Eladósodás, kockázat és óvatosság

Hasonló dokumentumok
Koppány Krisztián, SZE Koppány Krisztián, SZE

Maradékos osztás nagy számokkal

A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA

Frekvenciatartomány Irányítástechnika PE MI BSc 1

Laplace transzformáció

Kidolgozott minta feladatok kinematikából

Jeges Zoltán. The mystery of mathematical modelling

Portfólióelméleti modell szerinti optimális nyugdíjrendszer

TARTÓSZERKEZETEK II.-III.

A 2006/2007. tanévi Országos középiskolai Tanulmányi Verseny második fordulójának feladatai és azok megoldásai f i z i k á b ó l. I.

RANGSOROLÁSON ALAPULÓ NEM-PARAMÉTERES PRÓBÁK

Kiszorítják-e az idősebb munkavállalók a fiatalokat a közszférában?

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Egyedi cölöp süllyedésszámítása

Dinamika. F = 8 N m 1 = 2 kg m 2 = 3 kg

Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv.

GÉPÉSZETI ALAPISMERETEK

Mindennapjaink. A költő is munkára

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással

Családi állapottól függõ halandósági táblák Magyarországon

Idő-ütemterv hálók - II.

Tevékenység: Tanulmányozza, mi okozza a ráncosodást mélyhúzásnál! Gyűjtse ki, tanulja meg, milyen esetekben szükséges ráncgátló alkalmazása!

A maximálisan lapos esetben a hurokerősítés Bode diagramjának elhelyezkedése Q * p így is írható:

GÉPSZERKEZETTAN - TERVEZÉS IDŐBEN VÁLTOZÓ IGÉNYBEVÉTEL, KIFÁRADÁS

Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0

Proxy Cache Szerverek hatékonyságának vizsgálata The Performance of the Proxy Cache Server

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Villamos gépek tantárgy tételei

Forgó mágneses tér létrehozása

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Kísérlettervezés témakör

GÉPSZERKEZETTAN - TERVEZÉS IDŐBEN VÁLTOZÓ IGÉNYBEVÉTEL, KIFÁRADÁS

Márkus Zsolt Értelmezések, munkapont beállítások BMF -

A kör harmadik pontjának meghatározásához egy könnyen kiszámítható pontot keressünk

A következő angol szavak rövidítése: Advanced Product Quality Planning. Magyarul minőségtervezésnek szokás nevezni.

N.III. Vasbeton I. T1-t Gerendák I oldal

Atomfizika zh megoldások

Matematika M1 1. zárthelyi megoldások, 2017 tavasz

Proxy Cache szerverek hatékonyság vizsgálata

Érzékelők és beavatkozók

Hálózati Algoritmusok

Ipari folyamatirányítás

Szabadúszókra vonatkozó melléklet

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!

NYILATKOZAT. Egyesülés, szétválás ideje: (év) (hónap) (nap)

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Repülőgépek és hajók Tanszék

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: ŐCSÉNY SPORTKÖR

A kérelmező szervezet rövidített neve: SRK DSE 2Gazdálkodási formakód: 001. Áfa levonásra a pályázatban igényelt költségek tekintetében

A humán tôke statisztikai mérhetôsége*

Az aszinkron (indukciós) gép.

Szinuszjel-illesztő módszer jeltorzulás mérésekhez 1. Bevezetés 2. A mérés elve

( ) abszolút érték függvényét!

ALKALMAZOTT MŰSZAKI HŐTAN

TestLine - Fizika 7. osztály mozgás 1 Minta feladatsor

A WEB SZERVER MEGHIBÁSODÁSÁNAK HATÁSA A PROXY CASH SZERVEREK HATÉKONYSÁGÁRA. Bérczes Tamás, Sztrik János Debreceni Egyetem, Informatikai Kar

Mintapélda. Szivattyúperem furatának mérése tapintós furatmérővel. Megnevezés: Szivattyúperem Anyag: alumíniumötvözet

Praktikus tippek: Lambdaszondák ellenőrzése és cseréje

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter február

FELÜLETI HŐMÉRSÉKLETMÉRŐ ÉRZÉKELŐK KALIBRÁLÁSA A FELÜLET DŐLÉSSZÖGÉNEK FÜGGVÉNYÉBEN

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Beledi Sportegyesület

A rögzített tengely körül forgó testek kiegyensúlyozottságáról kezdőknek

Makroökonómia. 9. szeminárium

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Mezőfalvi MEDOSZ SE

Hatvani István fizikaverseny forduló megoldások. 1. kategória

Mit keressek? Uccu! könyvtár. Teljes kiírás (hosszú!) L.nY..dEZ

= 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg, V víz = 450 dm 3 = 0,45 m 3. = 0,009 m = 9 mm = 1 14

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Lakiteleki Torna Egylet

Az átviteli (transzfer) függvény, átviteli karakterisztika, Bode diagrammok

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Cece Polgári Sport Egyesület

MINERVA TÉRINFORMATIKAI RENDSZER ELEKTROMOS HÁLÓZAT TÉRINFORMATIKAI INTEGRÁCIÓJA

Mérnökirodai szolgáltatásunk keretében további felvilágosítással, szakmai tanácsadással is állunk tisztelt ügyfeleink rendelkezésére.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Téglás Városi Sportegyesület

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Tartalomjegyzék. dr. Lublóy László főiskolai docens. Nyomott oszlop vasalásának tervezése

NAGYKANIZSA MEGYEI JOGÚ VÁROS POLGÁRMESTERE. E L Ő T E R J E S Z T É S NAGYKANIZSA MEGYEI JOGÚ VÁROS KÖZGYŰLÉSÉNEK április 28-i ülésére

Raiffeisen Bank Zrt Budapest, Akadémia u. 6. Raiffeisen Direkt: (06-40) Fôvárosi Törvényszék Cégbírósága Cégjegyzékszám:

PISZKOZAT. Ügyiratszám : be/sfphp /2014 1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Izsáki Sárfehér SE

PISZKOZAT. Ügyiratszám : be/sfphp /2014 1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Pannonhalma Sportegyesület

1. A mozgásokról általában

ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Magyaralmás Sportegyesület

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Petőfi Sportkör Lipót

FIZIKA tankönyvcsaládjainkat

Regresszióanalízis. Lineáris regresszió

PISZKOZAT. 1Érkezett : 1. A KÉRELMEZŐ ADATAI. A kérelmező szervezet rövidített neve: CKSE 2Gazdálkodási formakód:521 3Tagsági azonosítószám 1322

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

A kémiai kötés magasabb szinten

A pontszerű test mozgásának kinematikai leírása

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

H-1026 Budapest, Pasaréti út 83. Tel.: , Fax: info@invescom.hu

1.1. A Laplace-transzformált és fontosabb tulajdonságai

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul.

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő

Azért jársz gyógyfürdőbe minden héten, Nagyapó, mert fáj a térded?

Ügyiratszám : be/sfphp /2014/mlsz 1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Encsencs Sportegyesület

9. GYAKORLAT STATISZTIKAI PRÓBÁK SPSS-BEN FELADATOK

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Sárrétudvari Községi Sportegyesület

Átírás:

Közgazdaági Szemle, XLVIII. évf., 1. máju (363 39. o.) SIMON ANDRÁS VÁRPALOTAI VIKTOR Eladóodá, kockázat é óvatoág A tanulmány a fogyaztói magatartá elméletének legújabb vonulatát, az úgynevezett óvatoági megtakarítá modelljét alkalmazza ahhoz, hogy következtetéeket vonjon le az egye orzágok eladóodái politikájára vonatkozóan. A hagyományo modellek determiniztiku jövedelemvárakozáok mellett elemezték a fogyaztók döntéeit. Ilyen feltevéek mellett nem magyarázható meg kielégítõen, hogy miért nem bátrabbak a gyoran növekvõ orzágok a külõ hitelek felvételében. Ha figyelembe vezük a jövedelem ztochaztikuágát, é feltezük, hogy a fogyaztó fél a zélõége ingadozáoktól, akkor tartalékol a bizonytalan jövõre, vagyi óvatoabb lez, nem vez fel annyi hitelt. Túl nagy többletet em fog felhalmozni, mert a fogyaztó elõnyben rézeíti a jelenbeli fogyaztát a jövõbelivel zemben. Így kialakul egy optimáli pénzügyi pozíció (kinnlevõég vagy adóág), amelyben egyenúlyban van a türelmetlenég (é/vagy gyor növekedé) követelte eladóodái indíték é az óvatoágból zármazó többletfelhalmozái motívum. Az egyenúly feltételeit é tulajdonágait fogalmazza meg a tanulmány modell egítégével. A tanulmány kiegézíti Darva Simon [1999] zámítáait, amennyiben elméleti megalapozáát adja a zámítáokból adódó következtetéeknek.* Azt, hogy a jóléti függvény kockázatfélõ, óvato vielkedét implikálhat, régóta imert a közgazdaágtudományban. 1 Ennek a jelentõégét a fogyaztá intertemporáli eloztáában azonban cak az utóbbi évtizedben kezdik megfelelõen értékelni. Skinner [1988], Zelde [1989a], Kimball [199], Carroll [199], Ayiagari [1994] mûvei voltak talán a legfontoabbak a kérdé megvilágítáában. E tanulmányban ezeknek a kutatáoknak az eredményeit haználjuk fel ahhoz, hogy egy ki, nyitott orzág optimáli külõ eladóodáának meghatározó tényezõit elemezzük. Tanulmányunk célja alapjában véve nem az, hogy imertee a téma elméletét é irodalmát, hanem az, hogy az elméletet tovább gondolva új következtetéekre juon. Ennek ellenére úgy gondoltuk, nem kerülhetjük meg, hogy bizonyo mértékû imertetét i adjunk, hizen a felhaznált irodalom tankönyvi feldolgozáa még angol nyelven em történt meg, magyarul pedig a témáról emmilyen forrá nem áll rendelkezére. Ezért tanulmányunk elõ fejezetében imertetét adunk arról, hogyan módoítja az óvatoági * A zerzõk közönettel tartoznak Darva Zoltnak, Madaráz Kritófnak, Valkovzky Sándornak é Vincze Jánonak értéke ézrevételeikért é ok hiba kijavítááért. A fennmaradó hibákért a felelõég a zerzõket terheli. 1 A történeti áttekinté nem célja ennek a tanulmánynak, ezért cak a jelenég elõ megfogalmazójára, Leland [1968]-ra hivatkozunk. Simon Andrá a Magyar Nemzeti Bank közgazdaági fõoztályának fõoztályvezetõ-helyettee. Várpalotai Viktor a Magyar Nemzeti Bank közgazdaági fõoztályának munkatára, a BKÁE PhD hallgatója.

