Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Hasonló dokumentumok
Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2.C szakirány

1. Polinomok számelmélete

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

1. A maradékos osztás

Nagy Gábor compalg.inf.elte.hu/ nagy

1. Egész együtthatós polinomok

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Polinomok (el adásvázlat, április 15.) Maróti Miklós

Polinomok (előadásvázlat, október 21.) Maróti Miklós

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika I.

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Klasszikus algebra előadás. Waldhauser Tamás március 24.

1. A Horner-elrendezés

1. Hatvány és többszörös gyűrűben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság

1. A maradékos osztás

Diszkrét matematika 2.C szakirány

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs.

LÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások

0 ; a k ; :::) = ( 0: x = (0; 1; 0; 0; :::; 0; :::) = (0; 1)

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Diszkrét matematika 2. estis képzés

Irreducibilis polinomok szakkörre

Nagy Gábor compalg.inf.elte.hu/ nagy

Polinomok maradékos osztása

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

Határozatlan integrál

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Alapvető polinomalgoritmusok

Nagy Gábor compalg.inf.elte.hu/ nagy

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Hatványozás. A hatványozás azonosságai

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Matematika A1a Analízis

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés

Polinomosztás. Összeállította: Bogya Norbert. Diszkrét matematika I.gyakorlat

Diszkrét matematika 2. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 1. estis képzés

KOVÁCS BÉLA, MATEMATIKA I.

Klasszikus algebra előadás. Waldhauser Tamás április 28.

1. Komplex szám rendje

Diszkrét matematika 2. estis képzés

Tartalomjegyzék 1. Műveletek valós számokkal Függvények Elsőfokú egyenletek és egyenlőtlenségek

Nagy Gábor compalg.inf.elte.hu/ nagy

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

Kongruenciák. Waldhauser Tamás

Diszkrét matematika 1.

Diszkrét matematika 2.C szakirány

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

2012. október 2 és 4. Dr. Vincze Szilvia

Diszkrét matematika 2.C szakirány

Diszkrét matematika 1. estis képzés

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

Diszkrét matematika 2.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad- és negyedfokú egyenlet

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

Egyenletek, egyenlőtlenségek VII.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

Diszkrét matematika II. feladatok

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika alapfogalmak

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Nagy Gábor compalg.inf.elte.hu/ nagy

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

Algoritmuselmélet gyakorlat (MMN111G)

Banach-algebrákban. Darvas Tamás Babeş-Bolyai Tudományegyetem Matematika-informatika szak, II. év május 10.

y + a y + b y = r(x),

Számelmélet. 1. Oszthatóság Prímszámok

Alapfogalmak a Diszkrét matematika II. tárgyból

Tartalom. Algebrai és transzcendens számok

Matematika A1a Analízis

Átírás:

Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016. ősz

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 2. Definíció Legyen R egységelemes integritási tartomány. Ha a 0 f R[x] polinom nem egység, akkor felbonthatatlannak (irreducibilisnek) nevezzük, ha a, b R[x]-re f = a b = (a egység b egység). Ha a 0 f R[x] polinom nem egység, és nem felbonthatatlan, akkor felbonthatónak (reducibilisnek) nevezzük. Megjegyzés Utóbbi azt jelenti, hogy f -nek van nemtriviális szorzat-előálĺıtása (olyan, amiben egyik tényező sem egység).

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 3. Álĺıtás Legyen (F ; +, ) test. Ekkor f F [x] pontosan akkor egység, ha deg(f ) = 0. = Ha deg(f ) = 0, akkor f nem-nulla konstans polinom: f (x) = f 0. Mivel F test, ezért létezik f 1 0 F, amire f 0 f 1 0 = 1, így f tényleg egység. = Ha f egység, akkor létezik g F [x], amire f g = 1, és így deg(f ) + deg(g) = deg(1) = 0 (Miért?), ami csak deg(f ) = deg(g) = 0 esetén lehetséges.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 4. Álĺıtás Legyen (F ; +, ) test, és f F [x]. Ha deg(f ) = 1, akkor f -nek van gyöke. Ha deg(f ) = 1, akkor feĺırható f (x) = f 1 x + f 0 alakban, ahol f 1 0. Azt szeretnénk, hogy létezzen c F, amire f (c) = 0, vagyis f 1 c + f 0 = 0. Ekkor f 1 c = f 0 (Miért?), és mivel létezik f 1 1 F, amire f 1 f 1 1 = 1 (Miért?), ezért c = f 0 f 1 1 Megjegyzés ( ) = f0 f 1 gyök lesz. Ha (R; +, ) nem test, akkor egy R fölötti elsőfokú polinomnak nem feltétlenül van gyöke, pl. 2x 1 Z[x].

