A Bevezetés a matematikába című tárgy 3. félévével kapcsolatos tudnivalók

Hasonló dokumentumok
Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Gonda János VÉGES TESTEK

Diszkrét matematika II. feladatok

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

ELTE IK Esti képzés tavaszi félév. Tartalom

Algoritmuselmélet gyakorlat (MMN111G)

Gy ur uk aprilis 11.

Diszkrét matematika 2. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?

MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak

MM CSOPORTELMÉLET GYAKORLAT ( )

Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán):

SE EKK EIFTI Matematikai analízis

Polinomok (el adásvázlat, április 15.) Maróti Miklós

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2.

Polinomok (előadásvázlat, október 21.) Maróti Miklós

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

3. Évközi ellenőrzés módja: 2 zárhelyi dolgozat íratása. 4. A tárgy előírt külső szakmai gyakorlatai: -

Diszkrét matematika I.

MM4122/2: CSOPORTELMÉLET GYAKORLAT ( ) 1. Ismétlés február 8.február Feladat. (2 pt. közösen megbeszéltük)

Egy negyedrendű rekurzív sorozatcsaládról

Alapfogalmak a Diszkrét matematika II. tárgyból

Testek március 29.

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!


Láng Csabáné Testbıvítés, véges testek

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

Diszkrét matematika alapfogalmak

Diszkrét matematika I.

Diszkrét matematika 2.C szakirány

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz

Klasszikus algebra előadás. Waldhauser Tamás március 24.

Kongruenciák. Waldhauser Tamás

Klasszikus algebra előadás. Waldhauser Tamás április 28.

HALMAZELMÉLET feladatsor 1.

1. Egész együtthatós polinomok

matematika alapszak Waldhauser Tamás jegyzete alapján készítette B. Szendrei Mária

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Bevezetés az algebrába az egész számok 2

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

Diszkrét matematika 2. estis képzés

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

DISZKRÉT MATEMATIKA I. TÉTELEK

2. Tétel (Az oszthatóság tulajdonságai). : 2. Nullát minden elem osztja, de. 3. a nulla csak a nullának osztója.

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Nagy Gábor compalg.inf.elte.hu/ nagy

Intergrált Intenzív Matematika Érettségi

Nagy Gábor compalg.inf.elte.hu/ nagy ősz


Diszkrét matematika II. feladatok

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Általános algebra. 1. Algebrai struktúra, izomorfizmus. 3. Kongruencia, faktoralgebra március Homomorfizmus, homomorfiatétel

VIZSGATEMATIKA Diszkrét Matematika BSC A szakirány, I. évfolyam 2016/2017 őszi szemeszter

1. Hatvány és többszörös gyűrűben

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

Diszkrét matematika I.

1. A maradékos osztás

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

Gonda János VÉGES TESTEK

IDA ELŐADÁS I. Bolgár Bence október 17.

Diszkrét matematika 2.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

Relációk. Vázlat. Példák direkt szorzatra

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

DEFINICIÓK. Például a síkgeometriában predikátumok: ( egyenes ), ( pont ), ( illeszkedik - ra ).

Vázlat. Relációk. Példák direkt szorzatra

Véges testek és alkalmazásaik

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Bevezetés az algebrába 1

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

Diszkrét matematika 2.C szakirány

1. Gráfok alapfogalmai

LINEÁRIS ALGEBRA. Szerkeszt es alatt NAGY ATTILA

1. A Horner-elrendezés

HALMAZOK TULAJDONSÁGAI,

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

Diszkrét matematika I.

Matematika szigorlat június 17. Neptun kód:

Szerkeszt es alatt LINEÁRIS ALGEBRA NAGY ATTILA EGYETEMI JEGYZET. Budapesti Műszaki és Gazdaságtudományi Egyetem. Algebra Tanszék

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

Matematika A2a LINEÁRIS ALGEBRA NAGY ATTILA

Logika és informatikai alkalmazásai

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

Bevezetés a programozásba. 3. Előadás Algoritmusok, tételek

Absztrakt algebra II. (2005) 1 ABSZTRAKT ALGEBRA II. Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2005

Gonda János POLINOMOK. Példák és megoldások

Átírás:

A Bevezetés a matematkába című tárgy 3. félévével kapcsolatos tudnvalók A tárgy vzsgá két részből állnak, egy tesztjellegű írásbelből, valamnt egy szóbelből. Az írásbeln nncs osztályzat, a szóbel vzsga előfeltétele az írásbel skeres letétele (de skertelen szóbel esetén a skeres írásbelt nem kell megsmételn). Az írásbel vzsgán egy hbátlan kérdés 3 pont, apró hbával 1 pont, egyébként 0 pont. Három kérdés van az első két félév anyagából, ebből mnmum 7 pont kell, de a vastagon szedett fogalmak mndegykét hbátlanul kell tudn, vagys ezek maradéktalan smerete szükséges az elégségeshez (ez a szóbelre s vonatkozk). A tárgy harmadk féléve öt témakörének mndegykéből 3-3 kérdés van, amelyek közül (témakörönként) legalább egyet hbátlanul kell megoldan, és összességében a 15 kérdésből 27 pont kell a skeres írásbelhez, vagys hármas feltétel van: az első két félév anyagának három kérdéséből mnmum 7 pont, lletve a vastagon szedett fogalmak hbátlan smerete a harmadk félév anyagának valamenny témaköréből az adott három kérdés legalább egykének hbátlan megoldása a harmadk félév anyag összesen 15 kérdéséből mnmum 27 pont. A szóbel vzsga skeres írásbel esetén az írásbelt követően kerül lebonyolításra. Ha valak a khúzott tételt nem tudja, egyszer ugyanazon, vagy hasonló témakörből egy másk kérdést kaphat, ám ekkor az osztályozás hármasból ndul lefelé. A javítóvzsga hasonló a vzsgához. Az írásbel vzsgához nyújt segítséget az alább kérdéssor. A vzsgán a kérdések az tt felsoroltakhoz hasonlóak, de nem feltétlenül egyeznek meg az tt megadottakkal, továbbá kérdésként szerepelhet bármely tanult defnícó vagy tétel. A tárgy anyaga sznte teljes egészében néhány apró kvételtől eltekntve megtalálható a Bevezető fejezetek a matematkába III. című jegyzetben (maga a jegyzet ennél lényegesen bővebb, a vzsgára kb. a jegyzet fele kell).

