhasználói koordináta rendszer (UCS). Mutassa meg egy példán keresztül a paraméterek felhasználását egy CAD rendszeren belül! Ismertesse az anyagjellemzőnek, mint attributív információnak a fontosságát a számítógépes tervezés esetén! Az anyagdefiníció fizikai és mechanikai jellemzőket is tartalmaz. Ezek közül a sűrűség segítségével határozható meg az alkatrész tömege, a tömegközéppontjának a helye, a különböző koordináta rendszerekben a számolt tehetetlenségi nyomatéka.

Ismertesse a modelltörténet alapú modellezés főbb jellemzőit! - minden építőelem (geometriai és méretkényszerek) módosítható - a modellet paraméterek vezérlik - a modelltörténet mutatja az alaksajátosságok kapcsolatát Ismertesse az explicit modellezés főbb jellemzőit! - a modellt létrehozó lépések sorrendje elveszíti a jelentőségét - a modell rugalmas, módosításkor nincs újraszámolás Ismertesse a szinkron modellezés főbb jellemzőit! - a modell nem vázlatra épül - nincs modelltörténet - a modellt paraméterek vezérlik Definiálja az alkatrész, illetve részösszeállítás fogalmát! Alkatrész: egyedülálló alkotóeleme az összeállításnak Al- vagy részösszeállítás: több alkatrész előzetesen összeszerelt együttese Ismertesse definíciószerűen, mit értünk statikus illetve kinematikai kényszer alatt! Statikus kényszerek: Céljuk egy adott komponens statikus pozicionálása az összeállításon belül. Kinematikai kényszerek: Komponensek mozgásának a modellezésére szolgáló passzív és aktív kényszerek. Ismertesse, és példákon keresztül mutassa be a kinematikai kényszerek két alaptípusát! Ezen kényszerek célja a komponens mozgatásának a megvalósítása. Ezen kényszerek alkalmazásakor legalább egy szabadságfok szabad marad. - passzív kényszerek: a komponensek mozgathatóságát biztosítják - aktív kényszerek: a komponensek mozgatását végzik Sorolja fel az összeállítási modellezésben elérhető speciális műveleteket! - összeállítás robbantott állapotának kialakítása - mérések, ütközési vizsgálatok végrehajtása - átstruktúrálás, komponensek áthelyezése egy másik összeállítási szintre Ismertesse az összeállítási modell egyszerűsítésének céljait! Nagyon nagy összeállítások gépigényének csökkentése, alkatrészek kizárásával vagy alkatrészek egyszerűsített megjelenítésével a rajzi ábrázolás követelményeinek figyelembevételével.

Ismertesse és példákon keresztül szemléltesse az összeállításon belüli modellalkotási lehetőségeket! - környezetbe illeszkedő alkatrész (adaptív tervezéssel vagy top-down módszer alkalmazásával) - tökrözött komponens - speciális elemek automatizált létrehozása Ismertesse a 3D-s CAD rendszerekben készült műhelyrajzok jellemzőit! - A nézetekn minden nézetvonal a 3D-s modell 2D-s vetülete, nem kell és nem is szabad kézzel, geometriához kapcsolódó vonalakat létrehozni. - A rajzok és a szülő modellek kétirányú asszociatív kapcsolatban vannak, azaz bárhol eszközölt változtatás mindkét irányban módosítja azokat. - Az egyes rajzi nézetek, metszetek, axonometrikus és robbantott ábrák generálása gyors és automatikus, ezért célszerű ezt kihasználni a rajzok érthetőségének a növelése érdekében. - Jól felépített és attributív információkkal ellátott modell alapján több rajzi művelet is automatikusan hajtható végre (szövegmező, illetve darabjegyzék kitöltése, stb.) Ismertesse a lemezalkatrész modellezés alapelveit, főbb lépéseit! A lemezalkatrész modellezés a felületmodellezés egy speciális alkalmazása. Célja adott, egyenletes vastagsággal rendelkező lemezmodellek létrehozása. A modellezés lépései: - alap lemezfelület létrehozása - lemezszerű kialakítások készítése - teríték képzése Ismertesse a felületmodellezés alapelveit, főbb lépéseit! A felületmodellezési módszerekkel a modern 3D-s CAD rendszerekben különböző testmodellek kialakítása, illetve javítása valósítható meg. a felületmodellezés jellemzően a következő lépéseken keresztül valósul meg: - felületfoltok készítése görbék alapján - felületfoltok manipulálása (vágás, kiterjesztés, összefűzés) - összefűzött felületek testté alakítása