Sorolja fel a CAD rendszerekbe integrált végeselemes módszeren alapuló elemző szakmogulok alapvető lépéseit!
|
|
- Kornélia Fazekasné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Mit jelent a CAD rendszerek integrációja? Ismertesse a Kernel főbb funkcióit! CAD rendszerek integrációjának kétféle iránya figyelhető meg. Egyrészt a CAD rendszerek bizonyos funkciói beépülnek más alkalmazásokba, melyek valamilyen módon kapcsolódnak a termék életciklusával kapcsolatos tevékenységekhez, másrészt a CAD rendszerek integrálnak magukba más alkalmazásokat A grafikus kernel : biztosítja a 3D-s objektumok kezelését és megjelenítését, valamint az adatkommunikációhoz szükséges funkciókat, melyek a CAD rendszeren belüli modulok és más CAD rendszerekkel való kommunikációt biztosítja. Sorolja fel a CAD rendszerekbe integrált végeselemes módszeren alapuló elemző szakmogulok alapvető lépéseit! Modellalkotás (preprocvesszálás) Geometriai egyszerűsítések terhelések, peremfeltételek emgadása hálózás tes- vagy héjelmekkel Elemzés (futtatás) Preprocceszált adatok feldolgozása Megjelenítés (postprcesszálás) elmozdulások megjelenítése feszültségek megjelenítése testre szabható színskálák animált megjelenítés
2 Sorolja fel a konkurens tervezés főbb lépéseit! Ismertesse az alulról fölfelé (Bottom-Up) történő tervezésen alapuló módszer előnyeit és hátrányait! Előnyök: egyszerűen kivitelezhető nem igényel különösebb előkészítést Hátrányok alapos ellenőrzés szükséges az összeszerelés után ütközések esetén nehézkes a hibák javítása magas a folyamat kommunikáció igénye
3 Ismertesse az felülről lefelé (Top-Down) történő tervezésen alapuló módszer előnyeit és hátrányait! Előnyök: szinte kizárt az alkatrészek ütközése változások könnyedén végigfutnak a struktúrán automatikus kommunikáció Hátrányok bizonyos szinten magasabb felkészültséget igényel hosszabb előkészítést igényel, ami csak nagyobb változtatások esetén térül meg Sorolja fel, milyen tipikus attributív információk rendelhetők egy számítógépes modellhez! Tipikus termékadatok: szabványszám, alkatrész azonosító, cikkszám, termékszám megnevezés vagy beszállító azonosító mértékegység rendszer költség vagy beszerzési ár anyagjellemzők tervezési utasítások, előírások technológiai követelmények, előírások kapcsolódó egyéb dokumentumok Sorolja fel, milyen alapvető problémákba ütközhet egy letöltött modell integrálása a saját CAD modellünkbe! geometria javításra szorul modell átalakítása szükséges a rajzi megjelenítés miatt paraméterek és egyéb attributiv információk nincsenek hozzárendelve a letöltött modellhez
4 Hasonlítsa össze a felület- és a palástmodellezést! A felületmodellezés véges, zárt, szabadformájú felületfoltok tervezésére irányul, amelyekből az objektum határoló felületeit a felületfoltok geometriai pozicionálásával és különböző folytonossági megszorítások előírásával hozzák létre. Ez a modellezési mód a topológiai információkat nem kezeli. A felület modellen a nem érintkező felületek azt hivatottak szemléltetni, hogy a felületek csak látvány szintjén összefüggőek. A felület modell alkalmas bonyolultabb alakok, formák, megadására, takartvonalas megjelenítésre, vagy árnyékolt képek előállítására, de továbbra sem alkalmas térfogat vagy tömeg jellemzők számítására, ütközés vizsgálatra, és nem alkalmas mérnöki számításokhoz numerikus modell készítésére. A felületmodellezés véges, zárt, szabadformájú felületfoltok tervezésére irányul, amelyekből az objektum határoló felületeit a felületfoltok geometriai pozicionálásával és különböző folytonossági megszorítások előírásával hozzák létre. Jellemzői: A modell egyértelműen szemlélteti a modellezett objektumot. Láthatóságot is meg lehet jeleníteni. Térfogat és tömeg jellemzők nem határozhatók meg. Ütközés vizsgálat nem végezhető. Mechanikai, gyártástechnológiai számítások elvégzésére nem használható. A palástmodellezés az objektum véges, zárt burkát (a palástot) poliéderes közelítéssel vagy valószerű geometriával írja le. A palást-modellezés módszertanilag kihasználja azt az alapfeltevést, hogy minden fizikai objektumnak egyértelműen meghatározható határoló felülete van. Ez a határoló felület geometriai szempontból a palást, amely a felületfoltok folytonos záródó halmaza. Ez a modellezési mód a modellt az egyéb információk mellett topológiai szempontból is teljeskörűen jellemzi. A palástmodellező módszer angol nevén Boundary-representation (röviden B-rep) ötvözi a huzalváz-modellezés együttes geometriai és topológiai struktúra kezelését a felületmodellezés felületfolt leírásával. Mivel minden valós fizikai objektum palástja zárt és folytonos, a palástmodellezés az objektum palástját végesnek, folytonosnak és zártnak tekinti, ahol is a palástot képező lapokat élek határolják, az éleket pedig a csomópontok határozzák meg. A palastmodellezes (Boundary-representation / B-rep) az objektum veges,zart burkat (a palastot) irja le. A poliederes palastmodell, a modellezett objektumot sik lapokkal; a valosaghű palastmodell szabadformaju feluletekirja le. Jellemzői: A modell egyertelműen szemlelteti a modellezett objektumot. Lathatosagot is meg lehet jeleniteni. Terfogat es tomeg jellemzők is meghatarozhatok. Utkozes vizsgalat vegezhető. Mechanikai, gyartastechnologiai szamitasok elvegzesere is alkalmas. Ismertesse (vázlattal is) a hasáblebontó modellezés lényegét, előnyeit és hátrányait! A hasablebontason alapulo modellezes a veges tertartomanyt nyolc reszre bontja (nyolcadolast hajt vegre), majd egyenkent megvizsgalja, hogy egyegy tertartomany teljesen, vagy reszlegesen feltoltott-e, vagy ures.