Szükséges tudnvalók a Bevezetés a matematkába című tárgy első két félévének anyagából (valamnt a Lneárs algebrából) Az alább felsorolás azon anyagot adja meg, amelyet feltétlenül tudn kell, és amelyek az írásbel vzsgán kérdés formájában előfordulhatnak. A tételeknél csak magát a tételt kell tudn, a bzonyítást nem (az persze nem büntetendő, ha valak azt s tudja; mndenesetre a bzonyítás smerete rávlágít, hogy a tételben m mért szerepel). A vastagon szedett fogalmak smerete külön-külön szükséges az elégségeshez (mnd az írásbeln, mnd a szóbeln). 1. Relácó. Reflexív, rreflexív, szmmetrkus, antszmmetrkus, szgorúan antszmmetrkus, tranztív, trchotóm relácó. 2. Ekvvalencarelácó, osztályozás. Az ekvvalencarelácó és az osztályozás kapcsolata. 3. Részbenrendezés, szgorú részbenrendezés, teljes rendezés; jólrendezés, a természetes számok halmaza és a jólrendezettség. 4. Függvény defnícója; szürjektív, njektív, bjektív függvény. Függvény leszűkítése, kterjesztése. 5. Művelet, struktúra. Asszocatvtás, kommutatvtás. Művelettartó leképezés: homo-, mono-, zomorfzmus. Beágyazás. 6. Bnomáls tétel és bnomáls együttható. 7. n-edk (komplex) egységgyök, prmtív n-edk (komplex) egységgyök. 8. Algebra szám, transzcendens szám. 9. Félcsoport, monod, csoport, gyűrű, kommutatív gyűrű, egységelemes gyűrű, ferdetest, test. Abel-csoport. 10. Egységelem (semleges elem, neutráls elem). Nullosztó, regulartás; nullosztómentes gyűrű, ntegrtás tartomány. 11. Oszthatóság, osztó. Egység, asszocált, felbontható elem, felbonthatatlan elem, prímelem. Legnagyobb közös osztó, a legnagyobb közös osztó mnt lneárs kombnácó; relatív prímek, páronként relatív prímek (általában gyűrűben, és az egész számok gyűrűjében, lletve a természetes számok körében). Euler-féle -függvény. 12. Kongruenca, maradékosztály, reprezentáns. Kongruencák összeadása, szorzása és osztása. Z m ; Z m és test kapcsolata. 13. Euler-féle kongruencatétel, Fermat-tétel. 14. Egysmeretlenes lneárs kongruenca, a kongruenca megoldásanak száma, a megoldhatóság feltétele. 15. Szmultán kongruencarendszerek, a kína maradéktétel. 16. Szám felírása q-alapú számrendszerben. 17. Komplexus, komplexusszorzás. Részcsoport, részcsoport és komplexus kapcsolata; részcsoportok metszete. 18. Cklkus csoport; csoport és elem rendje. 19. Normáls részcsoport, faktorcsoport. Lagrange tétele. 20. Csoport homomorf képe csoport; homomorfzmus-tétel, a leképezés magja. 21. Nullosztómentes gyűrű karaktersztkája: a karaktersztka defnícója és értéke. 22. Eukldesz gyűrű. 23. Részgyűrű, bal oldal deál, jobb oldal deál, deál; maradékosztály-gyűrű. Gyűrű homomorfzmusa. 24. Polnom, polnomfüggvény; polnomműveletek. 25. Polnomok maradékos osztása; test fölött polnomgyűrű eukldesz. 26. Polnom helyettesítés értéke és gyöke, többszörös gyök; a gyök és az oszthatóság kapcsolata. 27. Integrtás tartomány felett polnom gyökenek száma.

28. Dervált polnom; többszörös gyök és a dervált polnom kapcsolata. 29. Lneárs tér. Lneárs függetlenség és összefüggőség, bázs, dmenzó. 30. Vektorok skalárszorzata; ortogonáls altér. Mátrx rangja, mátrxok lletve mátrx és vektor szorzása.

A szóbel vzsga várható tétele a Bevezetés a matematkába című tárgy 3. félévének anyagából 1. Bővített test és prímtest (2.2. és 2.3. a 2.3.7.-g; kmarad 2.2.3., 2.2.4., 2.3.2. bzonyítása, 2.3.5. bzonyítása és 2.3.7. bzonyítása) 2. A bővítés foka. Algebra bővítés (2.3. a 2.3.8.-tól és 2.4. a 2.4.13.-g; kmarad 2.4.6.) 3. Polnom gyökével való bővítés. Felbontás test (2.4. a 2.4.14.-től; kmarad 2.4.16., 2.4.17., 2.4.18. bzonyítása, 2.4.22. bzonyítása, 2.4.23. bzonyítása) 4. Véges testek (2.5.) 5. Véges test multplkatív csoportja (2.6. a 2.6.11.-g) 6. Kongruencák (3.1., 3.2. és 3.3. a 3.3.3.-g; kmarad 3.1.5. és 3.1.8.) 7. Szabad félcsoportok (4.1. a 4.1.9.-g) 8. Szabad félcsoport tulajdonsága. Szabad monod (4.1. a 4.1.10.-től; kmarad 4.1.11., 4.1.12. bzonyítása, 4.1.13. bzonyítása) 9. Betűnként kódolás (4.2.) 10. Hbakorlátozó kódok (4.5. a 4.5.10.-g) 11. Lneárs és cklkus kódok (4.6. és 4.7.; kmarad 4.6.6., 4.6.7., 4.7.3. bzonyítása, 4.7.5. bzonyítása, 4.7.6. bzonyítása, 4.7.7. bzonyítása, 4.7.8. bzonyítása) 12. Algebra struktúrák (6.1. a 6.1.20.-g; kmarad 6.1.2., 6.1.3., 6.1.4., 6.1.5., 6.1.6.) 13. Homomorfzmus (6.1. a 6.1.22.-től 6.1.31.-g; kmarad 6.1.26. bzonyítása, 6.1.28. bzonyítása, 6.1.29. bzonyítása) 14. Kfejezésalgebra. Szabad algebrák (6.2.; kmarad 6.2.5. bzonyítása, 6.2.8., 6.2.9., 6.2.10. és 6.2.12.) 15. Algortmus és nyelv (7.1.; az ábécé megszámlálható számosságú!) 16. Rekurzív függvények. RAM-gép (7.2. és 7.4.) 17. Turng-gépek (7.3.; kmarad a 269. oldal utolsó bekezdésétől a 276. oldal aljág, kvéve az utolsó két sort, valamnt a 280. oldal utolsó bekezdésétől a k-szalagos Turn-gépnek az 1- szalagossal, lletve a nemdetermnsztkus Turng-gépnek a determnsztkus Turnggéppel való ekvvalencájára vonatkozó bzonygatások ). A tételeknél feltüntetett számok a Bevezető fejezetek a matematkába III. című jegyzet fejezet-, tétel-, defnícó- lletve oldalszáma. Ahol -g lletve -tól szerepel, az így megjelölt rész még hozzátartozk a megadott tételhez. A szóbel vzsgán a tételek és defnícók puszta smerete még akkor s, ha ez kfogástalan általában nem elegendő az elégségeshez, azaz több-kevesebb segítséggel legalábbs a tételek egy részének bzonyítását s tudn kell.

Tesztkérdések a Bevezetés a matematkába című tárgy 3. félévének anyagából A kérdések között vannak olyanok, amelyek ellentmondanak az elméletnek, ez szándékos. Mnden eldöntendő (vagys gen nemmel megválaszolható) kérdésre adott választ ndokoln kell, és akkor s szükséges az ndoklás, ha egy kérdés lehetetlen dologra vonatkozk. A vzsgán az tt felsorolt kérdésekhez hasonló de esetleg másként megfogalmazott kérdések, valamnt defnícók és tételek fordulnak elő. 1. Ismertesse Wedderburn tételét. 2. Igaz-e hogy mnden ferdetest test? 3. Igaz-e, hogy mnden test ferdetest? 4. Igaz-e, hogy mnden véges test ferdetest? 5. Igaz-e, hogy mnden véges ferdetest test? 6. Van-e végtelen sok, lényegében véve különböző véges test? 7. Legyen L és K test. Mt jelent az, hogy L a K bővítése? 8. Legyen L és K test. Mt jelent az, hogy L a K valód bővítése? 9. Legyen L és K test, és KL. M a kapcsolat a két test karaktersztkája között? 10. Mt jelent L K? 11. Mt jelent M L K? 12. Igaz-e, hogy ha egy test elemszáma m, akkor a karaktersztkája s m? 13. Igaz-e, hogy ha egy test karaktersztkája m, akkor az elemenek száma s m? 14. Igaz-e, hogy ha egy test elemszáma p, ahol p prímszám, akkor a karaktersztkája s p? 15. Igaz-e, hogy ha egy test karaktersztkája p, ahol p prímszám, akkor az elemenek száma s p? 16. Bzonyítsa be, hogy ha L K, akkor char(l)=char(k). 17. Adja meg azokat az L testeket, amelyeknek van char(l)char(k) tulajdonságú K részteste. 18. Sorolja fel a 0-karaktersztkájú véges testeket. 19. M lehet egy véges test karaktersztkája? 20. Bzonyítsa be, hogy véges test karaktersztkája prímszám. 21. Mutassa meg, hogy ha p prímszám, akkor van olyan véges test, amelynek a karaktersztkája p. 22. Adja meg azokat az n egész számokat, amelyekhez van n-karaktersztkájú véges test. 23. Van-e olyan legbővebb test, amelynek a karaktersztkája egy adott p prímszám? 24. Van-e olyan legbővebb véges test, amelynek a karaktersztkája egy adott p prímszám? 25. Adja meg azokat a véges testeket, amelyeknek a karaktersztkája 0. 26. M a prímtest? 27. M egy test prímteste? 28. M a kapcsolat prímtest és egy test prímteste között? 29. M a prímteste Z p -nek, ahol p prímszám? 30. M a prímteste Z n -nek, ahol nz? 31. M a prímteste Z n -nek, ahol 1<nZ? 32. M a prímteste Z 2 -nek, ahol p prímszám? p 33. M a prímteste F q -nak? 34. M a szükséges és elégséges feltétele, hogy egy test prímteste önmaga legyen? 35. M a szükséges és elégséges feltétele, hogy egy test prímteste p-elemű legyen, ahol p prímszám?