364 Simon Andrá Várpalotai Viktor motívum létezée az életpályamodellben megfogalmazott fogyaztói döntéi problémát. Imertetéünkben a végtelen horizontú életpálya-feltevére építünk. A máodik fejezetben 1. átfogalmazzuk a problémát egy táradalmi tervezõ feladatára, aki ki, nyitott gazdaág jólétét maximalizálja;. bemutatjuk, hogy a táradalmi tervezé optimuma nem azono az egyének optimalizáláának aggregált eredményével; 3. belátjuk, hogy a táradalmi tervezõ a fikáli politika révén az egyéni döntéeket úgy tudja befolyáolni, hogy bármilyen, zámára optimáli megoldát meg tud valóítani; ki, nyitott orzág eetében ez tetzõlege kívánt külõ eladóodottági zintet jelent; 4. bemutatjuk, hogy mondanivalónk lényege nem változik, ha a vagyonportfóliót az eddigi kötvények mellett kiegézítjük a rézvényekkel. A harmadik fejezetben kalibrált paraméterekkel végzett néhány zimuláció zámítá eredményét imertetjük. A fogyaztói döntéi probléma A pontvárakozáo modell Az intertemporáli fogyaztói optimalizáció determiniztiku világra kialakított modellje a következõ mikroökonómiai feltevéeken alapul. A fogyaztó egyetlen terméket fogyazt. Minden árat ebben a termékben fejezünk ki. A kamatláb tehát a fogyaztott termékben kifejezett reálkamatláb, a jövedelem i é a pénzügyi ezközök értéke i ebben van kifejezve. Egyetlen vagyonezköz áll rendelkezéére, amelynek a hozama a kamatláb. Ennek a vagyonezköznek a mennyiégét nevezzük pénzügyi vagyonnak (a humánvagyontól való megkülönbözteté érdekében). A fogyaztó egy intertemporálian additív haznoági függvényt maximalizál végtelen idõhorizonton úgy, hogy adott kamatláb mellett korlátlan é költégmente hitelpiac áll rendelkezéére. A fogyaztó haznoági függvénye additívan zeparábili: U (c,c 1,c, ) = u (c ), (1) = ahol feltezük, hogy: u ( c )= β u( c ) u > é u <. () A jövõbeli jövedelemre é kamatlábra vonatkozóan a fogyaztó egy adott értéket tételez fel, aminek ninc zóráa. Ezért nevezzük pontvárakozáonak a modellt. A fogyaztó hazonmaximalizálái feladata ebben a determiniztiku világban a következõképpen fogalmazható meg: max β u( c ) { (3) c } = e W = (W 1 c 1 )(1 + r )+ y e = 1,,3,, (4) ahol jelöléeink: c az idõzaki fogyaztá, u(c ) a c fogyaztá haznoága, β az intertemporáli preferencia (β <1 eetén a jelenbeli fogyaztá elõnyben rézeül a jövõbelivel zemben), Ez az imertetõ cak özefoglaláát adja a végtelen horizontú reprezentatív háztartá modelljének annak érdekében, hogy a tanulmányunkban hivatkozott eredményeket bemutauk. Az alapoabb didaktikai imertetét igénylõ olvaónak Muellbauer Lattimore [1995] vagy Deaton [199] mûvét ajánljuk.

r e az idõpont várt kamatlába, e y az idõpont várt jövedelme, Eladóodá, kockázat é óvatoág 365 W az idõzakban rendelkezére álló pénzügyi vagyon a jövedelem beérkezée után, de a fogyaztái kiadá elõtt. Amiatt, hogy mot pontvárakozáo modellel dolgozunk, jelöléeinket egyzerûíthetjük, elhagyhatjuk a várakozáokra utaló e felõ indexeket: r e =r é y e =y. A kamatlábat idõben változatlannak tételezzük fel (r =r). A kamatlábat akkor i változatlannak tekintjük majd, amikor a pontvárakozái feltevét feloldjuk. Ezek a feltevéek kizárólag a tárgyalá egyzerûítéét zolgálják: a változó kamatláb feltevée nem vezet minõégileg új modellhez. A maximalizálái feladatban az (4) intertemporáli vagyonkorlátokban a vagyont arra az idõpontra értelmezzük, amikor az elõzõ idõzaki vagyon kamatozott é az adott idõzaki jövedelem realizálódott, de még nem történt fogyaztá. E feltevének ninc érdemi jelentõége. 3 Ha feltételezzük, hogy a fogyaztó adóága nem növekzik gyorabb ütemben, mint a kamatláb (Ponzi-játék kizáráa 4 ): W lim =, (5) (1 + r ) akkor a (4) vagyonkorlát-orozat behelyetteítéekkel a következõ formában özegezhetõ: c y =1 (1 + r ) W + H L, (6) = (1 + r ) = W + ahol H az életpálya orán várható öze jövõbeli munkajövedelem kamatlábbal dizkontált jelenértéke, amit humántõkének vagy humánvagyonnak nevezünk. A humánvagyon é a pénzügyi vagyon özegét L-lel jelöljük. Így a (6) feltétel úgy értelmezhetõ, hogy a fogyaztá jelenértéke egyenlõ a vagyonnal. A (6) feltétellel képezhetjük a maximumfeladat Lagrange-függvényét: c Λ = β u( c ) λ = = (1 + r ) W y, (7) =1 (1 + r ) amelynek c zerinti deriváltjai adják a maximumhely elõrendû feltételét: β u ( c )= λ 1. (8) 1 + r Haonlóan deriválva c zerint: +1 β +1 u (c +1 ) = λ 1, (9) 1 + r majd a (9)-t eloztva a (8)-cal megkapjuk a fogyaztá határhaznának arányát két zomzédo idõpontban (Euler-egyenlet): u ( c )= (1 + r)β u (c +1 ). (1) 3 A pénzügyi vagyon fogalmát kétféleképpen értelmezik az irodalomban. Az egyik értelmezé a periódu elején méri a vagyont, amikor az még nem kamatozott, nem folyt be a munkajövedelem, é fogyaztá em történt. A máik értelmezé azt tételezi fel, hogy a munkajövedelem már befolyt, de még mindig nem kamatozott a vagyon. A fogyaztá ez eetben i a kamatozá után történik. Az értelmezé különbége kizárólag kényelmi okból zármazik, a képletek alakját egyzerûíti. A probléma Lagrange-függvénnyel való megközelítée eetén mindkét értelmezé egyforma bonyolultágú képlethez vezet, de a dinamiku programozái feladatként való megfogalmazá mint Skinneré i az elõ változatban ad kényelmeebb képletet. Elõbbi eetben a W-vel, utóbbi eetben inkább a B-vel való jelölé terjedt el. 4 Charle Ponzi, Boton zülöttjeként, az 19-a években nagy vagyont halmozott fel az általa zervezett piramijátékon (chain letter), majd börtönbe került é zegényen halt meg. Lád Blanchard Ficher [1989] 84. o. +1