5 Jellemzői: Ferde es gorbult feluletek eseten csak kozelitő leirasra alkalmas. A kozelites pontossagat a lebontas melysegevel lehet befolyasolni. Rendkivul egyszerűen algoritmizalhato. Ismertesse a térfogat lebontásos félteres modellezés lényegét, előnyeit, hátrányait! Az objektum által elfoglalt térfogat behatárolását végtelen kiterjedésű felületekkel hajtja végre, amelyek a teret két végtelen kiterjedésű tartományra bontják. Az egyik félteret anyaggal tölti föl. Jellemzői: A teret elválasztó felület nem csak sík, hanem tetszőleges felület lehet. Létre lehet hozni nem zárt objektumot is, ami nem felel meg a testmodellezés alapfeltevéseinek. Ismertesse az elemi sejteken alapuló testmodellezés lényegét, előnyeit, hátrányait! Az alkatrészek a méretüknél több nagyságrenddel kisebb, ún. izomorf cellákból épülnek fel. Jellemzői: Követő módszer, új geometria létrehozása nehézkes. Az elemi sejtek alakja, mérete egy modellen belül is változhat. Nagy tárolókapacitást és számítási teljesítményt igényel. A numerikus eljárások (végeselem, peremelem módszer) modellezés eszköze. Ismertesse az elemi testeken alapuló testmodellezés lényegét, előnyeit, hátrányait! Elemi testekkel történő modellezés (Constructive Solid Geometry / CSG) esetén az alkatrészek a méretük nagyságrendjébe eső, meghatározott geometriájú, ún. testprimitívekből épülnek fel a kompozíciós műveletek felhasználásával. Jellemzői: Elterjedt eljárás. A testmodell teljes, jellemző és tömör leírása az objektumnak, és lehetővé teszi az integrált és automatizált tervezést. 13)Ismertesse definíció szerűen mit értünk geometriai alaksajátosság alatt! A geometriai alak által indukált sajátosságokat alaksajátosságoknak nevezzük..az alaksajátosság olyan geometriai alapegység, amelyik a modellezett objektum alakjának azon adott tartományát képezi, amelyik a termék megvalósítása szempontjából jelentőséggel bír. 14)Ismertesse a geometriai alaksajátosságok alkalmazástechnikai értelmezését! 15)Ismertesse,és példákon keresztül mutassa be az alakmódosító sajátosságok lényegét!
6 Az alakmódosító alaksajátosságok gyárthatóság, szerelhetőség, szilárdsági szempontok stb. alapján módosítják a hordozó sajátosságokat (4.4b ábra). Így a bal oldali menet elején a letörés a csapágyanya szerelését könnyíti meg, a végén a beszúrás a menet gyártását teszi lehetővé. A tengelycsapok végén a beszúrások a köszörűkő kifutását biztosítják, a tengelyvállnál kialakított lekerekítések a tengely szilárdsági viselkedést teszik kedvezőbbé. 16)Ismertesse,és példákon keresztül mutassa be az alakfüggetlen sajátosságok lényegét! Az alakfüggetlen alaksajátosságok hozzákapcsolódnak a névleges alakhoz, de annak csak másodlagos módosulását okozzák. Alakfüggetlen alaksajátosságok például a méret- és alaktűrések, felület érdességek és felület kezelések, stb. (4.4c ábra). Ezek az alaksajátosságok felületekhez, felület-csoportokhoz vagy alaksajátosságokhoz rendeltek. 17)Ismertesse,és példákon keresztül mutassa be az alaksemleges sajátosságok lényegét! Az alaksemleges alaksajátosságoknak nincs közvetlen kapcsolata a geometriával. Ebbe a csoportba sorolható például a modell anyaga (és valamennyi az anyaghoz rendelhető anyagtulajdonság), vagy a hőkezelési előírások, stb. (4.4d ábra). Az alaksemleges alaksajátosságok alkatrészekhez vagy alkatrész-csoportokhoz rendeltek. 18)Ismertesse az alaksajátosságok szemantikai csoportosítását!valamennyi csoportelemre írjon példákat is! Az alaksajátosságok szemantikai értelmezése szerint megkülönböztetünk alaklétrehozó, alakmódosító, alakfüggetlen és alaksemleges típusú alaksajátosságokat. A 4.4. ábrán egy tengely példáján keresztül mutatjuk be az alaksajátosságok szemantikai értelmezését.
7 19)Ismertesse az alakatrész modellezés főbb munkafázisait,részletezve a bázis alaksajátosság létrehozásának lépéseit is! Az alkatrész modellezés főbb vázlatkészítés, a vázlat geometriai és méretkényszerekkel való ellátása; bázis, és további alaksajátosságok létrehozása anyag hozzáadásával vagy elvételével; az alkatrész módosítása; anyag, és esetlegesen más attributív információk hozzárendelése. (3-as ebook 5.old-tól) 20)Ismertesse a vázlatkészítés jellemzőit a modern CAD rendszerekben! Néhány megjegyzés a vázlatkészítéssel kapcsolatban: Csak geometriai kényszerek alkalmazásával a profilvázlat nem tehető határozottá, a teljes határozottsághoz legalább egy méret megadásra is szükség van. A geometriai kényszerek megtekinthetők, törölhetők, módosíthatók. A geometriai- és méretkényszerek egymást kiválthatják, illetve egymást helyettesíthetik. A geometriai kényszerek megtekinthetők, törölhetők, módosíthatók.