36. M a szükséges és elégséges feltétele, hogy egy test prímteste n-elemű legyen, ahol n egész szám? 37. Melyek azok a testek, amelyek prímteste 12 elemből áll? 38. M a prímteste egy 81-elemű testnek? 39. M a prímteste Z 23 -nak? 40. Melyk a legszűkebb olyan test, amelynek a prímteste 7-elemű? 41. Melyk a legszűkebb olyan test, amelynek a prímteste 12-elemű? 42. Adja meg a legszűkebb olyan testet, amely nem prímtest, és amelynek a prímteste 19- elemű. 43. Legyen K és L test, és L K. M a kapcsolat L és K prímteste között? 44. Igaz-e, hogy ha L 1 és L 2 test, és az L 1 és L 2 testek prímteste azonos, akkor a két test lényegében véve azonos? 45. Igaz-e, hogy ha L 1 és L 2 test, és char(l 1 )=char(l 2 ), akkor a két test prímteste azonos? 46. Igaz-e, hogy ha L 1 és L 2 test, és char(l 1 )=char(l 2 ), akkor a két test prímteste lényegében véve azonos? 47. M egy prímtest prímteste? 48. Hány eleme van egy véges prímtestnek? 49. M a karaktersztkája egy 12-elemű testnek? 50. Adja meg egy 18-elemű test prímtestét. 51. Ha az L 1 test prímteste K 1, az L 2 test prímteste K 2, és L 1 L 2, akkor m lesz L 1 L 2 prímteste? 52. Ha M, L 1 és L2 test, M L1, M L 2, és L az L 1 és L 2 által generált test, akkor m lesz L prímteste? 53. Legyen K, L és M test, M L K, és L az M prímteste. M lesz K prímteste? 54. Legyen a K test prímteste Z p. M lesz K karaktersztkája? 55. Igaz-e, hogy m-karaktersztkájú test Z m bővítése? 56. Igaz-e, hogy ha p prímszám, akkor p-karaktersztkájú test Z p bővítése? 57. Igaz-e, hogy m-karaktersztkájú test lényegében véve Z m bővítése? 58. Igaz-e, hogy ha p prímszám, akkor p-karaktersztkájú test lényegében véve Z p bővítése? 59. Legyen 0uZ 59. Adja meg Z 59 valamenny olyan v elemét, amelyre uv=0. 60. Adja meg 7 Z 11 nverzét. 61. Adja meg 11Z 11 nverzét. 62. Adja meg 18Z 11 nverzét. 63. Adja meg 242Z 11 nverzét. 64. Testet alkot-e Z 11 Z 13? 65. Testet alkot-e Z 125 Z 25? 66. Testet alkot-e Z 125 Z 5? 67. Igaz-e, hogy 125 5 68. Igaz-e, hogy 5 125 69. Igaz-e, hogy Z 125 Z 5 test? 70. Igaz-e, hogy Z 125 Z 25 test? 71. Igaz-e, hogy Z 24 Z 45 test? 72. Igazolja, hogy ha K és L test, és L K, akkor L egy K felett lneárs tér. 73. Defnálja a (test)bővítés fokát.

74. Mt jelent az, hogy az L K bővítés véges, ahol K és L test? 75. Mt jelent az, hogy az L K bővítés végtelen, ahol K és L test? 76. Igazolja, hogy ha K és L test, L K, és L <, akkor [L:K]N. 77. Adja meg az összes olyan L testet, amely a K test bővítése, és amelyre [L:K]=0. 78. Melyk az az L test, amelyre [L:K]=1? 79. Menny az F F 27 3 bővítés foka? 80. Menny az F Z 3 3 bővítés foka? 81. Legyen K és L test, L K. Adjon szükséges feltételt arra, hogy [L:K] végtelen legyen. 82. Legyen K és L test, L K. Adjon szükséges feltételt arra, hogy a bővítés végtelen legyen. 83. Legyen K és L test, L K, és K <. Adjon szükséges feltételt arra, hogy [L:K] végtelen legyen. 84. Legyen K és L test, L K, és K <. Adjon szükséges feltételt arra, hogy a bővítés végtelen legyen. 85. Legyen K és L test, L K. Adjon elégséges feltételt arra, hogy [L:K] véges legyen. 86. Legyen K és L test, L K. Adjon elégséges feltételt arra, hogy a bővítés véges legyen. 87. Menny [K:K], ahol K test? 88. Legyen K az F q test prímteste. Menny lesz [F q :K]? 89. Adott az alább test, adja meg a prímtestét: + a b c d e f g h a a b c d e f g h b b c a e f d h g c c a b f d e g h d d e f g h a b c e e f d h g b c a f f d e g h c a b g g h a b c d e f h h g b c a e f d g h c a b f d e a b c d e f g h a a a a a a a a a a b a b c d e f g h c a c b g h d f e d a d g c f b e h e a e f g b h c d f a f h b d e g c g a g d b h e c f h a h f e c g d b a e h d c f b g 90. Az alább test hányadfokú bővítése a prímtestének: + a b c d e f g h a a b c d e f g h b b c a e f d h g c c a b f d e g h d d e f g h a b c e e f d h g b c a f f d e g h c a b g g h a b c d e f h h g b c a e f d g h c a b f d e a b c d e f g h a a a a a a a a a a b a b c d e f g h c a c b g h d f e d a d g c f b e h e a e f g b h c d f a f h b d e g c g a g d b h e c f h a h f e c g d b a e h d c f b g 91. Ha K és L test, L K, és L 49K, akkor m lesz L prímteste?

92. Ha K és L test, L K, és L 49K, akkor m lesz K prímteste? 93. Ha K és L test, L K, és L 49K, akkor m lesz [L:K]? 94. Legyen K és L test, L K, K =49, és L <2401. Adja meg L összes lehetséges értékét. 95. Adja meg az összes olyan L testet, amelyre L Z5, és L 658. 96. Legyen K és L test, L K, L <, és K =q. M lehet L értéke? 97. Bzonyítsa be, hogy ha K és L test, L K, L <, és K =q, akkor L =q n alkalmas nnnel. 98. Adja meg az összes olyan L testet, amelyre L Z79, és L <125. 99. Igaz-e, hogy m-karaktersztkájú test elemszáma m-nek egy hatványa? 100. Igaz-e, hogy m-karaktersztkájú test elemszáma m-nek egy egész ktevős hatványa? 101. Igaz-e, hogy m-karaktersztkájú test elemszáma m-nek egy poztív egész ktevős hatványa? 102. Igaz-e, hogy ha p prímszám, akkor p-karaktersztkájú test elemszáma p-nek egy hatványa? 103. Igaz-e, hogy ha p prímszám, akkor p-karaktersztkájú test elemszáma p-nek egy egész ktevős hatványa? 104. Igaz-e, hogy ha p prímszám, akkor p-karaktersztkájú test elemszáma p-nek egy poztív egész ktevős hatványa? 105. Igaz-e, hogy m-karaktersztkájú véges test elemszáma m-nek egy hatványa? 106. Igaz-e, hogy m-karaktersztkájú véges test elemszáma m-nek egy egész ktevős hatványa? 107. Igaz-e, hogy m-karaktersztkájú véges test elemszáma m-nek egy poztív egész ktevős hatványa? 108. Igaz-e, hogy ha p prímszám, akkor p-karaktersztkájú véges test elemszáma p-nek egy hatványa? 109. Igaz-e, hogy ha p prímszám, akkor p-karaktersztkájú véges test elemszáma p-nek egy egész ktevős hatványa? 110. Igaz-e, hogy ha p prímszám, akkor p-karaktersztkájú véges test elemszáma p-nek egy poztív egész ktevős hatványa? 111. Konstruáljon 6-elemű testet (vagys adja meg egy 6-elemű test művelettáblát). 112. Konstruáljon 4-elemű testet (vagys adja meg egy 4-elemű test művelettáblát). 113. Konstruáljon 5-elemű testet (vagys adja meg egy 5-elemű test művelettáblát). 114. Adja meg az összes olyan testet, amelynek az elemszáma azonos az alább test elemenek számával, és nem zomorf ezzel a testtel: + a b c d e f g h a a b c d e f g h b b c a e f d h g c c a b f d e g h d d e f g h a b c e e f d h g b c a f f d e g h c a b g g h a b c d e f h h g b c a e f d g h c a b f d e a b c d e f g h a a a a a a a a a a b a b c d e f g h c a c b g h d f e d a d g c f b e h e a e f g b h c d f a f h b d e g c g a g d b h e c f h a h f e c g d b a e h d c f b g 115. Legyen f=x q xf q [x]. Írja fel f-et a lehető legtöbb tényezőből álló szorzatként.