366 Simon Andrá Várpalotai Viktor Az eredmény az intertemporálian maximalizálandó haznoágfüggvény additív voltán alapul, hizen ekkor a jelenbeli fogyaztá helyetteítéi határrátája cak az idõpreferenciától függ. A következõkben az u(.) haznoági függvény matematikai formájára vonatkozóan pecifiku feltevét alkalmazunk, az úgynevezett CRRA-függvényt, 5 amely egyrézt tulajdonágaiban jól követi az a priori elméleti feltevéeket a fogyaztó magatartáára vonatkozóan, márézt lehetõvé tezi, hogy az optimáli fogyaztát zárt függvényalakban fejezheük ki. A függvény a következõ: c 1 γ u( )= 1 γ, ha γ >, γ 1, é (11) c ln c, ha γ = 1. (1) E függvény zerint a fogyaztá határhazna c γ, az intertemporáli helyetteíté elazticitáa kontan 1/γ, kockázatkerülée pedig kontan γ. Az u'(c)=c γ özefüggét a (1) Euler-egyenletbe helyetteítve kapjuk: c +1 = (1 + r ) 1/γ β 1/γ c. (13) Vagyi a tervezett optimáli fogyaztái pályán két zomzédo idõpont fogyaztáának aránya a kamatláb, a zubjektív dizkontráta, valamint a helyetteítéi elazticitá függvénye. Az Euler-egyenletet é a költégvetéi egyenlõéget felhaználva az optimáli c fogyaztá kifejezhetõ az egyén vagyonának változatlan arányaként, ahol a vagyon a pénzügyi vagyon é a humánvagyon özege. 6 Behelyetteítve (13)-t az (6) egyenletbe, kapjuk: (1 + r ) 1/γ β 1/γ c = L. (14) = 1 + r A bal oldal egy mértani or, ami attól függõen vége vagy végtelen, hogy a zámláló kiebb-e a nevezõnél: (1+r) 1/γ β 1/γ > 1+r. Tegyük fel, hogy teljeül az (1+r) 1/γ β 1/γ <1+r egyenlõtlenég. Ha a fogyaztá valóban az (13) egyenlet által meghatározott ütemben nõ, akkor ez a feltevé egyenértékû azzal, hogy a fogyaztá nem nõhet gyorabb ütemben, mint a kamatláb. Ekkor az (14) egyenlet zárt alakban i megfogalmazható: ahol: c 1 1 r + ϑ = (1 + r ) 1/γ β 1/γ L = 1 (1 + r L )1/γ β 1/γ L, (15) 1 + r = 1 + r 1 + r ϑ=1 (1+r) 1/γ β 1/γ. (16) Az, hogy fogyaztá növekvõ vagy cökkenõ pályán mozog, cak a β zubjektív dizkonttényezõtõl, az (r) kamattól é a (γ) kockázatkerülétõl függ. A fogyaztá lejtéét (1+r) 1/γ β 1/γ értéke határozza meg. Ha a zubjektív dizkonttényezõ megegyezik a kamattényezõvel (1+r) 1/γ β 1/γ =1, akkor ϑ= é a fogyaztá megegyezik az aktuáli vagyon hozamával, rl/(1+r)-rel. A modell által implikált megtakarítái állomány elemzééhez egyzerûítõ feltevét tezünk a jövedelem pályájára vonatkozóan. Tegyük fel, hogy a munkajövedelem várható értéke egyenleteen g ütemben növekzik. 7 5 CRRA: Contant Relative Rik Averion. 6 Termézeteen c imeretében már minden idõzakra kizámítható a fogyaztá az (13) egyenlet egítégével. 7 A pontvárakozáokat továbbra i megtartjuk, tehát ez a jövedelempálya i valójában determiniztiku.

Eladóodá, kockázat é óvatoág 367 Továbbra i feltezük, hogy a várakozáok pontvárakozáok, vagyi a fogyaztó nem vezi figyelembe a várható értéktõl való eltéréek hatáát haznoági függvényének értékére. A fogyaztó humánvagyonának értéke ekkor: 1 + g 1 + g H t = y t = 1 + r y t r g, (17) =1 feltéve, hogy g < r. A g < r feltevé a humánvagyon végeégéhez kell. E nélkül a fogyaztá mint a vagyon lineári függvénye végtelen lenne, vagyi a feladat értelmetlenné válna. A pénzügyi vagyon tacionáriu értékének meghatározáához az (4) egyenletet haználjuk, melynek mindkét oldalát ozuk el y 1 -gyel, kihaználva, hogy y =y 1 (1+g): (1 + g) W = W = W 1 c 1 (1 + r )+ y. (18) y y 1 y 1 y 1 y 1 Behelyetteítve a (15)-t c 1 helyére a (18)-ban, kihaználva (17)-t: r + ϑ (1 + g) W = (1 + r ) W 1 (1 + r ) 1 + r (W 1 + H 1 ) + (1 + g), y y 1 y 1 amibõl átrendezéel adódik: W = 1 ϑ W 1 ϑ + g. y (19) 1 + g y 1 r g Innen a pénzügyi vagyonráta tacionáriu értéke: W / y = 1 + g = H. () r g y A fogyaztái hányad tacionáriu értékét i meghatározhatjuk () egítégével: (1 + g)w / y = (W / y c / y)(1 + r )+ (1 + g) (1) c / y = W / y(r g)+ 1 + g 1 + g r g (r g)+ 1 + g = =. () 1 + r 1 + r Néhány kedvezõtlen tulajdonág. Ebben a modellben a fogyaztá intertemporáli ütemezée cak a fogyaztó idõpreferenciájától, a kamatlábtól é az idõbeli helyetteíté rugalmaágától függ, é független a jövedelem pályájától. Fogyaztáának zintje cak öze jövedelmének jelenértékétõl függ, vagyi aktuáli jövedelmétõl cak annyira függ, amennyire az információt nyújt jövõbeli telje jövedelmére vonatkozóan. Ez a tulajdonág ellentmond a megfigyelt tényeknek. Empiriku vizgálatok egyértelmûen bizonyítják, hogy a fogyaztá pályája nem zakad el a fogyaztó jövedelemétõl. A fogyaztó nemcak akkor növeli fogyaztáát, ha váratlan jövedelemre tez zert, vagy jövõbeli jövedelmére vonatkozóan új információhoz jut, hanem akkor i, ha egy korábban i várt jövedelme megvalóul. A gyoran növekvõ orzágokban például a fogyaztá i gyoran növekzik a modell zerint ez cak úgy lenne magyarázható, hogy a gyor növekedé évrõl évre váratlanul érné a lakoágot. A tényekkel zembeni eltéré nemcak a fogyaztá pályájában mutatkozik, hanem a megtakarítái állományban i. A modell paramétereinek ninc olyan kombinációja, amelyet feltételezve ne ütköznénk a tényekkel zemben álló tulajdonágokba.

368 Simon Andrá Várpalotai Viktor Vegyük orra a modell értelmezééhez zükége megzorítáokat é a következmények egye tulajdonágait. 1. Ha ki tudja, milyen véletlen folytán olyan paraméteregyütteünk van, hogy éppen (1+r) 1/γ β 1/γ =1+g, akkor a fogyaztá növekedéi üteme megegyezik a jövedelem növekedéi ütemével, de a (19) egyenletbõl következõen W/y meghatározatlan.. Ha (1+r) 1/γ β 1/γ >1+g, akkor az orzág jövedelméhez képet végtelenül nagy pénzügyi vagyont halmoz fel, azaz lim W/y=. t 3. Ha (1+r) 1/γ β 1/γ <1+g, akkor az orzág jövedelméhez mért pénzügyi vagyona konver gál ugyan egy egyenúlyi értékhez, lim W / y = W / y, de a modell zerint olyan nagyt mértékû eladóodá jön létre (a jövedelem -5-zeree), amely nagymértékben ellentmond a megfigyelt értékeknek. Átfedõ nemzedékek figyelembevétele. Az aggregált megtakarítáokra vonatkozóan megzüntethetjük a tulajdonágok 1 3. pontban orolt furcaágait, ha olyan átfedõ nemzedékeket tételezünk fel, amelyek között ninc örökléi kapcolat, vagyi preferenciáik zempontjából elkülönülnek. A makroökonometriai modellek legtöbbje a pontvárakozáo modellnek Blanchard [1985], Buiter [1988], Weil [1989] ilyen irányú fejleztéeire épül. 8 A kiutat az adja ezekben a modellekben, hogy mindig vannak belépõ új generációk, amelyek tizta lappal, vagyi pénzügyi ezközök nélkül indulnak. Így megfelelõ növekedéi é elhalálozái paraméterek eetén 1. mégha az idõek eetleg végtelenül tartalékfelhalmozók i lennének, az idõek helyébe lépõ új generációk az átlago állományt valamilyen egyenúlyi zinten tudják tartani,. mégha az idõek nagy adóághalmozók i lennének, az új generációk cökkenthetik az egy fõre vagy egyégnyi jövedelemre jutó átlago állományt. A modellel így utánozható az aggregált fogyaztá é megtakarítá valóágban megfigyelt alakuláa. Sõt, az öze kerelet fikáli befolyáolhatóága i biztoított, hizen a fikáli politika generációk közötti jövedelmeket tud átcoportoítani. Az átfedõ generációk figyelembevétele termézeteen haznoan gazdagítja az eredeti pontvárakozáo modellt. Véleményünk zerint azonban az a tulajdonága, hogy nem kerül ellentmondába a fogyaztá é megtakarítá megfigyelt aggregált pályáival, inkább cak jó utánzának, mintem a ténylege vielkedé helye megfogalmazáának az eredménye. Ennek az az oka, hogy a modell mikrogazdaági alapja továbbra i a pontvárakozáo modell. Így minden egye fogyaztó egyenleteen fogyazt a aját életpályája orán. Annak, hogy a fogyaztók özeégére a fogyaztá mégi a jövedelmet követi, az az oka, hogy az egymát követõ generációk egyre magaabb zinten fogyaztanak. A tapaztalat azonban arra mutat, hogy a fogyaztá nemcak aggregáltan, hanem egyénenként i együtt mozog a jövedelemmel: a gyoran növekvõ Japánban a fogyaztá nemcak generációnként nõtt a jövedelemmel arányoan, hanem egy-egy generáción belül i. Az átfedõ nemzedéke modellek tehát nem adnak megoldát arra a problémára, ami a pontvárakozáo modell alapvetõ hátránya. Mint a determiniztiku modellek okzor, ez i zélõége megoldáokhoz vezet. A következõkben láthatjuk, hogy a bizonytalanág megfelelõ figyelembevételén alapuló modell a pontvárakozáo modellhez képet alapvetõen má vielkedét mutat, amely okkal jobban tükrözi a megtakarítái vielkedérõl megfigyelteket. 8 A Multimod modell (Laxton é zerzõtárai []), az új-zélandi modell (Black é zerzõtárai [1997]), a finn modell (Willman é zerzõtárai []) például ilyen alapon nyugzanak.