8 A programok a vázlat túlhatározottá tételét általában nem engedik meg. A méretkényszerek megadhatók numerikus konstansként vagy egyenlet formájában, tervezési összefüggésként. Az egyenlet alkalmazása akkor kívánatos vagy szükséges, amikor a geometriai méretek között egyenletekkel teremthetünk kapcsolatot, azaz egy adott geometriai elem mérete egy másik geometriai elem méretétől függ. (4.11. ábra). Egyes programok a vázlatolást automatikus kényszerezéssel is segítik megfelelő kapcsoló bekapcsolásával. 21)Ismertesse, és példákon keresztül mutassa be az elhelyezett alaksajátosságok lényegét! A tervezői gyakorlatban gyakran ismétlődő formaelemek (pl. furat, lekerekítés, élletörés stb.) elhelyezéséhez nem kell külön vázlatot készíteni, hanem előre definiált alaksajátosságként, a méretek megadása után közvetlenül elhelyezhetők a modellben. Ezeket az alaksajátosságokat elhelyezett alaksajátosságoknak nevezik. Ezzel az eljárással lényegesen gyorsítani lehet a tervezés folyamatát. (Megjegyezzük, hogy az elhelyezett alaksajátosságok természetesen vázlatra épülő alaksajátosságokként is létrehozhatók ábra. Egy-egy példa a vázlatra épülő alaksajátosságokra. a) kihúzás; b) megforgatás; c) pásztázás; d) borda; e) söprés; f) spirál; g) vetítés.
9 22)Ismertesse,és példákon keresztül mutassa be a munka alaksajátosságok lényegét! A munka alaksajátosságok, referenciaelemek közvetlenül nem részei az alkatrésznek, csak segítik a modellezést. A munka alaksajátosságok parancsait a ábra mutatja. Ezek rendre: Munkasík (Plane), Munkatengely (Axis), Munkapont (Point), UCS (felhasználói koordináta rendszer. A munka alaksajátosságokat a ábra mutatja be. 23)Mutassa meg egy példán keresztül a paraméterek felhasználást egy CAD rendszeren belül! Parametrikus alkatrész modellezés Az alkatrész modellező szoftverek fontos tulajdonsága, hogy az alkatrészek létrehozásakor, a felhasznált méretek általában automatikusan táblázatba íródnak, és a program minden mérethez külön kódot rendelnek. Ezeknek a kódoknak másodlagos elnevezést is lehet adni. Egy ilyen kódtáblára mutat példát a ábra. A táblázat első oszlopában a másodlagos elnevezésű kódok láthatók. A másodlagos elnevezéssel tervezői összefüggések írhatók le. Így például alapméretnek választva az alapkör_átmérőt (10 mm), további méretek összefüggésekkel kifejezhetők: Magasság = 2,7 * Alapkör_átmérő Fejkör_átmérő = 2,4 * Alapkör_átmérő Öv_magasság = 0,6 * Alapkör_átmérő Furat_helyzet_1 = 1,0 * Alapkör_átmérő... A relációk előírhatók közvetlenül a paraméter táblában, vagy akár egy Excel fájlban, amit a paraméter listához lehet rendelni. Az alapméret megváltoztatásával automatikusan módosul az alkatrész többi mérete. A parametrikus modellezés eredményére mutat példát a ábra.
10 24)Ismertesse az anyagjellemzőnek,mint attributív információnak a fontosságát a számítógépes tervezés esetén Attributív információk Az alkatrészhez számos attributív információ rendelhető. Ezek többek között a vállalat neve, a gyártmány és az alkatrész neve, a tervező, szerkesztő, jóváhagyó neve, a létrehozás, módosítás dátuma, rajzszám, stb. De az attributív információk közül talán a legfontosabb az alkatrész anyagának megadása. Az anyag a programokhoz rendelt adatbázisból választható ki, amelyik adatbázis a felhasználó által bővíthető. Az adatbázis anyaghoz rendelten fizikai és mechanikai jellemzőket is tartalmaz. Ezek közül a sűrűség segítségével határozható meg az alkatrész tömege, a tömegközéppontjának helye, a különböző koordináta rendszerekben számolt tehetetlenségi nyomatéka, stb. A ábra példaképpen egy olyan tulajdonság ablakot mutat, ahol egy acélból készült alkatrész számított mechanikai jellemzői láthatók. Az egyéb mechanikai jellemzők, mint például a rugalmassági modulus, szakító szilárdság, folyáshatár, hővezetési tényező, fajhő, stb. a mérnöki és numerikus számításokhoz szolgálhatnak anyagjellemző adatokul. Az anyagadatbázis természetesen nyitott, a felhasználó tetszés szerint bővítheti saját használatú anyagainak bevitelével.