u L 116. Legyen L q-elemű test. Adja meg az f= u alakban. u L 117. Legyen L véges test. Adja meg az f= u x polnomot a lehető legtömörebb x polnomot a lehető legtömörebb alakban. 118. Legyen f=x q xf q [x]. Adja meg a polnom F q fölött felbontás testét. 119. Legyen f= q x F q [x]. Adja meg a polnom F q fölött felbontás testét. x u. x n u F 120. Igazolja, hogy ha f=x q xf q [x], akkor f= 121. Legyen K és L test, L K, K =q, és L. M a szükséges és elégséges feltétele, hogy q teljesüljön? 122. Legyen K és L test, L K, és K =q. Hány olyan eleme van L-nek, amelynek a q-adk hatványa? 123. Bzonyítsa be, hogy ha L véges test, f=x q 1 el[x], ahol e a test egységeleme, akkor x u. u L f= * 124. M az egyszerű bővítés? 125. Legyen K és L test, L K, és AL. Defnálja K(A)-t. 126. Igazolja, hogy ha K és L test, L K, és AL, akkor létezk és egyértelmű a K(A) test. 127. Mutassa meg, hogy ha K és L test, és L K, akkor van olyan AL, hogy L=K(A). 128. Legyen K és L test, L K, és AL. Mlyen kapcsolat van K, L és K(A) között? 129. Legyen K és L test, L K, és AL. Mlyen kapcsolat van K A és K(A) között? 130. Igazolja, hogy ha az L test mnd a K 1, mnd a K 2 test bővítése, A 1 és A 2 az L részhalma- K A K. za, és K 1 A 1 K 2 A 2, akkor 2 2 1 A1 131. Legyen az L test mnd a K 1, mnd a K 2 test bővítése, és A 1 és A 2 az L részhalmaza. Ad- K A K legyen. jon elégséges feltételt arra, hogy 2 2 1 A1 132. Legyen K és L test. Mt jelent az, hogy L a K A-val való bővítése? 133. Igaz-e, hogy ha K 1 és K 2 egy L test részteste, és A 1, A 2 ennek az L testnek részhalmaza, K A K, akkor K 1 A 1 K 2 A 2? továbbá 2 2 1 A1 134. Mt jelent az, hogy K(A)(B)? 135. Mt jelent az, hogy K(A,B)? 136. Legyen K az L test részteste, A és B az L részhalmaza. Igaz-e, hogy K(A)(B)=K(B)(A)? 137. Legyen K az L test részteste, A és B az L részhalmaza. Igaz-e, hogy K(A)(B)K(B)(A)? 138. Legyen K az L test részteste, A és B az L részhalmaza. Igaz-e, hogy K(A)(B)K(A,B)? 139. Legyen K az L test részteste, A és B az L részhalmaza. Igaz-e, hogy K(A)(B)K(A,B)? 140. Legyen K az L test részteste, A és B az L részhalmaza. Igaz-e, hogy K(A)(B)=K(A,B)? 141. Legyen K az L test részteste, A és B az L részhalmaza. Igazolja, hogy K(A)(B)K(A,B): 142. Legyen K az L test részteste, A és B az L részhalmaza. Igazolja, hogy K(A)(B)K(A,B) 143. Legyen K az L test részteste, A és B az L részhalmaza. Igazolja, hogy K(A)(B)=K(A,B) 144. Legyen K az L test részteste, A és B az L részhalmaza. Igazolja, hogy K(A)(B)=K(B)(A) 145. Legyen K az L test részteste, A és B az L részhalmaza. Igazolja, hogy K(A)(B)K(B)(A) 146. Igazolja, hogy ha K test, A=a n N n N, az n N n N halmaz permutácója, K 0 =K, és nn-re K =K 1 (a () ), akkor K(A)=K n. 147. Legyen K és L test. Mt jelent az, hogy ul algebra K fölött? 148. Legyen K és L test. Mt jelent az, hogy ul transzcendens K fölött? q

149. M az algebra bővítés? 150. M a transzcendens bővítés? 151. Helyes-e a következő kjelentés: az L test u eleme algebra a K test fölött, ha van olyan K[x]-bel f polnom, amelynek u gyöke? 152. Lehet-e egy testnek olyan eleme, amely egyszerre algebra és transzcendens? 153. Lehet-e egy testnek olyan eleme, amely egyszerre algebra és transzcendens ugyanazon testre vonatkozóan? 154. Helyes-e a következő kjelentés: az L test u eleme transzcendens a K test fölött, ha nncs olyan K[x]-bel f polnom, amelynek u gyöke? 155. Legyen az L test a K test algebra bővítése. Adja meg L valamenny, a K fölött transzcendens elemét. 156. Legyen az L test a K test algebra bővítése. Adja meg L valamenny, a K fölött algebra elemét. 157. Legyen az L 1 és L 2 test a K test transzcendens bővítése. Igaz-e, hogy L 1 L 2 s a K transzcendens bővítése? 158. Legyen az L 1 és L 2 test a K test transzcendens bővítése. Igaz-e, hogy L 1 L 2 a K algebra bővítése? 159. Legyen az L 1 és L 2 test a K test algebra bővítése. Lehet-e L 1 L 2 a K transzcendens bővítése? 160. Legyen az L 1 és L 2 test a K test algebra bővítése. Igaz-e, hogy L 1 L 2 a K algebra bővítése? 161. Legyen az L 1 test a K test algebra, az L 2 test a K transzcendens bővítése, akkor mlyen bővítése L 1 L 2 K-nak? 162. Legyen az L 1 és L 2 test a K test transzcendens bővítése, és L az L 1 L 2 által generált test. Igaz-e, hogy L s a K transzcendens bővítése? 163. Legyen az L 1 és L 2 test a K test transzcendens bővítése, és L az L 1 L 2 által generált test. Igaz-e, hogy L a K algebra bővítése? 164. Legyen az L 1 és L 2 test a K test algebra bővítése, és L az L 1 L 2 által generált test. Lehet-e, hogy L a K transzcendens bővítése? 165. Legyen az L 1 és L 2 test a K test algebra bővítése, és L az L 1 L 2 által generált test. Igaze, hogy L a K algebra bővítése? 166. Legyen az L 1 test a K test algebra, az L 2 test a K transzcendens bővítése, és L az L 1 L 2 által generált test. Mlyen bővítése L K-nak? 167. Legyen M test. Adja meg M összes, az M fölött algebra elemét. 168. Legyen M test. Adja meg M összes, az M fölött transzcendens elemét. 169. Mutassa meg, hogy ha M test, és um, akkor u algebra M fölött. 170. algebra vagy transzcendens elem R fölött? 171. algebra vagy transzcendens elem C fölött? 172. algebra vagy transzcendens elem Q() fölött? 173. Legyen K, L és M test, és M L K. Igazolja, hogy ha um algebra K fölött, akkor algebra L fölött s. 174. Van-e olyan test, és felette transzcendens elem, amely a test mnden bővítése felett transzcendens? 175. Van-e olyan test, amelyre vonatkoztatva bármely bővítésének tetszőleges eleme algebra? 176. Van-e olyan test, amelynek bármely eleme a test tetszőleges részteste felett algebra? 177. Igaz-e, hogy ha egy test valamely eleme transzcendens a test valamely részteste felett, akkor transzcendens ezen résztest mnden részteste felett? 178. Adja meg F 49 valamenny, a Z 7 -be eső, és F 49 felett transzcendens elemét.