Eladóodá, kockázat é óvatoág 369 Az óvatoág figyelembevétele Oldjuk fel a pontzerû várakozáokra vonatkozó feltevét! A módoított modellben továbbra i adottnak tekintjük az egyzerûég kedvéért a kamatlábat, de bizonytalannak a jövedelmet. A maximáli jólétet ekkor várható értékként értelmezzük, vagyi az (3) (4) feladat a következõre módoul: max E β u( c ) { (3) c } = W = (W 1 c 1 )(1 + r )+ y = 1,, 3,, (4) ahol E a várakozát jelenti a rendelkezére álló információk zerint akkor, amikor a. idõpontban a jövedelem már befolyt. A következõkben az E kifejezében a indexet elhagyjuk, é az információ halmaz idõpontjára utaló indexet cak akkor tezük ki, ha hangúlyozni akarjuk vagy amikor az különbözik -tól. Ebben a modellben y valózínûégi változó. Ez azt jelenti, hogy a fogyaztá korlátjára, a várt jövedelemre vonatkozóan nem egy-egy érték áll rendelkezére, hanem egy telje elozláfüggvény. Ennek megfelelõen u(c ) i valózínûégi változó. Az (13) egyenlettel analóg módon a maximum elõrendû feltétele a. idõpontra (Euleregyenlet) a következõre módoul: u ( c )= (1 + r)βe[u (c 1 )]. (5) A feladat vizavezethetõ lenne a pontvárakozáo modellre, ha teljeülne, hogy E[u'(c)]=u'(E[c]). Ez cak lineári u'(c) függvény eetén áll fenn. Ilyen u(.) függvény egyzerûen kontruálható, ilyen például az u(c)=bc c / alakú kvadratiku függvény. A feladatban ekkor a várható érték adja a bizto egyenértéket. A bizonytalanág ilyen formában való bevezetée kényelme lehet egye jelenégek tárgyaláakor, de valójában megkerüléét jelenti annak a problémának, amely éppen abból zármazik, hogy a haznoág várható értékének optimuma máhol lez akkor, ha a jövedelem bizonytalan, mint akkor, ha bizonyo. Ehhez képet már nem i döntõ az az érv, hogy egyébként a kvadratiku haznoági függvény ok tulajdonága implauzibili. 9 A következõkben mi a már korábban feltételezett CRRA-függvényt alkalmazzuk, mint haznoági függvényt. Ebben E[c γ ]>(E[c]) γ, tehát a fogyaztá várható értékének határhazna kiebb, mint határhaznának várható értéke. Ez azt jelenti, hogy a (5) egyenletben E[u'(c 1 )] helyébe nem helyetteíthetünk u'(e[c 1 ])-t, cak (1+v 1 )u'(e[c 1 ]-t, ahol 1+v 1 (v 1 >) a kockázattól é a haznoági függvény alakjától függõ zorzó. Az Euleregyenlet tehát a következõ lez: azaz: γ c = (1 + r )β(1 + v 1 )(E[ c ]) γ 1, (6) E[ ]= (1 + r ) 1/γ β 1/γ (1 + v 1 ) 1/γ c. (7) c 1 Vagyi láthatjuk, hogy azono r é β paraméterek eetén a fogyaztá növekedéi üteme gyorabbnak adódik, mint a pontvárakozáo modellben. Ennek intuitív értelme az, hogy a fogyaztó óvatoágból eleinte keveebbet fogyazt, é inkább megtakarít. Azt i láthatjuk a (7) egyenletbõl, hogy a fogyaztá bizto egyenértékee az a jövõbeli bizto fogyaztá, ami a várható haznoággal egyenértékû haznoágot hoz E[c 1 ]/(1+v 1 ) 1/γ. 9 Például negatív fogyaztának i pozitív határhaznot tulajdonít, vagyi egy ilyen feltevé nem jól írja le a fogyaztó vielkedéét.

37 Simon Andrá Várpalotai Viktor A következõkben v értékét határozzuk meg. Skinner [1988], Kimball [199] megoldáa, amelyet Muellbauer Lattimore [1995] i imertet, máodfokú Taylor-orral való közelítéen alapul, ahol a jövedelem elozláának elõ két momentumát haználják fel. 1 Nyomukban ezt az utat követjük mi i. Két idõzakra a levezeté egyzerû, é ezért be i mutatjuk, az általáno eetre vonatkozóan Skinnerre [1988] hivatkozunk. A bizto egyenértéke két periódu eetén. Nézzük elõzör azt az eetet, amikor a világ az 1. periódu végén megzûnik! A W t vagyon definíciója ekkor a következõ: W 1 = (W c )(1 + r )+ y 1. (8) Az (8) egyenletben azonban y 1 már valózínûégi változó, imert vége várható érték kel é zóráal. Az Euler-egyenlet a CRRA-függvény eetére: γ γ c = (1 + r )βe[w 1 ], (9) ahol kihaználtuk, hogy az 1. egyben utoló perióduban minden vagyon fogyaztára kerül (c 1 =W 1 ). A jövõbeli vagyon bizto egyenértékeének W 1* -nek közelítõ zámítáa érdekében fejtük Taylor-orba W 1 γ -t E[W 1 ] körül. Máodrendû Taylor-ort alkalmazunk, 11 vagyi nem haználjuk fel W 1 elozláának minden momentumát, cak a zóráát é varianciáját: W 1 γ (E[ ]) γ γ (E[ ]) (1+γ ) (W 1 E[ ])+ W W W 1 1 1 + γ (1 + γ ) (E[ W ]) (+γ ) (W 1 E[ W ]) 1 1. Ennek várható értékét zámolva a máodik tag lez: γ E[W 1 ] (E[ W ]) γ + γ (1 + γ ) (E[ ]) (+γ ) E[(W 1 E[ ]) 1 W 1 W 1 ]. (31) A jobb oldalon a Taylor-or elõ tagja mutatja a fogyaztá várható értékének határhaznát, amely mint tudjuk kiebb, mint a határhazon várható értéke, vagyi a telje jobb oldal értéke. A polinom magaabb rendû tagjai adják meg a különbéget. 1 A két érték közötti özefüggét arány formában megadva: γ E[W 1 ] (E[ W ]) γ 1 + γ (1 1 (3) + γ ) σ W1 (3) γ E[W 1 ] (E[ W ]) γ 1 (1 + v 1 ), (33) ahol v 1 = γ (1 + γ ) σ é W σ W a W 1 vagyon relatív zóránégyzete. Így az 1. periódu vagyonának bizto egyenértékee: W1 * = E[ ] W 1 (1 + v 1 ) 1/γ, (34) 1 Lattimore [1993] a Taylor-or több tagú kifejtéével a valózínûégi elozlá több momentumát i figyelembe vezi. 11 Emlékeztetõül a máodrendû Taylor-or E[y] körül: y f ( y)= f (E[ y])+ f (E[ y])(y E[ y])+ f (E[ y ]) (y E[ ]) + ο (), y ahol o (y) máodrendû ki ordó függvény. 1 Itt i láthatjuk, hogy a kvadratiku haznoági függvény eetén miért egyezik meg a haznoág várható értéke a várható érték haznoágával: a Taylor-orba fejté ugyani már a máodrendû tagoktól (deriváltaktól) kezdõdõen nullát eredményez, így cak az elõ tag különbözik nullától.