11 25)Ismertesse a modelltörténet alapú modellezés főbb jellemzőit! A modell létrehozásának sorrendjét, az ún. modell történetet a program az áttekintőben (browser) mutatja ((4.20h ábra). Az áttekintő megmutatja, hogy a modell milyen alaksajátosságokból épül fel, milyen sorrendben, és az egyes alaksajátosságok mely vázlatra épülnek. Mindezek mellett az áttekintő nem egy passzív leírás, hanem a megfelelő sor kijelölésével javítani, módosítani lehet az alaksajátosságot vagy a profilvázlatot. 25) Ismertesse a modelltörténet alapú modellezés főbb jellemzőit! A modell létrehozásának sorrendjét, az ún. modelltörténetet a program az áttekintőben (modell tree) mutatja. Az áttekintő megmutatja, hogy a modell milyen alaksajátosságból épül, milyen sorrenden és az egyes alaksajátosságok mely vázlatra épülnek. Mindezek mellett az áttekintő nem passzív leírás, hanem a megfelelő sor kijelölésével javítani, módosítani lehet az alaksajátosságot vagy a profilvázlatot, valamint itt lehet az alaksajátosságok sorrendjét is módosítani. A modelltörténet elején lévő alaksajátosság szerkesztése az őt követő elemek újraszámítását eredményezi. 26) Ismertesse az explicit modellezés főbb jellemzőit! Előnyök: - a modellt létrehozó lépések sorrendjének nincs jelentősége,
12 - a modell rugalmas, módosításkor nincs újraszámolás, - középpontban a modell áll, %-kal kisebb fájlméret, - más rendszerekből származó elemek viszonylag egyszerűen lekezelhetők. Hátrányok: - nincsenek alaksajátosságok, - módosításkor a paraméterek használata korlátozott, - a tervezési folyamat egyes lépései nehezen automatizálhatók. 27) Ismertesse a szinkron modellezés főbb jellemzőit! - a modell nem vázlatra épül, - nincs modelltörténet, - a modellt paraméterek vezérlik, - a modell módosítása nem igényli a modell felépítési sorrendjének ismeretét, ennek megfelelően a módosítás egyszerű, - multicad környezetben is könnyű használni, - használata egyszerű, ezért általánosan használható eszközzé válhat. 28) Definiálja az alkatrész, illetve a részösszeállítás fogalmát! Alkatrész: - egyedülálló alkotóeleme az összeállításnak. Például: - forgatott PET palack, - söpréssel létrehozott gemkapocs, - alufelni szabadformájú felületekkel, - paraméterekkel vezérelt fogaskerekek, - öntött alkatrész. Részösszeállítás: - több alkatrész előzetesen összeszerelt együttese. 29) Ismertesse definíciószerűen, mit értünk statikus illetve kinematikai kényszer alatt! Statikus: - céljuk egy adott komponens rögzítése a térben a lehetséges 6szabadsági fok lekövetésével. A kényszerek jellemzője a rendszámuk (R), amely megmutatja, hogy az adott kényszerrel hány szabadsági fok köthető le. Síkok: R=3, hengeres felületek: R=4, komponensek rögzítése: R=6. Kinematikai: - komponensek mozgásának a modellezésére szolgáló passzív és aktív kényszerek, alkalmazásukkor legalább egy szabadsági fok szabad marad. Passzív kényszerek biztosítják a komponensek mozgathatóságát, az aktív kényszerek végzik a komponensek mozgatását. 30) Ismertesse, és példákon keresztül mutassa be a kinematikai kényszerek két alaptípusát! Két típusa az aktív és a passzív kényszerek. Passzív kényszerek biztosítják a komponensek mozgathatóságát, pl: síkra illesztés illesztés, fektetés, érintő, szögkényszer, párhuzamos kényszer, felületillesztés, vezérpálya kényszer, földhöz kötés, koordinátarendszer illesztés, kapcsolódás, behelyezés. Az aktív kényszerek végzik a komponensek mozgatását. pl: motor kényszerek, hajtás, vezérpálya kényszer, technológiai kényszerek, struktúra kényszerek, indirekt alszerelési kényszerek, konstrukciós csoport, újraszerelt alkatrész, virtualizációs kényszer.
13 31) Sorolja fel az összeállítás modellezésben elérhető speciális műveleteket! - összeállítás robbantott állapotának kialakítása, - mérések, ütközési vizsgálatok végrehajtása, - átstrukturálás, komponensek áthelyezése egy másik összeállítási szintre. 32) Ismertesse az összeállítási modell egyszerűsítésének a céljait! - a nagyméretű, sok elemszámú szerelések kezelésénél méretek miatti lassú modellkezelés, nehézkes megjelenítés, nagy számítástechnikai teljesítményigény javítása, a szereléskor az apró részletek kezelése. 33) Ismertesse és példákon keresztül szemléltesse az összeállításon belüli modellalkotási lehetőségeket! - speciális módszer alkatrészek illetve részösszeállítások közvetlen létrehozása egy adott összeállítási modellen belül: - környezetbe illeszkedő alkatrész: - adaptív tervezéssel, - top-down módszer alkalmazásával. - türközött komponens, - speciális elemek automatizált létrehozása (vezetékek, csövek). 34) Ismertesse a 3D-s CAD rendszerekben készült műszaki rajzok jellemzőit! - a nézeteken minden nézetvonal a 3D-s modell 2D-s vetülete, nem kell és nem is szabad kézzel létrehozni geometriához kapcsolódó vonalakat. - a rajzok és a szülő modellek kétirányú asszociatív kapcsolatban vannak, azaz bárhol eszközölt változás mindkét irányban módosítja azokat. - az egyes rajzi nézete, metszetek, axonometrikus és robbantott ábrák generálása gyors és automatikus, ezért célszerű ezt kihasználni a rajzok érthetőségének a növelése érdekében. - jól felépített és attributív információkkal ellátott modell alapján több rajzi művelet is automatikusan hajtott végre (szövegmező, illetve darabjegyzék kitöltése, ) - a rajzon szereplő méreteket a 3D modell határozza meg, tehát a méret változásához a modellt kell változtatni. 35) Ismertesse a lemezalkatrész modellezés alapelveit, főbb lépéseit! - a felületmodellezés egy speciális alkalmazása. Célja adott, egyenletes vastagsággal rendelkező lemezmodellek létrehozása. - lépései: - alap lemezfelület létrehozása, - lemezszerű kialakítások készítése, - terítés képzése. 36) Ismertesse a felületmodellezés alapelveit, főbb lépéseit! - a felületmodellezési módszerekkel a modern 3D-s CAD rendszerekben különböző testmodellek kialakítása, illetve javítása valósítható meg. - lépései: - felületfoltok készítése görbék alapján, - a felületfoltok manipulálása (vágás, kiterjesztés, összefűzés), - összefűzött felületek testté alakítása.
Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit!
Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! A CAD rendszerek integrációjának kétféle iránya figyelhető meg. Egyrészt a CAD rendszerek bizonyos funkciói beépülnek más alkalmazásokba,
1. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! (E-book 29-34)
1. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! (E-book 29-34) CAD rendszerek integrációjának kétféle iránya figyelhető meg. Egyrészt a CAD rendszerek bizonyos funkciói
6. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! A CAD rendszerekbe egyre több funkció integrálódik, de maguk a CAD re
1. Milyen hardvert használtak a CAD rendszerek az 1960-as években? Ismertesse ezek fő funkcióit! Hardverek: elérhetetlen árú számítógépek amerikai nagyvállalatoknál, speciális toll (rajzolás a képernyőre).
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
4. ALAKSAJÁTOSSÁGRA ALAPOZOTT GEOMETRIAI MODELLEZÉS
4. ALAKSAJÁTOSSÁGRA ALAPOZOTT GEOMETRIAI MODELLEZÉS Molnár László Dr. Váradi Károly A sajátosság alapú modellezés elvi alapjait M. Bunge fektette le még az 1990-es évek közepén, aki szerint: A fizikai
Parametrikus tervezés
2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók
(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A5 alap közepes - haladó SolidEdge CAD 3D
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 12. Tömör testek modellezése http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,
Bevezető. 1. előadás CAD alapjai A3CD. Bevezető. Piros Attila. Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1 / 22
1. előadás CAD alapjai A3CD Piros Attila Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1 / 22 AZ ELŐADÁS TÉMAKÖREI A számítógépes terméktervezés fejlődése. Integrált tervező
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A2 alap közepes - haladó SolidEdge CAD 3D
3.1. ábra. a) manifold modell (a hasáb is és a henger is test); b) nem manifold modell (a hasáb test, a henger felület).
3. GEOMETRIAI MODELLEZÉS Molnár László Dr. Váradi Károly Általános értelemben a modell nem más, mint a valós vagy elképzelt objektum mása, annak szőkített információkkal való leképzése. A számítógépes
Autodesk Inventor Suite
1 / 5 Autodesk Inventor Suite 2 / 5 Autodesk Inventor Suite Az Autodesk Inventor Suite egy olyan parametrikus tervező - modellező szoftver, melynek segítségével hatékonyan hozhatjuk létre alkatrészeink
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A4 alap közepes - haladó SolidEdge CAD 3D
Az igény szerinti betöltés mindig aktív az egyszerűsített megjelenítéseknél. Memória megtakarítás 40%.
Négy új diagnosztikai eszköz. Továbbfejlesztett hibajavítás a gyakori vázlat problémákhoz. Helyi szerelési gyorsmenü. A szerelési referencia kezelő megmutatja a kapcsolódó referenciát. Továbbfejlesztett
4. Alaksajátosságra alapozott geometriai modellezés
4. Alaksajátosságra alapozott geometriai modellezés 1 4. Alaksajátosságra alapozott geometriai modellezés A sajátosság alapú modellezés elvi alapjait M. Bunge fektette le még az 1990-es évek közepén, aki
Lemez 05 gyakorló feladat
Lemez 05 gyakorló feladat Kivágó (mélyhúzó) szerszám készítése, alkalmazása Feladat: Készítse el az ábrán látható doboz modelljét a mélyhúzással és kivágásokkal! A feladat megoldásához a mélyhúzó szerszámot
New Default Standard.ipt
Adaptív modellezési technika használata Feladat: Készítse el az alábbi ábrán látható fejes szeg parametrikus modelljét! A kidolgozáshoz használja az MSZ EN 22341-es szabványban megadott értékeket! 1 1.
Csatlakozás a végeselem modulhoz SolidWorks-ben
Csatlakozás a végeselem modulhoz SolidWorks-ben Meglévő alkatrész vagy összeállítás modellt ellenőrizhetünk különböző terhelési esetekben a CAD rendszer végeselem moduljával ( SolidWorks Simulation ).
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
CAD Rendszerek II. Adaptív tervezés Bottum-up - top-down design
CAD Rendszerek II. Adaptív tervezés Bottum-up - top-down design Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 20 Tartalom Mechanizmusok tervezése, Mechanizmusok
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
ELŐADÁSOK ANYAGA. 8. Alaksajátosságok transzformációja, kiosztások, tükrözések
FÉLÉVES TEMATIKA CAD RENDSZEREK GESGT110B c. tárgyból Oktatási hét 1. 2. ELŐADÁSOK ANYAGA Integrált tervezőrendszerek jelentősége, helye a géptervezésben, ilyen rendszerek jellemzői, felépítése. Vázlatkészítés
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM Rúdszerkezet sajátfrekvenciája ÓE-A05 alap közepes haladó
Gyakorlati segédlet a tervezési feladathoz
Nyugat-magyarországi Egyetem Faipari Mérnöki Kar Terméktervezési és Gyártástechnológiai Intézet Gyakorlati segédlet a tervezési feladathoz Mechanikai megmunkálás (OFM, FM BSC) és Ipari Technológiák II.