179. Adja meg F 49 valamenny, a Z 7 fölött transzcendens elemét. 180. Adja meg F 49 valamenny, a prímteste fölött transzcendens elemét. 181. Igazolja, hogy véges bővítés algebra. 182. Adja meg egy K test valamenny véges transzcendens bővítését. 183. Defnálja egy test valamely elemének mnmálpolnomját. 184. Igaz-e, hogy 3x 2 6 a 2 Q felett mnmálpolnomja? 185. Igaz-e, hogy ha az L test a K test bővítése, és ul, akkor van u-nak K felett mnmálpolnomja? 186. Igaz-e, hogy ha az L test a K test bővítése, és ul algebra K fölött, akkor van u-nak K felett mnmálpolnomja? 187. Igaz-e, hogy algebra elem mnmálpolnomja egyértelmű? 188. Igaz-e, hogy adott test felett algebra elem ezen test felett mnmálpolnomja egyértelmű? 189. Igaz-e, hogy ha u az L test eleme, és K az L részteste, akkor u-nak van egyértelműen meghatározott mnmálpolnomja K-ra vonatkoztatva? 190. Legyen L test, és ul. Algebra-e u L fölött? 191. Legyen L test, és ul. M az u L felett mnmálpolnomja? 192. Van-e egy test felett transzcendens elemnek mnmálpolnomja? 193. Van-e egy test felett transzcendens elemnek erre a testre vonatkozó mnmálpolnomja? 194. Ha u transzcendens egy L test felett, akkor van-e olyan f L felett polnom, amelynek u gyöke? 195. Igaz-e, hogy ha az L test a K test bővítése, akkor az L bármely u eleméhez lehet találn olyan K felett polnomot, amelynek u gyöke? 196. Igaz-e, hogy ha az L test a K test bővítése, akkor az L bármely u eleméhez lehet találn olyan K felett nem nulla polnomot, amelynek u gyöke? 197. Ha u transzcendens egy L test felett, akkor van-e olyan f0 L felett polnom, amelynek u gyöke? 198. Igazolja, hogy ha L test, és ul, akkor u algebra L fölött. 199. Legyen a K test az L test részteste. Mutassa meg, hogy ha ul transzcendens K fölött, akkor uk. 200. Mutassa meg, hogy ha L test, és ul, akkor u L fölött mnmálpolnomja x u. 201. Sorolja fel a mnmálpolnom tulajdonságat. 202. Igazolja, hogy algebra elem adott testre vonatkozó mnmálpolnomja egyértelmű. 203. Igazolja, hogy egy elem valamely testre vonatkozó mnmálpolnomja felbonthatatlan ezen test fölött. 204. Mutassa meg, hogy ha u a K test valamely bővítésének algebra eleme, és m az u K felett mnmálpolnomja, továbbá fk[x]-nek gyöke u, akkor m osztója f-nek. 205. Igaz-e, hogy ha u a K test valamely bővítésének algebra eleme, és m az u K felett mnmálpolnomja, továbbá fk[x]-nek gyöke u, akkor f osztója m-nek? 206. M a szükséges és elégséges feltétele, hogy ha u a K test valamely bővítésének algebra eleme, és m az u K felett mnmálpolnomja, továbbá fk[x]-nek gyöke u, akkor f osztója legyen m-nek? 207. Igazolja, hogy ha u a K test valamely bővítésének algebra eleme, és m az u K felett mnmálpolnomja, továbbá fk[x]-nek osztója m, akkor u gyöke f-nek. 208. Legyen u és v algebra a K test felett, és m u lletve m v rendre az u és v K felett mnmálpolnomja. Adja meg a két polnom legnagyobb közös osztóját. 209. Legyen u és v algebra a K test felett, és m u lletve m v rendre az u és v K felett mnmálpolnomja. Adja meg a két polnom legksebb közös többszörösét.

210. Legyen u és v algebra a K test felett, és m u lletve m v rendre az u és v K felett mnmálpolnomja. Adja meg a két polnom közös gyöket. 211. Defnálja algebra elem fokát. 212. Igaz-e, hogy ha u és v algebra a K test felett, m u lletve m v rendre az u és v K felett mnmálpolnomja, és a két polnom nem relatív prím, akkor u=v? 213. Igaz-e, hogy ha u és v algebra a K test felett, m u lletve m v rendre az u és v K felett mnmálpolnomja, és a két polnom nem relatív prím, akkor m u =m v? 214. Igaz-e, hogy ha u és v algebra a K test felett, m u lletve m v rendre az u és v K felett mnmálpolnomja, és m u osztója m v -nek, akkor m u =m v? 215. Igaz-e, hogy ha u és v algebra a K test felett, m u lletve m v rendre az u és v K felett mnmálpolnomja, és m u osztója m v -nek, akkor u=v? 216. Igaz-e, hogy ha u algebra a K test felett, és m u az u K felett mnmálpolnomja, akkor u osztója m u konstans tagjának? 217. Legyen f a K test felett felbonthatatlan polnom, és L a K legszűkebb olyan bővítése, amelyben van f-nek gyöke. M lesz a bővítés foka? 218. Legyen L a K test bővítése, ul, és u a K felett n-edfokú algebra elem. Adja meg K(u) egy K fölött bázsát. 219. M a felbontás test? 220. Igaz-e, hogy ha f a K test felett felbonthatatlan polnom, és u a K valamely L bővítésének olyan eleme, amely gyöke f-nek, akkor f mnden gyöke eleme L-nek? 221. Legyen f a K test felett felbonthatatlan polnom. M a szükséges és elégséges feltétele, hogy f-nek legyen gyöke K-ban? 222. Legyen f a K test felett felbonthatatlan polnom. M a szükséges és elégséges feltétele, hogy f felbontás teste K legyen? 223. Ha f0 a K test felett polnom, és L=K(A) az f K felett felbontás teste, akkor hány eleme van A-nak? 224. Ha f0 a K test felett polnom, és L=K(A) az f K felett felbontás teste, akkor maxmum hány eleme van A-nak? 225. Ha f a K test felett felbonthatatlan polnom, és L=K(A) az f K felett felbontás teste, akkor legalább hány eleme van A-nak? 226. Ha f a K test felett felbonthatatlan nem elsőfokú polnom, és L=K(A) az f K felett felbontás teste, akkor legalább hány eleme van A-nak? 227. Ha K test, és az fk[x] polnom K felett felbontás teste L, akkor m lesz f L felett felbontás teste? 2 228. Ha K test, és az fk[x] polnom K felett felbontás teste L, akkor m lesz f K felett felbontás teste? 229. Ha K test, és az fk[x] polnom K felett felbontás teste L, akkor m lesz xf K felett felbontás teste? 230. Ha K test az e egységelemmel, és az fk[x] polnom K felett felbontás teste L, akkor m lesz (x e)f K felett felbontás teste? 231. Ha K test, uk, és az fk[x] polnom K felett felbontás teste L, akkor m lesz (x u)f K felett felbontás teste? 232. Igaz-e, hogy ha a K test felett f és g polnomok K felett felbontás teste egyaránt L, akkor fg K felett felbontás teste s L? 233. Igaz-e, hogy ha a K test felett f és g polnomok K felett felbontás teste egyaránt L, akkor f+g K felett felbontás teste s L? 234. Igaz-e, hogy ha a K test felett f és g polnomok K felett felbontás teste egyaránt L, akkor f g K felett felbontás teste s L?