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 5. Álĺıtás Legyen (F ; +, ) test, és f F [x]. Ha deg(f ) = 1, akkor f felbonthatatlan. Legyen f = g h. Ekkor deg(g) + deg(h) = deg(f ) = 1 (Miért?) miatt deg(g) = 0 deg(h) = 1 vagy deg(g) = 1 deg(h) = 0. Előbbi esetben g, utóbbiban h egység a korábbi álĺıtás értelmében. Megjegyzés Tehát nem igaz, hogy egy felbonthatatlan polinomnak nem lehet gyöke.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 6. Álĺıtás Legyen (F ; +, ) test, és f F [x]. Ha 2 deg(f ) 3, akkor f pontosan akkor felbontható, ha van gyöke. = Ha c gyöke f -nek, akkor az f (x) = (x c)g(x) egy nemtriviális felbontás (Miért?). = Mivel 2 = 0 + 2 = 1 + 1, illetve 3 = 0 + 3 = 1 + 2, és más összegként nem állnak elő, ezért amennyiben f -nek van nemtriviális felbontása, akkor van elsőfokú osztója. A korábbi álĺıtás alapján ennek van gyöke, és ez nyilván f gyöke is lesz.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 7. Tétel f C[x] pontosan akkor felbonthatatlan, ha deg(f ) = 1. = Mivel C a szokásos műveletekkel test, ezért korábbi álĺıtás alapján teljesül. = Indirekt tfh. deg(f ) 1. Ha deg(f ) < 1, akkor f = 0 vagy f egység, tehát nem felbonthatatlan, ellentmondásra jutottunk. deg(f ) > 1 esetén az algebra alaptétele értelmében van gyöke f -nek. A gyöktényezőt kiemelve az f (x) = (x c)g(x) alakot kapjuk, ahol deg(g) 1 (Miért?), vagyis egy nemtriviális szorzat-előálĺıtást, így f nem felbonthatatlan, ellentmondásra jutottunk.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 8. Tétel f R[x] pontosan akkor felbonthatatlan, ha deg(f ) = 1, vagy deg(f ) = 2, és f -nek nincs (valós) gyöke. = Ha deg(f ) = 1, akkor korábbi álĺıtás alapján f felbonthatatlan. Ha deg(f ) = 2, és f -nek nincs gyöke, akkor f nem áll elő két elsőfokú polinom szorzataként (Miért?), vagyis csak olyan kéttényezős szorzat-előálĺıtása lehet, melyben az egyik tényező foka 0, tehát egység. = Ha f felbonthatatlan, akkor nem lehet deg(f ) < 1. (Miért?) Ha f felbonthatatlan, és deg(f ) = 2, akkor tfh. van gyöke. Ekkor az ehhez tartozó gyöktényező kiemelésével egy nemtriviális felbontását kapjuk f -nek (Miért?), ami ellentmondás.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 9. folyt. Tfh. deg(f ) 3. Az algebra alaptétele értelmében f -nek mint C fölötti polinomnak van c C gyöke. Ha c R is teljesül, akkor a gyöktényező kiemelésével f egy nemtriviális felbontását kapjuk (Miért?), ami ellentmondás. Legyen most c C \ R gyöke f -nek, és tekintsük a g(x) = (x c)(x c) = x 2 2 Re(c)x + c 2 R[x] polinomot. f -et g-vel maradékosan osztva létezik q, r R[x], hogy f = qg + r. r = 0, mert deg(r) < 2, és r-nek gyöke c C \ R. Vagyis f = qg, ami egy nemtriviális felbontás, ez pedig ellentmondás. Megjegyzés Ha f R[x]-nek c C gyöke, akkor c is gyöke, hiszen f (c) = deg(f ) j=0 f j (c) j = deg(f ) j=0 f j c j = deg(f ) j=0 deg(f ) f j c j = f j c j = f (c) = 0 = 0. j=0