Eladóodá, kockázat é óvatoág 371 Mivel feltevéünk zerint a fogyaztó cak egy évre tekint elõre, σ W zámlálójában a (munka)jövedelem zóránégyzete áll, nevezõjében a vagyon várható értékének a négyzete. Kéõbb, a több idõzakra való általánoítákor fontoá válik majd az a körülmény, hogy a zámláló egyben a vagyon zóránégyzete i. Az intuitív értelmezé magától értetõdõ, a fogyaztó óvatoágát két tényezõ befolyáolja: jövedelmének bizonytalanága é vagyona. Jövedelmének ingadozáa kedvezõtlen fogyaztáának biztonágára nézve, é minél kiebb a vagyona (például nagyon el van adóodva), a fogyaztó annál inkább ki van téve ennek az ingadozának, é ezért annál óvatoabb. A bizto egyenértéke: általáno eet. A fogyaztó termézeteen nemcak egy periódual elõre tekintve vezi figyelembe jövõbeli vagyonát, hanem telje életpályája vagyonát nézi. Skinner [1988] erre az általáno eetre i levezette v értékét é a kétperióduo modellbeli képlettel analóg özefüggéekre jutott. Legyen L a pontvárakozáo modellben megimert életpályavagyon: y L t = W t + E t =t +1(1 + r ) t. (35) Arra az eetre, ha a jövedelem autokorrelációja, az optimáli fogyaztái pályára Skinner [1988] alapján a következõ differenciaegyenlet jellemzõ: 13 ahol: c t = [(1 + r )β (1 + v t )] 1/γ L t L E t 1 [ ] c t 1, (36) t v t = γ (1 + γ ) µ t σ, ε (37) t y t µt = E t 1[ ] L t a σ ε paraméter pedig az y t jövedelem relatív varianciája. µ t -t értelmezhetjük úgy i a t E t 1 [ ], 38) (38) alapján, mint az y t -t érõ egyégnyi okknak a telje vagyonra gyakorolt várható hatáát. Ez az értelmezé lehetõvé tezi a (37) (38) képletek általánoítáát arra az eetre, ha y t tetzõlege ARMA tulajdonágú folyamat. Az y t -t érõ egyégnyi okk hatáa ekkor tovább gyûrûzik a kéõbbi perióduok y t értékeibe. Nem reprodukáljuk az általáno képletet e továbbgyûrûzé leíráára. Az egyzerûég kedvéért é azért, mert a valóágot valózínûleg jól közelíti, azt tételezzük fel, hogy a jövedelem egy egyéggyökfolyamat, 14 ami azt jelenti, hogy a jövedelmet érõ bármilyen okk végtelen ideig fennmarad. Ekkor az y t -t érõ σ ε nagyágú (relatív) okk hatáára a telje vagyont érõ relatív t okk a következõ lez: 15 1 + r E t 1 H t µ t = 1 + g. (39) L E t 1 [ ] t 13 A feladat Skinner-féle megoldáához fel kell tételezni, hogy a véletlen változók az y t jövedelem függetlenek egymától, azaz egy következõ periódura várt jövedelmet nem befolyáolják a korábbi, már realizálódott jövedelmek. Azonban a megoldá egy ki fogáal érvénye maradhat akkor i, ha ez a függetlenég nem teljeül. (Lád a kéõbbieket!) 14 Pontoan legyen y t =(1+g)y t 1 ε t ln(ε t )~N(,σ ε I). 15 Az általáno képletet é annak alkalmazáát az egyéggyökfolyamatra lád Simon Várpalotai [1].

37 Simon Andrá Várpalotai Viktor Haonlóan a pontvárakozáo modellhez, az optimáli fogyaztát kifejezhetjük az életpályavagyon arányában: 1 j c t = (1 + r ) t j (1 + r )(1 + v ) 1/γ j=t =t +1 L (1 + β ) t. (4) Elõ pillantára úgy tûnhet, hogy a pontvárakozáo modellhez képet nem ok változá történt: a fogyaztá éppen úgy a vagyonnal arányo, cak az (1+v t ) tényezõ miatt kiebb hányadot fogyaztunk a vagyonból. Vagyi úgy tûnhet, mintha ez a tényezõ hatáában egyenértékû lenne azzal, hogy a fogyaztó türelmeebb (β nõne). Valójában van még egy fonto különbég: v t nem egy kontan paraméter, hanem az életpályavagyontól függ. Nézzük meg, hogy ennek mi lez a következménye! A pontvárakozáo modellben a fogyaztá é a jövedelem növekedéi üteme a paraméterektõl függõen hozú távon eltérhet egymától. Mint az 1. 3. tulajdonágok tárgyaláa orán (368. oldal) láttuk, a türelmetlen fogyaztó hozú távon kiebb ütemben növeli fogyaztáát, mint ahogy a vagyona nõ (mert maga fogyaztáal kezd), a türelme fogyaztó pedig nagyobb ütemben (mert felhaználja a kezdeti felhalmozából zármazó kamatjövedelmét). A növekedéükhöz képet vizonylag türelme fogyaztók (orzágok) akiknél (1+r) 1/γ β 1/γ >1+g leznek a hitelezõk, é azok, akiknél (1+r) 1/γ β 1/γ <1+g leznek az adóok. Kié bizarr ugyan az a következmény, hogy a vizonylag türelmeek vagy laan növekvõk tõkerátája végtelenül nõ, 16 de a modell keretei között ninc má lehetõég arra, hogy a világot adóokra é hitelezõkre felozuk. A modellben a β paraméternek kulczerepe van, mert ha értéke túlágoan elzakadna a kamatláb é a növekedéi ütem különbégétõl, akkor vagy hitelezõk, vagy adóok nem lennének. Carroll [199] vetette fel, hogy az óvatoági modell megfelelõ értelmezée eetén nincen zükég arra, hogy az egyenúlyi növekedé lehetõégét ennyire függõvé tegyük β-tól, é ezáltal a β paraméter értékét ilyen zûk határokon belülre zorítuk. A β értéke lehet akár lényegeen alaconyabb i, mert a fogyaztók türelmetlenégét ellenúlyozza óvatoáguk. β mérée közvetlenül ugyan nem lehetége, de zólnak érvek amellett, hogy értéke eetleg alaconyabb, mint a,95 1, tartomány. A pontvárakozára épülõ modellek erre vonatkozó feltevéét nem a megfigyeléek, hanem a modellek által adott kényzerûég magyarázza. Akár zázaléko zubjektív dizkontráta i elképzelhetõ, 17 mert v értéke a fogyaztá ütemét még mindig elég magara kényzerítheti. Ehhez még azt i hozzátehetjük, hogy ebben az eetben erre Carroll érdeklõdée nem terjedt ki a világ úgy i feloztható hitelezõkre é adóokra, hogy mindkét fél tabil állományokra törekedjen. Nézzük meg, hogyan! Mindehhez elõzör definiáljuk modellünk egyenúlyi állapotát: Definíció. A (36) (38) optimáli fogyaztá ztochaztiku pályájának egyenúlya az a W t 1 /y t 1 é c t 1 /y t 1 állapot, melyben: W t 1 /y t 1 =E t 1 [W t ]/E t 1 [y t ] é c t 1 /y t 1 =E t 1 [c t ]//E t 1 [y t ]. 18 Hogy ez az egyenúly létezzen, tekintük a modell intabil paraméterezéét értelmezhetetlennek, tehát tegyük fel, hogy a fogyaztó elég türelmetlen ahhoz, hogy hozú távon teljeüljön: 16 E következmény termézetelleneégén nem okat egít a modell védelmében általában felhozott, matematikailag egyébként korrekt érv, hogy a világ rézei között végtelen ideig nem maradhatnak fenn növekedéi ütemkülönbégek, mert a laabban növekvõk úlya a világban -hoz tart, így elõbb-utóbb a világ a leggyorabban növekvõ rézbõl (fogyaztó, orzág tb.) állna. 17 Friedman [1957], akit a pontvárakozáo modell kényzerûégei nem befolyáoltak, még 3 zázaléko dizkontrátára gondolt. 18 Figyeljünk fel arra, hogy itt a várható értékek hányadoáról é nem a hányadook várható értékérõl van zó!

Eladóodá, kockázat é óvatoág 373 (1 + r ) 1/γ β 1/γ 1 + g. (41) Beláthatjuk, hogy ekkor az egyenúlyban a következõ egyenlõégnek kell fennállnia: (1 + r ) 1/γ β 1/γ (1 + v) 1/γ = 1 + g. (4) Ha a bal oldal nagyobb, mint a jobb oldal, akkor az azt jelenti, hogy a fogyaztá gyorabban nõ, mint a jövedelem, vagyi a c/y arány a -hez tart. Ezt a fogyaztó cak akkor engedheti meg magának, ha vagyona a jövedelméhez képet i a -hez tart. Ekkor a kockázat, v a -hoz tart. Ez azonban az (41) feltétel miatt ellentmondához vezet. Ha a bal oldal kiebb, mint a jobb oldal, akkor a c/y arány a -hoz tart. Ebben az eetben a fogyaztó vagyona a jövedelméhez képet -hoz tart, ami v végtelenhez tartáát jelenti. A pontvárakozáo modell tabil egyenúlyi adóágállománya, ahol a fogyaztó vagyona -hoz tart, végtelenül nagy kockázatot rejt magában, amit az óvato fogyaztó nem vállal. Az óvato fogyaztó kialakít egy olyan W/y arányt, ami mellett a kockázat é a hozam egyenúlyban van. Ha valamilyen meglepeté miatt W/y kiebb, mint a megcélzott arány, akkor nagy lez v, ami az (7) egyenlet zerint c t cökkenéét vonja maga után. Ám c t cökkenée a költégveté egyenlegének értelmében a megtakarítát növeli, vagyi W/y egyenúlya helyreáll. Hozú távon tehát W i é c i y-nal arányoan g ütemben nõ. Az 1. ábrán E[c t+1 ]/c t -t láthatjuk, mint W/y függvényét. Ha W/y hányado kiebb, mint az egyenúlyi arány, akkor a kockázat túl nagy, ezért a jelenlegi (t-beli) fogyaztá cökken, hogy elegendõ W halmozódjon fel. A felhalmozott W cökkenti a kockázatot, ezért a fogyaztá növekedhet, vagyi E[c t+1 ]/c t cökken. 1. ábra A fogyaztá alkalmazkodáa a vagyonhoz [ c ] E t + 1 c t 1 + g (1 + r ) 1/ γ β 1/γ W / y W / y Ha W/y a végtelenhez tart, akkor ν é a fogyaztá növekedéi üteme (1+r) 1/γ β 1/γ. A vagyonhányad tacionáriu értéke az (37), (4) egyenletekbõl határozható meg, ha a (39)-bõl behelyetteítünk a (37)-be. Az egyenletrendzer grafiku megoldáát a. ábrán látjuk. A megoldá W/y-ra a következõ: 19 19 A rézlete levezetét lád a Simon Várpalotai [1] tanulmányban.