235. Legyen f a K test felett n-edfokú polnom, és L a K olyan bővítése, amelyben f-nek a gyökök multplctásával számolva n gyöke van. Igaz-e, hogy L az f K felett felbontás teste? 236. Legyen f a K test felett n-edfokú polnom, és L olyan test, amelyben f-nek a gyökök multplctásával számolva n gyöke van. Igaz-e, hogy L az f K felett felbontás teste? 237. Legyen f a K test felett n-edfokú polnom, és L a legszűkebb olyan test, amelyben f-nek a gyökök multplctásával számolva n gyöke van. Igaz-e, hogy L az f K felett felbontás teste? 238. M az endomorfzmus? 239. M az automorfzmus? 240. Igaz-e, hogy m-karaktersztkájú véges testben mnden elemnek van m-edk gyöke? 241. Igaz-e, hogy m-karaktersztkájú testben egy elemnek legfeljebb csak egy m-edk gyöke lehet? 242. Igaz-e, hogy m-karaktersztkájú véges testben mnden elemnek pontosan egy m-edk gyöke van? p 243. Igazolja, hogy ha p prímszám, és p>kn, akkor p. k m 244. Igaz-e, hogy ha mn, és m>kn, akkor m? k 245. Igazolja, hogy ha az R ntegrtás tartomány karaktersztkája m>0, akkor a gyűrű bármely u és v elemére (u+v) m =u m +v m. 246. Igaz-e, hogy ha R nullosztómentes gyűrű, és a karaktersztkája a p prímszám, akkor a gyűrű bármely u és v elemére (u+v) p =u p +v p? 247. Igaz-e, hogy ha R nullosztómentes gyűrű, és a karaktersztkája a p prímszám, akkor az u u p szabály endomorfzmusa R-nek? 248. Igaz-e, hogy ha R ntegrtás tartomány, és p prímszám, akkor a gyűrű bármely u és v elemére (u+v) p =u p +v p? 249. Legyen K test, char(k)=m>0, és uk-ra : u u m. Mlyen leképezés? 250. Igaz-e, hogy ha K test, akkor a : u u p szabály, ahol p prímszám és uk, homomorfzmus? 251. Legyen R m-karaktersztkájú ntegrtás tartomány. Igaz-e, hogy a : f f m szabály njektív homomorfzmus az R[x] polnomgyűrűn? a m a K. Igaz-e, hogy T részteste K- 252. Legyen K m-karaktersztkájú véges test, és T:= nak? 253. Legyen K m-karaktersztkájú véges test, és T:= a K a m. Igaz-e, hogy T valód részteste K-nak? 254. Igaz-e, hogy ha K q-elemű test, akkor a : u u q szabály automorfzmus K-n? 255. Adja meg a q-elemű K test valamely automorfzmusát. 256. Adja meg a q-elemű K test valamely nem trváls automorfzmusát. 257. Adjon meg a q-elemű K testen két határozottan különböző automorfzmust. q 258. M a kapcsolat F q, x és F n között? x n q q 259. M az x F q [x] polnom F q fölött felbontás teste? 260. Mt állíthatunk egy véges test elemenek számáról? 261. Egészítse k a következő tételt: véges test elemszáma p n. 262. Igaz-e, hogy adott p prímszámra és n poztív egész számra egyetlen p n -elemű test van? 263. Igazolja, hogy ha G kommutatív csoport, u és v a G eleme, u rendje m, v rendje n, és m és n relatív prím, akkor uv rendje mn. x n

264. M lesz a G kommutatív csoport u és v eleme szorzatának rendje, ha a két elem rendje véges és relatív prím? 265. Igaz-e, hogy test multplkatív csoportja cklkus? 266. Mlyen csoport egy véges test multplkatív csoportja? 267. F q -ban mekkora a nem nulla elemek multplkatív rendjének maxmuma? 268. Ha G kommutatív csoport, u és v a G eleme, u rendje m, és nncs G-ben m-nél nagyobb rendű elem, akkor mlyen lehet v rendje? 269. M a dszkrét logartmus? 270. Legyen u egy véges test prmtív eleme. Menny nd u u? 271. Legyen u a q-elemű véges test prmtív eleme, és a, b a test tetszőleges nem nulla eleme. Menny lesz nd u ab? 272. Legyen u a q-elemű véges test prmtív eleme, a a test tetszőleges nem nulla eleme, és nz. Menny lesz nd u u n? 273. Legyen u a q-elemű véges test prmtív eleme, és e a test egységeleme. Menny lesz nd u e? 274. Legyen u a q-elemű véges test prmtív eleme, és a a test tetszőleges nem nulla eleme. Menny lesz nd u u 1? 275. Legyen u a q-elemű véges test prmtív eleme. Menny lesz nd u 0? 276. Legyen u a q-elemű véges test prmtív eleme, és a a test tetszőleges nem nulla eleme. Menny lesz nd u a q 1? 277. Legyen u a q-elemű véges test prmtív eleme, és a a test tetszőleges nem nulla eleme. Menny lesz nd u a q? 278. Legyen u a q-elemű véges test prmtív eleme, és a, b a test tetszőleges két eleme. a Menny lesz nd u? b 279. Legyen u a q-elemű véges test prmtív eleme, és a, b a test tetszőleges két nem nulla a eleme. Menny lesz nd u? b 280. Igaz-e, hogy ha u a q-elemű véges test prmtív eleme, és a, b a test tetszőleges két eleme, akkor nd u ab=nd u a+nd u b? 281. Igaz-e, hogy ha u a q-elemű véges test prmtív eleme, és a, b a test tetszőleges két nem nulla eleme, akkor nd u ab=nd u a+nd u b? 282. Legyen u a q-elemű véges test prmtív eleme, és a, b a test tetszőleges két nem nulla eleme. Mkor gaz, hogy nd u ab=0? 283. Legyen u a q-elemű véges test prmtív eleme, és a, b a test tetszőleges két nem nulla eleme. Mkor gaz, hogy nd u ab=q 1? 284. Adja meg a q-elemű test összes olyan a elemét, amelyre nd u a=q 1 (u a test prmtív eleme). 285. Adja meg a q-elemű test összes olyan a elemét, amelyre nd u a=q (u a test prmtív eleme). 286. Adja meg a q-elemű test összes olyan a elemét, amelyre nd u a=q 2 (u a test prmtív eleme). 287. Legyen u a q-elemű test prmtív eleme, ahol q páratlan szám. Adja meg a test azon q 1 elemet, amelyeknek erre a prmtív elemre vonatkoztatva a dszkrét logartmusa. 2 288. Legyen u a q-elemű véges test prmtív eleme, és p a test karaktersztkája. Menny a q 1 test a elemének rendje, ha a dszkrét logartmusa? p 1