3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás,
Autodesk Inventor Professional New Default Standard.ipt
Adaptív modellezési technika használata Feladat: Készítse el az alábbi ábrán látható munkahenger összeállítási modelljét adaptív technikával! 1. Indítson egy új feladatot! New Default Standard.ipt 2. A
Alkatrész modellezés SolidWorks-szel - ismétlés
Alkatrész modellezés SolidWorks-szel - ismétlés Feladat: Készítse el az ábrán látható szenzorház geometriai modelljét a megadott lépések segítségével! (1. ábra) 1. ábra 1. Feladat 1. Vázlat készítés Készítsen
CAD technikák Mérnöki módszerek gépészeti alkalmazása
Mérnöki módszerek gépészeti alkalmazása XI. előadás 2008. április 28. MI A FEM/FEA? Véges elemeken alapuló elemzési modellezés (FEM - Finite Element Modeling) és elemzés (FEA - Finite Element Analysis).
Tanszéki Általános Formai Követelmények
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki és Járműmérnöki Kar Tanszéki Általános Formai Követelmények (Érvényes: 2019. szeptember 1-től) 1. A tervezési feladat rajzaira vonatkozó
CAD alapjai 1. előadás. CAD alapjai. előadás vázlat 1. előadás. B u d a p e s t 2006
CAD alapjai előadás vázlat 1. előadás Összeállította: Dr. Váradi Károly egy. tanár Molnár László egy. adjunktus B u d a p e s t 26 BME, GSZI 26 1. fólia Mire fogjuk használni az itt megtanult ismeretanyagot?
Akusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
Mechatronika segédlet 3. gyakorlat
Mechatronika segédlet 3. gyakorlat 2017. február 20. Tartalom Vadai Gergely, Faragó Dénes Feladatleírás... 2 Fogaskerék... 2 Nézetváltás 3D modellezéshez... 2 Könnyítés megvalósítása... 2 A fogaskerék
Az ömlesztő hegesztési eljárások típusai, jellemzése A fogyóelektródás védőgázas ívhegesztés elve, szabványos jelölése, a hegesztés alapfogalmai
1. Beszéljen arról, hogy milyen feladatok elvégzéséhez választaná a fogyóelektródás védőgázas ívhegesztést, és hogyan veszi figyelembe az acélok egyik fontos technológiai tulajdonságát, a hegeszthetőséget!
Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?
Kérdés Lista információ megjelenítés :: műszaki rajz T A darabjegyzék előállítása során milyen sorrendben számozzuk a tételeket? Adjon meg legalább két módszert! T A Magyarországon alkalmazott rajzlapoknál
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre
A felkészülés ideje alatt segédeszköz nem használható!
A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsgakérdései (6 db) a 4. Szakmai követelmények fejezetben megadott témakörök mindegyikét tartalmazza A felkészülés ideje alatt segédeszköz
Revit alapozó tanfolyam
Revit alapozó tanfolyam Tematika Tanfolyam hossza: 3 nap 1. nap 1. Felhasználói felület 1.1 A Felhasználói felület elemei 1.2 Beállítási lehetőségek 2. Revit alapok 2.1 BIM alapok 2.2 Mi a különbség a
Revit alaptanfolyam szerkezettervezőknek
Revit alaptanfolyam szerkezettervezőknek Tematika Tanfolyam hossza: 3 nap 1. nap 1. Felhasználói felület 1.1 A Felhasználói felület elemei 1.2 Beállítási lehetőségek 2. Revit alapok 2.1 BIM alapok 2.2
Tanszéki Általános Formai Követelmények
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki és Járműmérnöki Kar Tanszéki Általános Formai Követelmények (Érvényes: 2014. szeptember 1-től) 1. A tervezési feladat rajzaira vonatkozó
Végeselem módszer 7. gyakorlat
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 7. gyakorlat (kidolgozta: Szüle Veronika egyetemi ts.) Feladat: harang sajátrezgéseinek meghatározása 500 100 500 1000 250 250 1.
Modellek dokumentálása
előadás CAD Rendszerek II AGC2 Piros Attila Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1 / 18 DOKUMENTÁCIÓK FELOSZTÁSA I. Felosztás felhasználás szerint: gyártási dokumentáció
Felületminőség. 11. előadás
Felületminőség 11. előadás A felületminőség alapfogalmai Mértani felületnek nevezzük a munkadarab rajzán az ábrával és méretekkel, vagy az elkészítési technológiával meghatározott felületet, ha ez utóbbinál
6.1.1.2 Új prezentáció létrehozása az alapértelmezés szerinti sablon alapján.
6. modul Prezentáció A modul a prezentációkészítéshez szükséges ismereteket kéri számon. A sikeres vizsga követelményei: Tudni kell prezentációkat létrehozni és elmenteni különböző fájl formátumokban A
Táblázatkezelés Excel XP-vel. Tanmenet
Táblázatkezelés Excel XP-vel Tanmenet Táblázatkezelés Excel XP-vel TANMENET- Táblázatkezelés Excel XP-vel Témakörök Javasolt óraszám 1. Bevezetés az Excel XP használatába 4 tanóra (180 perc) 2. Munkafüzetek
CAD alapjai Molnár, László
CAD alapjai Molnár, László CAD alapjai Molnár, László Publication date 2011 Szerzői jog 2011 Molnár László Kézirat lezárva: 2011. január 31. Készült a TAMOP-4.1.2.A/2-10/1 pályázati projekt keretében A
GÉPÉSZETI ALAPISMERETEK
Név:... osztály:... ÉRETTSÉGI VIZSGA 2014. május 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
Összeállítás 01 gyakorló feladat
Összeállítás 01 gyakorló feladat Összeállítás-modellezés szerelési kényszerek Feladat: Készítse el az alábbi ábrán látható kézi működtetésű szelep összeállítás modelljét! A rajzkészítés nem része a feladatnak!