374 Simon Andrá Várpalotai Viktor 1 + r γ ( 1 + γ ) 1 + g 1 + r W / y = σ ε = σ γ ε r g ( 1 + g) 1 + r 1 g 1 + ( 1 r + ) β γ ( 1 + γ ) 1 H / y. (43) γ ( 1 + g) 1 ( 1 r + ) β Láthatjuk, hogy mivel r > g, az eladóodá felõ korlátja a humántõke, de ez cak akkor valóul meg, ha σ ε =.. ábra Az egyenúlyi eladóodá mint a kockázat függvénye W / y ν = ( 1 ( 1 ) ) γ + g 1 + r β ν W / y W / y = ( R 1) H / y H / y Ha az eladóodá közelít a humánvagyonhoz, akkor a kockázat végtelenné válik. A kockázat telje meg 1 + r zûnééhez a tartalékoknak a végtelenbe kell tartaniuk. Az ábrán R = σ ε 1 + g γ ( 1 + γ ) γ ( 1 + g) ( 1 + r ) β. 1 Imerve W/y tacionáriu értékét, könnyen meghatározhatjuk a c/y fogyaztái hányad tacionáriu értékét, 1 i: c / y = W / y 1 + g + 1 + g = 1 + g L / H. (44) 1 + r 1 + r 1 + r A megzoká. Eddig azt tételeztük fel, hogy a haznoági függvény intertemporálian additív, vagyi egy adott perióduban a haznoág mértéke cak az ugyanabban a perióduban fogyaztott mennyiégtõl függ. Mot egy kié finomítjuk a haznoági függvény jellegére vonatkozó feltevéünket, amikor az úgynevezett megzoká (habit) létezéét vezük figyelembe. A fogyaztó a múltból örököl valamilyen életformát, fogyaztái zokáokat. A megzoká fogalmának bevezetéével ezt vezük figyelembe, amikor azt mondjuk, hogy a fogyaztó által érzékelt haznoág attól függ, hogy az adott perióduban fogyaztáa mennyire tér el a múltból örökölt, vielkedéébe beépült, megzokott zinttõl. Ezt az örökölt fogyaztát mint valamilyen követelményt értelmezzük, azaz olyan zintnek, ami alá a fogyaztó nem hajlandó lemenni, vagyi emmilyen jövõbeli fogyaztá érdekében nem hajlandó lemonda A levezetét lád a Simon Várpalotai [1] tanulmányban. 1 A (44) képletben L/H az özvagyon oztva a humánvagyonnal, azaz L/H = (W+H)/H = W/H+1.

Eladóodá, kockázat é óvatoág 375 ni. A CRRA-függvénnyel megfogalmazva ez azt jelenti, hogy a fogyaztá határhazna nem fogyaztához tartva válik végtelenné, hanem a c h fogyaztához tartva, ahol h a megzoká. A megzoká értékeként az elõzõ idõzak fogyaztáának ρ-zoroát tekintjük. A ρ paraméter tehát a fogyaztói magatartá tehetetlenégének paramétere. A ρ paraméter é a függvény különféleképpen értelmezhetõ. Egy-egy fogyaztónál ρ nagyon alacony i lehet, értelmezhetjük valahol az éhhalál zintjének környékén, hizen adott eetben elképzelhetõ, hogy valaki hajlandó egy-két évig a fizikai létminimum zintjén élni, ha ezzel okat nyer a jövõben. Egy orzág egézét illetõen, amikor a fogyaztá intertemporáli eloztáát mint gazdaágpolitikai feladatot fogalmazzuk meg, talán célzerûbb a fogyaztá aló korlátját mint táradalmilag elfogadható minimumot értelmezni. Ebben az özefüggében valahogy úgy fogalmazhatunk, hogy ρ az az érték, ami olyan fogyaztát implikál, amelyet a táradalom nem tûrne meg, fellázadna, felbomlana. Modellünkben a perióduokat években zámolva a,8 körüli ávot tekintjük az ilyen vezélyekkel járó zintnek. Ez tehát azt jelenti, hogy az intertemporáli fogyaztá tervezéekor a fogyaztót megteteítõ gazdaágpolitikának ki kell zárnia egy olyan lehetõéget, hogy a fogyaztá a véletlen körülmények kedvezõtlen kimenetele eetén egyik évrõl a máikra zázalékkal cökkenheen. Ez a korlát nem zoro, hizen azt megengedi, hogy több éven át évi 19 zázaléko legyen a cökkené, hizen a megzoká feltevé azt jelenti, hogy a fogyaztó képe alkalmazkodni, de cak fokozatoan. A megzoká (habit) feltevée valamelyet módoít a modell megfogalmazáán. A rézlete levezetét itt nem közöljük, cak azt, hogy a tacionáriu W/y értéke ebben az eetben a következõ lez: 3 σ ε 1 + r γ ( 1 + γ ) W / y = 1 H / y. γ (45) 1 ρ 1 + g ( 1 + g) 1 ( 1 r + ) β A közelíté. A Taylor-orral való közelíté miatt a haznoági függvénynek cak a várható értéke körüli tulajdonágai játzanak zerepet a modellben. A közelíté elõnye, hogy a zámítáok végrehajtáa egyzerûbb, mint a dinamiku ztochaztiku programozái feladat explicit megoldáa. Elõnynek tûnhet az i, hogy a modellezõnek nem kell foglalkoznia annak a következményeivel, hogy a CRRA-függvény a fogyaztának végtelen negatív határhaznot tulajdonít. Ez az elõny azonban egyben hátrány i lehet, ha a modellt ki akarjuk terjezteni a likviditái korlát figyelembevételével. Az explicit megoldához ponto feltevét kell tennünk arra vonatkozóan, hogy a jövedelem milyen ávja az, amelyen kívül az elõfordulá valózínûége, é fel kell tételeznünk egy ennek megfelelõ hitelfelvételi korlátot, mert ellenkezõ eetben nem zárható ki, hogy az optimáli fogyaztá nem valózínûéggel negatív értéket i felvegyen. Ezzel a feltevéel egyben lehetõég nyílik arra i, hogy a hitelfelvételi korlát változtatáának hatáát i kizámítuk. Zelde [1989b], Deaton [199], Carroll [199], Ayiagari [1994], Ayiagari McGratten [] é máok végeztek ilyen zámítáokat. A levezetét lád a Simon Várpalotai [1] tanulmányban. 3 Vegyük ézre, hogy a (45) képletben az eltéré a (43) képlettõl mindöze az elõ tagban zereplõ 1 ρ oztó.

376 Simon Andrá Várpalotai Viktor Közöégi optimumfeladat A fogyaztó általánoan felírt problémájának adhatunk egy aggregált értelmezét, ahol a gazdaágpolitika a táradalmi tervezõ egy ki, nyitott orzág közöégi haznoági függvényét maximalizálja végtelen idõhorizonton. A feladat formája azono a korábbival, de annak érdekében, hogy az eredményeket megkülönbözteük a fogyaztói modell eredményeitõl, a pénzügyi pozíció értékét F-fel jelöljük az eddigi W helyett. Az 1. táblázatban közöljük a külõ pénzügyi pozíció tacionáriu értékét az (45) egyenlet alapján, különféle paraméterértékek feltevée mellett. A pénzügyi pozíciót a GNP-hez vizonyítottuk. Megnevezé 1. táblázat Egyenúlyi vagyonpozíciók a paraméterek függvényében A paraméterek értéke Alapváltozat A jövedelem zóráa,18,, β,94,95,96 γ 3 4 g,15,,5 r,4,5,6 Megzoká,79,8,81 (F y)/y értékei a paraméterek megfelelõ értékével zámolva úgy, hogy a többi paraméterérték az alapváltozat zerinti A jövedelem zóráa 3,95,5,95 β 3,3,5,949 γ 5,7,5 3,575 g 4,5,5 4,914 r 4,41,5 1,953 Megzoká,69,5,79 Az (F y)/y a hitelkihelyezé (ha pozitív) vagy az eladóodá (ha negatív) egyenúlyi értéke a GNP arányában. A paraméterek változáának hatáa az F/y-ra termézeteen tükrözi a függvényekben megfogalmazott özefüggéeket. Minél nagyobb a g, annál nagyobb az eladóodá, minél nagyobb a türelmetlenég, vagyi ha cökken β, akkor i nõ az eladóodá. A kockázatfélé γ paraméterének növelée cökkenti az eladóodát. Ugyanilyen hatáú a megzokának vagy a jövedelem zóráának a növekedée. Érdeke a kamatláb hatáa, amelynek az elõjele a függvények formájából nem következik egyértelmûen. Létezik egy jövedelmi vagy vagyonhatá, valamint egy helyetteítéi hatá. A vagyonhatá abból zármazik, hogy a humánvagyon függ a kamatlábtól. A 3. ábrán ez azt jelenti, hogy a H/y egyene eltolódik. Ha a v függvény változatlan, akkor ez a hatá növekvõ kamatláb eetén kiebb adóághoz (ha F/y negatív) é kiebb hitelállományhoz (ha F/y pozitív) vezet. Intuitív magyarázatként a jövedelmi hatát a következõképpen értelmezhetjük: a kamatláb növelée növeli az adóágzolgálat terhét, ezért kiebb lez a fogyaztára fennmaradó várható jövedelem, ami (mivel a jövedelem abzolút zóráa nem változik) növeli a kockázatot. Ez óvatoabbá tezi a fogyaztót, cökkenti eladóodáának a mértékét. Ha a fogyaztó hitelezõi pozícióban van, akkor a maga kamatláb éppen fordított hatáú: a kamatbevétel növeli a várható jövedelmet, ezzel a relatív zórá cökken, a