289. Legyen u a q-elemű véges test prmtív eleme, és p a test karaktersztkája. Menny a q 1 test a elemének rendje, ha a dszkrét logartmusa? p 290. Defnálja a prmtív gyököt. 291. Defnálja a prmtív elemet. 292. Igaz-e, hogy q-elemű testben van q 1-edk gyök? 293. Igaz-e, hogy q-elemű testben van prmtív q 1-edk gyök? 294. Igaz-e, hogy q-elemű testben van q-adk gyök? 295. Igaz-e, hogy q-elemű test mnden eleme q-adk gyök? 296. Igaz-e, hogy q-elemű testben mnden elemnek van q-adk gyöke? 297. Igaz-e, hogy mnden prmtív elem egyben prmtív gyök s? 298. Igaz-e, hogy egy prmtív gyök egyben prmtív elem s? 299. Legyen az L véges test a K test bővítése. Igaz-e, hogy L algebra bővítése K-nak? 300. Legyen az L véges test a K test bővítése. Igaz-e, hogy L egyszerű bővítése K-nak? 301. Legyen fz[x], u és v egész számok, és m 1-nél nagyobb egész szám. Igaz-e, hogy ha f ˆ u fˆ v (m), akkor uv (m)? 302. Legyen fz[x], u és v egész számok, és m 1-nél nagyobb egész szám. Igaz-e, hogy ha uv (m), akkor f ˆ u fˆ v (m)? 303. Legyen fz[x], u és v egész számok, és m 1-nél nagyobb egész szám. Igazolja, hogy ha uv (m), akkor f ˆ u fˆ v (m). 304. Legyen fz[x], u egész szám, és m 1-nél nagyobb egész szám. Igaz-e, hogy ha u gyöke f-nek, akkor u modulo m s gyöke a polnomnak? 305. Legyen fz[x], u egész szám, és m 1-nél nagyobb egész szám. Igaz-e, hogy ha u modulo m gyöke f-nek, akkor u gyöke a polnomnak? s r p 306. Legyen fz[x], és m=, ahol s és sn-re r 1 poztív egész szám, és az előbb ndexekre a p -k páronként különböző prímszámok. M a szükséges és elégséges feltétele, hogy f-nek legyen modulo m gyöke? s r p 307. Legyen fz[x], és m=, ahol s és sn-re r 1 poztív egész szám, és az előbb ndexekre a p -k páronként különböző prímszámok. Hány modulo m gyöke van f-nek? s r p 308. Legyen fz[x], és m=, ahol s és sn-re r 1 poztív egész szám, és az előbb ndexekre a p -k páronként különböző prímszámok. Igaz-e, hogy ha u modulo m gyöke a polnomnak, akkor a megadott ndexek bármelykére modulo p r s gyöke f-nek? s r p 309. Legyen fz[x], és m=, ahol s és sn-re r 1 poztív egész szám, és az előbb ndexekre a p -k páronként különböző prímszámok. Igaz-e, hogy ha u a megadott ndexek bármelykére modulo p r gyöke a polnomnak, akkor modulo m s gyöke f-nek? s r p 310. Legyen fz[x], és m=, ahol s és sn-re r 1 poztív egész szám, és az előbb ndexekre a p -k páronként különböző prímszámok. Ha mnden sn-hez van olyan u egész szám, amely modulo p r gyöke a polnomnak, akkor van-e a polnomnak modulo m gyöke? s r p 311. Legyen fz[x], és m=, ahol s és sn-re r 1 poztív egész szám, és az előbb ndexekre a p -k páronként különböző prímszámok. Ha mnden sn-hez van olyan u egész szám, amely modulo p r gyöke a polnomnak, akkor hogyan kapható meg az f valamely modulo m gyöke?

312. Legyen fz[x], p prímszám, és r poztív egész szám. Igaz-e, hogy ha az u egész szám modulo p r+1 -edk gyöke f-nek, akkor egyben modulo p r -edk gyöke s a polnomnak? 313. Legyen fz[x], p prímszám, és r poztív egész szám. Igaz-e, hogy ha u egész szám modulo p r -edk gyöke f-nek, akkor egyben modulo p r+1 -edk gyöke s a polnomnak? 314. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha u egész szám modulo p r -edk gyöke f-nek, akkor egyben modulo p-edk gyöke s a polnomnak? 315. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha u egész szám modulo p-edk gyöke f-nek, akkor egyben modulo p r -edk gyöke s a polnomnak? 316. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha u egész szám modulo p-edk gyöke f-nek, akkor egyben modulo p r -edk gyöke s a polnomnak? 317. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha u egész szám modulo p-edk gyöke f-nek, és vz modulo p r -edk gyöke a polnomnak, akkor u és v kongruens modulo p? 318. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha u egész szám modulo p-edk gyöke f-nek, és vz modulo p r -edk gyöke a polnomnak, akkor u és v kongruens modulo p r? 319. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha u Z n N n N az f modulo p gyökenek halmaza, és v a polnom modulo p r gyöke, akkor van olyan nn ndex, hogy vu (p)? 320. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha u Z n N n N az f modulo p gyökenek halmaza, és v a polnom modulo p r gyöke, akkor van olyan nn ndex, hogy vu (p r )? 321. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha Z N n N v Zt N t N a u n az f modulo p gyökenek halmaza, és polnom modulo p r gyökenek halmaza, akkor a két halmaz megegyezk? 322. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha Z N n N v Zt N t N a u n az f modulo p gyökenek halmaza, és polnom modulo p r gyökenek halmaza, akkor n=t? 323. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha Z N n N v Zt N t N a u n az f modulo p gyökenek halmaza, és polnom modulo p r gyökenek halmaza, akkor nt? 324. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha Z N n N v Zt N t N a u n az f modulo p gyökenek halmaza, és polnom modulo p r gyökenek halmaza, akkor nt? 325. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha Z N n N v Zt N t N a u n az f modulo p gyökenek halmaza, és polnom modulo p r gyökenek halmaza, akkor n<t? 326. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha Z N n N v Zt N t N a u n az f modulo p gyökenek halmaza, és polnom modulo p r gyökenek halmaza, akkor n>t? 327. Legyen fz[x], p prímszám, r 1-nél nagyobb egész szám, n a polnom modulo p gyökenek száma, és t az f modulo p r gyökenek száma. Melyk gaz az alábbak közül: a. n=t b. nt c. nt

d. n>t e. n<t 328. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. M a szükséges és elégséges feltétele, hogy f-nek legyen modulo p r gyöke? 329. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha f-nek van modulo p r gyöke, akkor van modulo p gyöke s? 330. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy ha f-nek van modulo p gyöke, akkor van modulo p r gyöke s? 331. Legyen fz[x], p prímszám, és r 1-nél nagyobb egész szám. Igaz-e, hogy f-nek akkor és csak akkor van modulo p r gyöke, ha van modulo p gyöke s? 332. M a szükséges feltétele, hogy az egész együtthatós f polnomnak több gyöke legyen mod p r, mnt mod p, ahol p prímszám, és r egynél nagyobb egész szám? 333. M az elégséges feltétele, hogy az egész együtthatós f polnomnak ugyananny gyöke legyen mod p r, mnt mod p, ahol p prímszám, és r egynél nagyobb egész szám? 334. Igaz-e, hogy ha az egész együtthatós f polnomra f ˆ a 0 mod p az f valamenny mod p gyökére, akkor f mod p és mod p r gyökenek száma azonos (p prímszám, r 1-nél nagyobb egész szám, és a az f mod p gyöke)? 335. Igaz-e, hogy ha f ˆ a 0 mod p, ahol a az f mod p gyöke, akkor f-nek több gyöke van mod p r, mnt mod p (f egész együtthatós polnom, p prímszám, és r 1-nél nagyobb egész szám)? 336. Lehet-e egy egész együtthatós polnomnak mod p több gyöke, mnt mod p 2 (p prímszám)? 337. lehet-e egy egész együtthatós polnomnak mod p 2 több gyöke, mnt mod p (p prímszám)? 338. Egy mod p r gyökből legfeljebb hány mod p r+1 gyök keletkezk (p prímszám, és r egész szám)? 339. Egy mod p r gyökből hány mod p r+1 gyök keletkezk (p prímszám, és r egész szám)? 340. Legyen fz[x], uz, és g:=(x+u)f. Adja meg g k-adfokú tagjának együtthatóját. 341. Legyen p prímszám, és fz p [x]. Adja meg azt a legalacsonyabb fokszámú Z p fölött polnomot, amely Z p -bel gyökenek halmaza egybeesk f Z p -bel gyökenek halmazával. 342. Legyen p prímszám, és fz p [x]. Adja meg azt a legalacsonyabb fokszámú Z p fölött polnomot, amely Z p -bel gyökenek halmaza egybeesk f Z p -bel nem nulla gyökenek halmazával. 343. Legyen 0fZ[x], deg(f)=n, és m 1-nél nagyobb egész szám. Igaz-e, hogy f modulo m gyökenek száma legfeljebb n? 344. Legyen 0fZ[x], deg(f)=n, és m 1-nél nagyobb egész szám. Igaz-e, hogy f modulo m gyökenek száma még multplctással számolva s legfeljebb n? 345. Legyen 0fZ[x], deg(f)=n, és m 1-nél nagyobb egész szám. Igaz-e, hogy f modulo m gyökenek száma multplctással számolva n? 346. Legyen 0fZ[x], deg(f)=n, és m 1-nél nagyobb prímszám. Igaz-e, hogy f modulo m gyökenek száma legfeljebb n? 347. Legyen 0fZ[x], deg(f)=n, és m 1-nél nagyobb prímszám. Igaz-e, hogy f modulo m gyökenek száma még multplctással számolva s legfeljebb n? 348. Legyen 0fZ[x], deg(f)=n, és m 1-nél nagyobb prímszám. Igaz-e, hogy f modulo m gyökenek száma multplctással számolva n? 349. Defnálja a szabad félcsoportot. 350. Defnálja szabad félcsoport elemének hosszát. 351. Defnálja szabad félcsoport szabad generátorrendszerét. 352. Igaz-e, hogy szabad félcsoport generátorrendszere szabad generátorrendszer?