INFORMATIKA CAD ismeretek (Inventor) A versenyrész időtartama: 120 perc. Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése:
INFORMATIKA 0557-06 CAD ismeretek (Inventor) INTERAKTÍV FELADAT A versenyrész időtartama: 120 perc O S Z T V 2 0 1 3. Pótlapok száma Tisztázati Piszkozati Jóváhagyta: Vizsgarészhez rendelt követelménymodul
Elektronikai tervezés Dr. Burány, Nándor Dr. Zachár, András
Elektronikai tervezés Dr. Burány, Nándor Dr. Zachár, András Elektronikai tervezés írta Dr. Burány, Nándor és Dr. Zachár, András Publication date 2013 Szerzői
Rajz 01 gyakorló feladat
Rajz 01 gyakorló feladat Alkatrészrajz készítése Feladat: Készítse el az alábbi ábrán látható kézi működtetésű szelepház alkatrészrajzát! A feladat megoldásához szükséges fájlok: Rjz01k.ipt A feladat célja:
3D-S TERVEZÉS AZ ÓBUDAI EGYETEM REJTŐ SÁNDOR KARÁN
3D-S TERVEZÉS AZ ÓBUDAI EGYETEM REJTŐ SÁNDOR KARÁN AMBRUSNÉ SOMOGYI Kornélia, GYÖNGYNÉ MAROS Judit Óbudai Egyetem, Rejtő Sándor Könnyűipari és Környezetmérnöki Kar Az Óbudai Egyetem Rejtő Sándor Könnyűipari
MUNKAGÖDÖR TERVEZÉSE
MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek
Az MS Excel táblázatkezelés modul részletes tematika listája
Az MS Excel táblázatkezelés modul részletes tematika listája A táblázatkezelés alapjai A táblázat szerkesztése A táblázat formázása A táblázat formázása Számítások a táblázatban Oldalbeállítás és nyomtatás
CAD-alapjai (jegyzet)
CAD-alapjai (jegyzet) 1. CAD (Computer Aided Design) számítógéppel segített tervezés; tervezési koncepciók létrehozása, módosítások megvalósítása, elemzések elvégzésére, tervezés optimálása, korábban rajzok
4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára
4. feladat Géprajz-Gépelemek (GEGET4B) c. tárgyból a űszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TOKOS TENGELYKAPCSOLÓ méretezése és szerkesztése útmutató segítségével 1. Villamos motorról
Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu
Gyártórendszerek mechatronikája Termelési folyamatok II. 02 CAD rendszerek Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu miko.balazs@bgk.uni-obuda.hu 1 Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai
Újdonságok 2013 Budapest
Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget
Legnagyobb anyagterjedelem feltétele
Legnagyobb anyagterjedelem feltétele 1. Legnagyobb anyagterjedelem feltétele A legnagyobb anyagterjedelem feltétele (szabványban ilyen néven szerepel) vagy más néven a legnagyobb anyagterjedelem elve illesztett
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére
Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére Néhány példa a C3D Műszaki Tanácsadó Kft. korábbi munkáiból
Tartalom C O N S T E E L 1 3 Ú J D O N S Á G O K
Tartalom 1. Lemez CAD funkciók fejlesztése... 2 2. cspi fejlesztések... 3 3. Hidegen alakított vékonyfalú makro szelvények... 4 4. Keresztmetszet rajzoló... 5 5. Hidegen alakított keresztmetszetek ellenőrzése...
3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben
1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára
Az MS Word szövegszerkesztés modul részletes tematika listája
Az MS Word szövegszerkesztés modul részletes tematika listája A szövegszerkesztés alapjai Karakter- és bekezdésformázás Az oldalbeállítás és a nyomtatás Tabulátorok és hasábok A felsorolás és a sorszámozás
WordPress segédlet. Bevezető. Letöltés. Telepítés
WordPress segédlet Bevezető A WordPress egy ingyenes tartalomkezelő rendszer (Content Management System - CMS), amely legnagyobb előnye az egyszerű telepítés és a letisztult kezelhetőség és a változatos
Lemezalkatrész modellezés SolidWorks-szel
Lemezalkatrész modellezés SolidWorks-szel Hozzunk létre egy új alkatrész file-t (Part). Válasszuk a Sheet Metal környezetet (1. ábra). (Amennyiben ez nem látható a program elindulása után, a Features fülön
Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.
Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt
Rajz 06 gyakorló feladat
Rajz 06 gyakorló feladat Attribútumos szövegmező A feladat megoldásához szükséges fájlok: Rjz06k_Szelepház.ipt Feladat: Készítsen attribútumos szövegmezőt, ahol is a szövegmező rovatai a modell iproperties
Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon
Bevezetés Ütközés detektálás Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel Az objektumok áthaladnak a többi objektumon A valósághű megjelenítés része Nem tisztán
54 481 01 1000 00 00 CAD-CAM
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását.