Eladóodá, kockázat é óvatoág 377 3. ábra A kamatláb változáának hatáa a megtakarítára F / y ν ( r ) ν () r ν H ( r )/ y F ( r )/ y H ( r)/ y F ( r)/ y ν 1 ( r ) ν 1 () r Két eet zerepel az ábrán, egy adói é egy hitelezõi eet. A kockázati dizkontlábat v -vel jelöljük abban az eetben, amikor a fogyaztó egyenúlyban adó, v 1 -gyel akkor, amikor hitelezõ. fogyaztó bátrabb lehet, nem kell akkora óvatoági vagyonkézletet tartania. Tulajdonképpen e modell keretei között ezt a hatát nevezhetnénk kockázati hatának i. A helyetteítéi hatá azt jelenti, hogy a fogyaztó zámára megdrágul a jövõbeli fogyaztá: a v függvény balra tolódik. A hatá azono azzal, mintha a türelmetlenég nõne (β cökkenée). Negatív vagyonállomány eetén a vagyonhatá hozzáadódik a helyetteítéi hatához, pozitív vagyonállomány eetén azonban cökkenti azt. Így a negatív vagyontartományban az egyenúlyi vagyon érzékenyebb a kamatlábra. A pozitív vagyontartományban a vagyonhatá akár ki i olthatná a helyetteítéi hatát. A 3. ábrán a jövedelmi hatá erõebb, özhangban azzal az eredménnyel, amit a feltételezett paraméterértékek i implikálnak. A zámokat tekintve feltûnõ, hogy az eredmények nagyon érzékenyek az egye paraméterek változáára. Ráadául a paraméterekre vonatkozóan ninc közvetlen méréi lehetõég, cak nagyon bizonytalan feltevéekre vagy becléekre támazkodhatunk. A kamatláb, a várható növekedé, a jövedelem zóráa valamilyen kapcolatban van megfigyelt tatiztikai értékekkel. A táradalmi jóléti függvény paramétereire különféle kutatáok eredményei alapján tudunk következtetéeket levonni. 4 Ezek az információk nem alkalmaak arra, hogy egítégükkel olyan zámítái eredményekre juunk, amelyek a gazdaágpolitika gyakorlatában zámzerû útmutatát adhatnának. Modellünk egítégével cak azt láthatjuk be, hogy léteznek a modellhez olyan, eddigi imereteinkkel özhangban lévõ paraméterértékek, amelyek a nemzetközi tatiztikai megfigyeléekkel zinkronban lévõ eladóodái predikcióhoz vezetnek. A pontvárakozáo modellrõl ez nem mondható el, mert bárhogyan i válaztjuk meg a paramétereket, az általa implikált GDP-arányo pénzügyi pozíciók vagy a végtelenhez tartanak, vagy a 5-e tartományba konvergálnak. 4 A CRRA-függvény γ paraméterének empiriku méréével okan foglalkoztak már, az eredmények többége é 4 között zóródik. A ν é közvetve β paraméterre Friedman [1957], [1963],8-a értéket i lehetégenek tartott. Hayahi [198], Weale [199] elemezték ezt a feltevét. A közvetlen méré valójában nem lehetége. Mi i azt az utat követjük, amit például Ayiagari McGratten [1997], akik vizafelé következtetnek az értékére, az egyéb paraméterekbõl kiindulva valamilyen modell alapján. A megzoká tényezõ irodalmában nem imerünk olyan empiriku munkát, amely megkíérelt volna táradalmi haznoági függvényben való zámzerûítét.

378 Simon Andrá Várpalotai Viktor Az egyéni döntéek özege nem a közöégi optimum Tegyük fel, hogy az egyének ízlée (haznoági függvénye) egyforma, valamint jövedelmeik várható értéke é zóráa i azono. Az egye egyéneket érõ véletlen hatáok azonban egyediek, ezért a jövedelmek özegének relatív zóráa nem lez azono az egye egyének jövedelmének relatív zóráával. Ez cak akkor lenne igaz, ha az egyének jövedelmüket tökéleteen diverzifikálni tudnák, vagyi biztoítát tudnának kötni rá a közöéggel. Az ilyen lehetõéget nyújtó piacot nevezzük telje piacnak (complete market). Ebben az eetben a CRRA-függvény feltevée mellett az aggregált feladat megoldáa az egyéni feladatok megoldáainak özege lenne, vagyi jogo lenne a reprezentatív fogyaztó feltevée. Valójában azonban a piacok em nemzetközileg, em orzágon belül nem teljeek. A teljeég, vagyi a biztoítá fokában különbég van jövedelmek zerint. A rézvényjövedelmek portfóliódiverzifikáláal meglehetõen jól biztoíthatók az egyedi kockázattal zemben. Ezért a rézvényhozamok aggregált zóráa irányadó lehet az egyének rézvényjövedelmére i. A munkajövedelemre azonban gyakorlatilag ninc biztoítá. Ezért itt az egyéni relatív zórá jóval nagyobb, mint az aggregált. A közöégi é egyéni döntéi feladat közötti máik különbég a tervezéi horizontban lehet. Az egyéni döntéek modellezéének egyik megközelítée vége életpályában vagy legalábbi egymáal vagyonátutalái kapcolatban nem álló generációkban való gondolkodát tételez fel. A táradalmi tervezõ horizontja ebben az eetben nyilvánvalóan túlnyúlik az egye generációkon, é az aggregálá értelmét vezítheti. Ezzel a problémával, amely az irodalomban alapoan kidolgozott, 5 modellünkben nem foglalkozunk. Egyzerû megközelítéünkben cak arra kereük a válazt, hogy a táradalmi tervezõ haznoági függvényének paraméterei hogyan térnek el egy háztartáétól a kockázathoz való vizony különbözõége miatt. Azt tételezzük fel, hogy a háztartáok életpályája végtelen, é az egyedi (idioyncratic) okkok átmenetiek, az aggregált jövedelmet ért okkok pedig permanenek. Ez a feltevé jogonak látzik. E mellett zól például az a megfigyelé, hogy az egymát követõ generációk egyéni jövedelme között vizonylag kici a kapcolat. (Jenk [197] zerint a zülõk é gyermekeik jövedelme közötti korreláció együttható értéke:,1-,15.) A dinaztiák jövedelme ezért emmiképpen em írható le olyan véletlen bolyongáként, amelynek növekményzóráa azono az egyéni jövedelem növekményzóráával. Az azonban nyilvánvaló, hogy az aggregált jövedelem zóráa a dinaztiák jövedelmében i megjelenik. A végtelen horizontú egyéni (dinaztia) jövedelem tehát feltevéünk zerint olyan folyamat, amelynek okkjai felbonthatók egyedi é aggregált okkokra má é má autokorreláció tulajdonágokkal. Az amerikai jövedelmekre vonatkozóan vannak empiriku becléek az egyéni jövedelmek zóráára. Ezek mintegy 3 zázalékora becülik a jövedelem növekményének zóráát, 4 zázaléko autokorreláció mellett. 6 Korábbi feltevéünk zerint a közö zórá,5 zázalék volt évente, 1 autokorreláció mellett. 7 A dinaztiák jövedelmét ezért olyan folyamatként fogalmazzuk meg, amely két ztochaztiku tényezõ zorzata, az egyik zóráa 3 zázaléko, autokorrelációja,4, a máik egy olyan véletlen bolyongá, amelynek a paraméterei megegyeznek az aggregált jövedelemével. Az egyén jövedelme tehát: 5 Weil [1989] zintéziét adja annak a Blanchard [1985]-féle é Buiter [1988]-féle elemzének, amely feltárta az elkülönülõ életpályák é az aggregálái probléma közötti kapcolatot. 6 Lád például Lillard Willi [1978] é Abowd Card [1989]. 7 Termézeteen az aggregált jövedelemnek i van átmeneti komponene. Ettõl az egyzerûég kedvéért itt eltekintünk.