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 10. Definíció f Z[x]-et primitív polinomnak nevezzük, ha az együtthatóinak a legnagyobb közös osztója 1. Lemma (Gauss) Ha f, g Z[x] primitív polinomok, akkor fg is primitív polinom. Indirekt tfh. fg nem primitív polinom. Ekkor van olyan p Z prím, ami osztja fg minden együtthatóját. Legyen i, illetve j a legkisebb olyan index, amire p f i, illetve p g j (Miért vannak ilyenek?). Ekkor fg-nek az (i + j) indexű együtthatója f 0 g i+j +... + f i g j +... + f i+j g 0, és ebben az összegben p nem osztója f i g j -nek, de osztója az összes többi tagnak (Miért?), de akkor nem osztója az összegnek, ami ellentmondás.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 11. Álĺıtás Minden 0 f Z[x] polinom feĺırható f = df alakban, ahol 0 d Z, és f Z[x] egy primitív polinom. Ha f -ből az együtthatók legnagyobb közös osztóját kiemeljük, és azt d-nek választjuk, akkor megkapjuk a megfelelő előálĺıtást. Megjegyzés Az előálĺıtás lényegében (előjelektől eltekintve) egyértelmű, így f főegyütthatóját pozitívnak választva egyértelmű.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 12. Lemma Minden 0 f Q[x] polinom feĺırható f = af alakban, ahol 0 a Q, és f Z[x] egy primitív polinom. Írjuk fel f együtthatóit egész számok hányadosaiként. Ha végigszorozzuk f -et az együtthatói nevezőinek c szorzatával, majd kiemeljük a kapott Z[x]-beli polinom együtthatóinak d legnagyobb közös osztóját, akkor megkapjuk a megfelelő előálĺıtást a = d/c-vel. Megjegyzés Az előálĺıtás lényegében egyértelmű: ha f főegyütthatóját pozitívnak választjuk, akkor egyértelmű.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 13. Tétel (Gauss tétele Z[x]-re) Ha egy f Z[x] előálĺıtható két nem konstans g, h Q[x] polinom szorzataként, akkor előálĺıtható két nem konstans g, h Z[x] polinom szorzataként is. Tfh. f = gh, ahol g, h Q[x] nem konstans polinomok. Legyen f = df, ahol d Z, és f Z[x] primitív polinom, aminek a főegyütthatója pozitív. Ha feĺırjuk g-t ag, h-t pedig bh alakban, ahol g, h Z[x] primitív polinomok, amiknek a főegyütthatója pozitív, akkor azt kapjuk, hogy df = f = gh = abg h. Mivel Gauss lemmája szerint g h is primitív polinom, továbbá f előálĺıtása primitív polinom segítségével lényegében egyértelmű, ezért f = g h, és d = ab, vagyis f = dg h, és például g = dg, h = h választással kapjuk f kívánt felbontását.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 14. Következmény f Z[x] pontosan akkor felbontható Z fölött, amikor felbontható Q fölött. = A Z fölötti felbontás egyben Q fölötti felbontás is. = A Gauss-tételből következik az álĺıtás.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 15. Tétel (Schönemann-Eisenstein) Legyen f (x) = f n x n + f n 1 x n 1 +... + f 1 x + f 0 Z[x], f n 0 legalább elsőfokú primitív polinom. Ha található olyan p Z prím, melyre p f n, p f j, ha 0 j < n, p 2 f 0, akkor f felbonthatatlan Z fölött. Tfh. f = gh. Mivel p nem osztja f főegyütthatóját, ezért sem a g, sem a h főegyütthatóját nem osztja (Miért?). Legyen m a legkisebb olyan index, amelyre p g m, és o a legkisebb olyan index, amelyre p h o. Ha k = m + o, akkor p f k = g i h j, i+j=k mivel p osztja az összeg minden tagját, kivéve azt, amelyben i = m és j = o.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 16. folyt. Így m + o = deg(f ), ahonnan m = deg(g) és o = deg(h). Viszont m és o nem lehet egyszerre pozitív, mert akkor p 2 f 0 = g 0 h 0 teljesülne. Így az egyik polinom konstans, és ha nem lenne egység, akkor f nem lenne primitív. Megjegyzés A feltételben f n és f 0 szerepe felcserélhető. Megjegyzés A tétel nem használható test fölötti polinom irreducibilitásának bizonyítására, mert testben nem léteznek prímek, hiszen minden nem-nulla elem egység.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 17. Racionális gyökteszt Tétel Legyen f (x) = f n x) n + f n 1 x n 1 +... + f 1 x + f 0 Z[x], f n 0 primitív polinom. Ha f = 0, p, q Z, (p, q) = 1, akkor p f 0 és q f n. ( p q ( ) ( 0 = f p q = f p n q ) n + fn 1 ( p q ) n 1 ( ) +... + p f1 q + f 0 / q n 0 = f n p n + f n 1 qp n 1 +... + f 1 q n 1 p + f 0 q n p f 0q n, mivel az összes többi tagnak osztója p, és így (p, q) = 1 miatt p f 0. q f np n, mivel az összes többi tagnak osztója q, és így (p, q) = 1 miatt q f n.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 18. A racionális gyökteszt alkalmazása Álĺıtás 2 Q. Tekintsük az x 2 2 Z[x] polinomot. Ennek a p q alakú gyökeire (p, q Z, (p, q) = 1) teljesül, hogy p 2 és q 1, így a lehetséges racionális gyökei ±1 és ±2.