11. Geometriai elemek 883 11.3. Vonallánc A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását. A vonallánc egy olyan alapelem, amely szakaszok láncolatából áll. A sokszög
Gépipari alkatrészgyártás és szerelés technológiai tervdokumentáció készítésének számítógépes támogatása
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR GÉPGYÁRTÁSTECHNOLÓGIAI TANSZÉK Gépipari alkatrészgyártás és szerelés technológiai tervdokumentáció készítésének számítógépes támogatása http://www.lib.uni-miskolc.hu/digital/
Műszaki dokumentáció. Szabályok, eljárások II.
Műszaki dokumentáció Szabályok, eljárások II. 1 A rajzi megjelenítés Műszaki gondolatok közlésének és rögzítésének eszköze a rajz Hiba és félreértés nem megengedett Nemzetközileg rögzített, így világnyelv
Házi feladat Dr Mikó Balázs - Gyártástechnológia II. 5
Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet Gyártástechnológia II. BAGGT23NND/NLD 01A - Bevezetés, Alapfogalmak Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu
A végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
Ipari robotok megfogó szerkezetei
IPARI ROBOTOK Ipari robotok megfogó szerkezetei 6. előadás Dr. Pintér József Tananyag vázlata Ipari robotok megfogó szerkezetei 1. Effektor fogalma 2. Megfogó szerkezetek csoportosítása 3. Mechanikus megfogó
TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.
TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású
Négycsuklós mechanizmus modelljének. Adams. elkészítése, kinematikai vizsgálata,
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Négycsuklós mechanizmus modellezése SZIE-K2 alap közepes - haladó Adams
ÍRÁSBELI FELADAT MEGOLDÁSA
34 521 06-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő ÍRÁSBELI FELADAT MEGOLDÁSA Szakképesítés: 34 521 06 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Gépészeti
ÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak
1. feladat CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak Vetületek képzése, alkatrészrajz készítése (formátum: A4) Készítse el a gyakorlatvezető által kiadott,
Görbe- és felületmodellezés. Szplájnok Felületmodellezés
Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet
ESZR - Feltáró hálózat
ESZR - Feltáró hálózat ERDŐGAZDÁLKODÁS/FELTÁRÓ HÁLÓZAT Bevezetés Az erdészeti tevékenységeket támogató technológiák folyamatos fejlődésével szükségessé válik az erdőfeltárás, az erdőfeltáró hálózatok -
A tételhez használható segédeszköz: Műszaki táblázatok. 2. Mutassa be a különböző elektródabevonatok típusait, legfontosabb jellemzőit!
1. Beszéljen arról, hogy milyen feladatok elvégzéséhez választaná a kézi ívhegesztést, és hogyan veszi figyelembe az acélok egyik fontos technológiai tulajdonságát, a hegeszthetőségét! Az ömlesztő hegesztési
Választó lekérdezés létrehozása
Választó lekérdezés létrehozása A választó lekérdezés egy vagy több rekordforrásból származó adatokat jelenít meg. A választó lekérdezések a táblák, illetve az adatbázis tartalmát nem változtatják meg,
VisualNastran4D. kinematikai vizsgálata, szimuláció
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Kardáncsukló mûködésének modellezése SZIE-K1 alap közepes - haladó VisualNastran4D
3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára
3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TENGELYVÉG CSAPÁGYAZÁSA, útmutató segítségével d. A táblázatban szereplő adatok alapján
Ismerkedés az Office 2007 felhasználói felületével
Ismerkedés az Office 2007 felhasználói felületével A szalag kezelése Az új Fájl File menü A Gyorselérési eszköztár Az új nézetvezérlő elemek Összefoglalás Tudnivalók a Windows XP-t használó olvasók számára
Prezentáció. Kategória Tudásterület Hivatkozás Tudáselem 1. Az alkalmazás használata 1.1 Első lépések a prezentációkészítésben
Prezentáció Syllabus 6.0 A syllabus célja Az alábbiakban ismertetjük a Prezentáció modul követelményeit, amely a modulvizsga alapját is képezi. 2019 ECDL Alapítvány A syllabus az ECDL Alapítvány tulajdonát
Gépszerkezettan III. (CAD) laboratóriumi gyakorlatok Borbély, Tibor, Pannon Egyetem
Gépszerkezettan III. (CAD) laboratóriumi gyakorlatok Borbély, Tibor, Pannon Egyetem Gépszerkezettan III. (CAD) laboratóriumi gyakorlatok írta Borbély, Tibor Publication date 2012 Szerzői jog 2012 Pannon
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 521 04 Ipari gépész Tájékoztató
Az ErdaGIS térinformatikai keretrendszer
Az ErdaGIS térinformatikai keretrendszer Két évtized tapasztalatát sűrítettük ErdaGIS térinformatikai keretrendszerünkbe, mely moduláris felépítésével széleskörű felhasználói réteget céloz, és felépítését
Technikai áttekintés SimDay 2013. H. Tóth Zsolt FEA üzletág igazgató
Technikai áttekintés SimDay 2013 H. Tóth Zsolt FEA üzletág igazgató Next Limit Technologies Alapítva 1998, Madrid Számítógépes grafika Tudományos- és mérnöki szimulációk Mottó: Innováció 2 Kihívás Technikai
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I
ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára
időpont? ütemterv számonkérés segédanyagok
időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások
A hatékony mérnöki tervezés eszközei és módszerei a gyakorlatban
A hatékony mérnöki tervezés eszközei és módszerei a gyakorlatban Korszerű mérnöki technológiák (CAD, szimuláció, stb.) alkalmazásának bemutatása a készülékfejlesztés kapcsán Előadó: Szarka Zsolt H-TEC
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2017. április 7. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás ek - 2019. április 2. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,