Eladóodá, kockázat é óvatoág 379 y = (1 + g)y 1ε ln( ε )~N (, σ ε I ), (46) q = (q 1 ) α ξ < α < 1 ln(ξ )~N (, σ ξ I ), (47) y = q y (48) Tegyük fel, hogy ε é ξ függetlenek: σ εξ =. Az életpályavagyon (logaritmiku) zóránégyzete ekkor a következõ: 8 1 + r 1 + r σ = 1 + g H σ ε + 1 α + (r αg) σ ξ. (49) L Ha r =,5, α =,4, g=,3, σ ξ =,3, σ ε =,, akkor behelyetteítéel meggyõzõdhetünk róla, hogy a végtelen horizontú dinaztia-életpályavagyon varianciája úgy jön létre, hogy a közö kockázatból zármazó varianciához feleakkora egyéni variancia adódik hozzá. Ha az egyéni haznoági függvény paraméterei azonoak lennének a közöégiével, akkor ez azt jelentené, hogy az egyéni óvatoági megtakarítáok özege nagyobb lenne, mint ami a közöég zempontjából indokolt. Ninc azonban okunk arra, hogy feltételezzük, hogy a közöégi haznoági függvény paraméterei azonoak legyenek az egyéni függvényekével. Az egyének kockázatvielõ képeége ugyani valózínûleg nagyobb. Ennek egyzerû megfogalmazáa az, ha az egyéneknél kiebb megzokái paramétert tételezünk fel. Egy-egy háztartá egyik évrõl a máikra elvielhet -3 zázaléko jövedelemcökkenét i, de ha egy ilyen okk az egéz orzágot éri, azt a táradalom kevébé vielné el. Bármi legyen i a különbég a kétféle feladat paramétereiben, az nyilvánvaló, hogy a fogyaztók döntéeinek aggregáláa nem adja ki zükégzerûen a közöégi optimumot. A közöégi optimum cak úgy jöhet létre, ha a táradalmi tervezõ felülbírálja az egyéni döntéek eredményét, é megfelelõ fikáli politikával hozza létre az általa kívánt óvatoági tartalékot. E politika hatáoága azon múlik, hogy az államkötvények állománya befolyáolja-e az egyének megtakarítái döntéét. L A közöégi optimum kikényzeríthetõége: a ricardói bezámítái elv irrelevanciája Annak érdekében, hogy az óvatoági magatartá hatáát a ricardói bezámítái elv érvényeégére el tudjuk különíteni, tegyük fel, hogy a dinaztiák intertemporálian tökéleteen öze vannak kötve olyan értelemben, hogy a generációk örök életûek é nincenek új generációk. Ez az az eet, amikor a pontvárakozáo modellben az aggregált feladat megfogalmazáa azono az egyéni feladatéval, é a ricardói ekvivalencia érvényeül. A kérdé, amire a válazt kereük: ha ezt a modellt az óvatoági vielkedé feltevéével kibõvítjük, mikor érvénye továbbra i a ricardói ekvivalencia elve. Tegyük fel, hogy az állam D értékben kötvényt bocát ki, amely a külföldi kötvénnyel * homogén, vagyi mindkét kötvény kockázatmente r = r kamatot hoz, é ninc árfolyamkockázat em. Minden kibocátott kötvény azono jelenértékû adóterhet jelent, vagyi a kötvénykibocátá a ricardói bezámítá elve alapján az életpálya-vagyont nem befolyáolja. Kérdé az, hogy a kibocátott államkötvény az életpályavagyon relatív varianciáját befolyáolja-e, é ha igen, annak mekkora a hatáa az öze kötvénykereletre, vagyi a belföldi kibocátá kizorítja-e a külföldit, é ha igen, milyen mértékben. 8 A levezetét lád a Simon Várpalotai [1] tanulmányban.

38 Simon Andrá Várpalotai Viktor Az egyének pénzügyi vagyona: W=F+D (5) ahol: W a rezidenek aggregált kötvényvagyona, D a rezidenek birtokában lévõ belföldi államkötvények állománya, F a rezidenek birtokában lévõ külföldi kötvények állománya. Tegyük fel az egyzerûég kedvéért, hogy az adó cak a ztochaztiku jövedelmet terheli, a kamatjövedelmet nem. Az egyének adózá utáni humánvagyona ekkor: ~ H = H D (51) Nézzünk két eetet! 1. Az adó egyözegû (lump um). Ez azt jelenti, hogy az államadóágot olyan adóval ellentételezzük, amelyet végtelen idõtartamra feloztunk az államkötvény kibocátáa pillanatában várható jövedelem arányában, é amely adóteher jelenértéke megegyezik az államkötvény értékével. Ezzel nemcak az öze vagyon, de annak varianciája em változik. ~ A (45) egyenletben W-t behelyetteítve (5)-bõl, é H helyébe H értékét helyetteítve (51)-bõl:,5 γ (1 + γ ) F / y + D / y = 1 var( L ) (H / y D / y). y (1 + g)γ (5) (1 + r )β 1 Innen triviálian adódik, hogy: F / y =, D / y vagyi a ricardói ekvivalencia elv érvényeül.. Tegyük fel, hogy az adórendzer jövedelemarányo, vagyi az adóterhet nem a kötvénykibocátákor várt jövedelem, hanem a ténylege jövedelem arányában oztjuk fel. Ekkor az adóteher a humánvagyon cökkentée mellett a humánvagyon varianciáját i arányoan cökkenti, vagyi (H D) /H arányban, így a (45) egyenlet a következõre módoul:,5 F / y + D / y = 1 (H D ) var(l) γ (1 + γ ) (H / y D / y). y H (53) (1 + g)γ (1 + r )β 1 D/y zerint deriválva: F / y 1 γ (1 + γ = ) var L + 1 1 = L. (54) D / y H (1 + g)γ H (1 + r )β 1 A jobb oldalon zárójelben lévõ tag a telje vagyon tacionáriu értékével azono. A kizorító hatá tehát a telje vagyon é a humánvagyon arányától függ. A gyakorlatban,5

Eladóodá, kockázat é óvatoág 381 tudjuk, hogy a pénzügyi vagyon akár negatív, akár pozitív a humánvagyonnak zinte elenyézõ hányadát tezi ki, ezért a telje vagyon é a humánvagyon aránya 1-hez igen közeli zám. Ez azt jelenti, hogy a belõ adóág növekedée megközelítõen egy az egyben lecapódik külõ adóágként. Ricardói bezámítá tehát gyakorlatilag nincen. A ricardói ekvivalencia érvényeégének elméleti cáfolata kétféle modellezéi irányon alapul. Az egyik az átfedõ generációk Blanchard [1985] Buiter [1988] Weil [1989] modellje, a máik irányhoz az adózá kockázati tulajdonágokat befolyáoló zerepét bemutató modellek tartoznak. Ez utóbbi irány alapját Chan [1983] tette le, majd Barky Mankiw Zelde [1986], Kimball Mankiw [1989] végeztek olyan zámítáokat, amelyekkel özevethetõ a mi eredményünk. Barky é zerzõtárai egyzerû modellben mutatták be, hogy a jövedelemarányo adórendzer biztoítái hatáa fonto lehet; zámzerû eredményeik a mi 1-hez közeli együtthatónkat valózínûítik. A Kimball Mankiw-zerzõpáro végtelen horizontú fogyaztókat é véletlen bolyongáo jövedelmet feltételezve, ezzel zemben 1-nél határozottan kiebb együtthatóhoz jutott. Az eltéréhez két tényezõ járulhatott hozzá: 1. A Kimball Mankiw-modellben CARA (kontan abzolút kockázatfélé) van, míg nálunk a kockázatfélé a fogyaztáal arányo.. Modellünkben rézben éppen a relatív kockázatfélé miatt az eredmények nagyon érzékenyek a paraméterválaztára. A mi parametrizáláunk zempontja az volt, hogy a paraméterek a) mindegyike egyenként legyen olyan tartományban, amelyet má kutatáok alapján elfogadhatónak tartunk, b) vezeenek olyan predikcióra, amely egybevág a ténylegeen megfigyelt pénzügyi pozíciókkal. Ilyen paraméterrendzert ikerült ugyan találnunk, de a józan éznek é egyéb információinknak megfelelõ paraméterek lehetége kálája nagyon zéle, az eredmények pedig érzékenyek a feltevéeinkre, ezért ok olyan paraméterrendzert i találhatnánk, amely az a) követelményt kielégíti, de má predikcióhoz, például a humánvagyonhoz képet nagy pénzügyi többlethez vagy nagy hiányhoz vezet. Kimball é Mankiw cak az elõ követelményt tartották zem elõtt, ezért nem kalibrálták paramétereiket megcélzott valóághû pénzügyi pozíciókra, é így a kizorítái hatá mértéke em volt ennek megfelelõ. Valózínûnek tûnik, hogy a pénzügyi pozíciók meghatározáában fonto zerepe van a hitelfelvételi ( likviditái ) korlátoknak. Ezért a valóágot jobban közelítõ modellnek kombinálnia kellene az óvatoági é a likviditáikorlát-tényezõt. Sajno az utóbbi hatá figyelembevételére közelítõ eljáráunk nem ad lehetõéget. Ayiagari McGratten [] a ztochaztiku dinamiku programozái feladat explicit megoldáával vette figyelembe mindkét tényezõt, zárt gazdaágot feltételezve. A paraméterek kiválaztáában a mienkéhez haonló célirányo módzert válaztottak: olyan paramétereket engedtek cak meg, amelyek mellett az egyenúlyi reálkamatláb az Egyeült Államokra jellemzõ,66-o D/y mellett a megfigyelt 4,5 zázalékkal azono. (Ennek a módzernek a nyitott gazdaági megfelelõjét alkalmaztuk, amikor adott pénzügyi pozícióhoz keretünk paramétereket.) Számítáaikból cak az egyenúlyi kamatláb é az államadóág közötti özefüggé derül ki, ajno nem állapítható meg, hogy változatlan kamatláb mellett a modelljük által implikált kizorítái együttható mennyi lenne. Annyit zámítáok nélkül i tudunk, 9 hogy az államadóág lazítja az egyének likviditái korlátját. Az egyéneknél lévõ állampapírok ugyan nem növelik követeléeik nettó értékét (mert jövõbeli tartozát teteítenek meg), de lehetõvé tezik, hogy fedezetükre olyan hitelt vegyenek fel, amelyre jövõbeli jövedelmük nem lenne hitele fedezet. Ez azt jelenti, hogy az államadóág hatáa a fogyaztára a likviditái catornán kereztül ugyanolyan elõjelû, mint az általunk feltételezett óvatoági catornán kereztül. Amit 9 Lád errõl Woodford [199] é Ayiagari McGratten [199].