353. Igaz-e, hogy a poztív egész számok az összeadással szabad félcsoportot alkotnak? 354. Adja meg a természetes számok addtív félcsoportjának szabad generátorrendszerét. 355. M a szükséges feltétele, hogy egy szabad félcsoport kommutatív legyen? 356. Van-e kommutatív szabad félcsoport? 357. M az elégséges feltétele, hogy egy szabad félcsoport kommutatív legyen? 358. Van-e nem kommutatív szabad félcsoport? 359. Legyen és egy szabad félcsoport két eleme. M lesz a két elem szorzatának hossza? 360. Van-e szabad félcsoportban 0-hosszúságú elem? 361. Legyen egy szabad félcsoport és elemére akkor és csak akkor, ha prefxe - nak. Mlyen relácó a szabad félcsoporton? 362. Teljes szgorú rendezés-e a prefxség egy szabad félcsoporton? 363. Van-e szabad félcsoportban maxmáls hosszúságú elem? 364. Legyen és egy szabad félcsoport két eleme. Mt jelent az, hogy prefxe -nak? 365. Legyen és egy szabad félcsoport két eleme. Mt jelent az, hogy szuffxe -nak? 366. Legyen és egy szabad félcsoport két eleme. Mt jelent az, hogy nfxe -nak? 367. Legyen egy szabad félcsoport eleme. Lehet-e prefxe -nak? 368. Legyen és egy szabad félcsoport két eleme, és prefxe -nak. Lehet-e prefxe - nak? 369. Legyen, és egy szabad félcsoport három eleme, prefxe -nak és prefxe - nak. Igaz-e, hogy ekkor prefxe -nak? 370. Defnálja szabad félcsoport prefxmentes részhalmazát. 371. M a konkatenácó? 372. Mlyen tulajdonsága van egy szabad félcsoport szabad generátorrendszerének a félcsoport generátorrendszere halmazában? 373. Adjon meg egy olyan szabad félcsoportot, amelynek két különböző szabad generátorrendszere van. 374. Adjon meg egy szabad félcsoportot, amelynek két különböző generátorrendszere van. 375. Legyen U az A által generált félcsoport, S szabad félcsoport az X szabad generátorrendszerrel, és : U S homomorfzmus, amelynek A-ra való megszorítása X-be képez. Igaze, hogy ekkor U s szabad félcsoport? 376. Legyen U az A által generált félcsoport, S szabad félcsoport az X szabad generátorrendszerrel, és : U S homomorfzmus, amelynek A-ra való megszorítása njektív. Igaz-e, hogy ekkor U s szabad félcsoport? 377. Legyen U az A által generált félcsoport, S szabad félcsoport az X szabad generátorrendszerrel, és : U S homomorfzmus. Adjon a leképezéshez kapcsolódó elégséges feltételt arra, hogy U s szabad félcsoport legyen. 378. Fogalmazza meg a szabad félcsoportok homomorfzmusára vonatkozó tételt. 379. M a szükséges és elégséges feltétele, hogy két szabad félcsoport zomorf legyen? 380. Adjon meg egy olyan c számosságot, amelyre nncs olyan szabad félcsoport, amelynek szabad generátorrendszere c számosságú. 381. Adjon meg egy olyan szabad félcsoportot, amelynek a szabad generátorrendszere 1- elemű. 382. Szabad félcsoport-e a poztív egészek halmaza a szorzással? 383. Szabad félcsoport-e az egész számok halmaza az összeadással? 384. Igaz-e, hogy szabad félcsoport valamely részhalmaza által generált részfélcsoport szabad félcsoport? 385. Adjon elégséges feltételt arra, hogy egy szabad félcsoport valamely részhalmaza által generált részfélcsoportja szabad félcsoport legyen. 386. Mt jelent az, hogy egy félcsoport regulárs?

387. Igaz-e, hogy szabad félcsoport regulárs? 388. Adjon meg egy szabad félcsoportot, amely nem regulárs. 389. Adjon meg egy szabad félcsoportot, amely balról regulárs, de jobbról nem. 390. Adjon meg egy szabad félcsoportot, amely balról nem regulárs. 391. M a monod? 392. Igaz-e, hogy egységelemes félcsoport részfélcsoportja egységelemes? 393. Igaz-e, hogy monod részmonodja egységelemes? 394. Igaz-e, hogy monod részfélcsoportja egységelemes? 395. Igaz-e, hogy ha egy egységelemes félcsoport valamely részfélcsoportja egységelemes, akkor a két félcsoport egységeleme azonos? 396. Igaz-e, hogy egy monod egységeleme megegyezk részmonodjának egységelemével? 397. Igaz-e, hogy egy monod egységelemes részfélcsoportjának egységeleme megegyezk a monod egységelemével? 398. Defnálja a szabad monodot. 399. Igaz-e szabad monodban, hogy bármely elem önmaga prefxe? 400. Igaz-e szabad monodban, hogy bármely elem önmaga szuffxe? 401. Mekkora egy szabad monod egységelemének hossza? 402. Igaz-e szabad monodban, hogy két elem szorzatának hossza nagyobb bármely tényező hosszánál? 403. Igaz-e, hogy a nem negatív egész számok az összeadással szabad monodot alkotnak? 404. Igaz-e, hogy a nem negatív egész számok az összeadással, és a 0-val mnt nulla-változós művelettel monodot alkotnak? 405. Monodban mlyen relácó a prefxség? 406. Fogalmazza meg a betűnként kódolást. 407. Mlyen specáls betűnként kódolásokat defnáltunk? 408. Mt jelent az, hogy egy kód felbontható? 409. Mt jelent betűnként kódolásnál a vessző? 410. Defnálja a vesszőmentes kódot. 411. Defnálja a vesszős kódot. 412. Defnálja az egyenletes kódot. 413. M a prefx kód? 414. Igaz-e, hogy mnden felbontható kód prefx? 415. Igaz-e, hogy mnden prefx kód felbontható? 416. gaz-e, hogy mnden felbontható kód veszős? 417. Igaz-e, hogy mnden veszős kód felbontható? 418. Igaz-e, hogy mnden felbontható kód vesszőmentes? 419. Igaz-e, hogy mnden vesszőmentes kód felbontható? 420. Igaz-e, hogy mnden felbontható kód egyenletes? 421. Igaz-e, hogy mnden egyenletes kód felbontható? 422. Igaz-e, hogy mnden vesszős kód prefx? 423. Igaz-e, hogy mnden prefx kód vesszős? 424. Igaz-e, hogy mnden vesszőmentes kód prefx? 425. Igaz-e, hogy mnden prefx kód vesszőmentes? 426. Igaz-e, hogy mnden egyenletes kód prefx? 427. Igaz-e, hogy mnden prefx kód egyenletes? 428. Igaz-e, hogy mnden egyenletes kód vesszős? 429. Igaz-e, hogy mnden vesszős kód egyenletes? 430. Igaz-e, hogy mnden egyenletes kód vesszőmentes? 431. Igaz-e, hogy mnden vesszőmentes kód egyenletes? 432. Igaz-e, hogy {egyenletes kód}{vesszős kód}{prefx kód}{felbontható kód}?

433. Igaz-e, hogy {vesszős kód}{prefx kód}{felbontható kód}? 434. Igaz-e, hogy {egyenletes kód}{prefx kód}{felbontható kód}? 435. Igaz-e, hogy {vesszős kód}{egyenletes kód}{prefx kód}{felbontható kód}? 436. Igaz-e, hogy {prefx kód}={felbontható kód}? 437. Mlyen kapcsolat van a vesszős kódok és prefx kódok között? 438. Mlyen kapcsolat van a vesszős és a felbontható kódok között? 439. Mlyen kapcsolat van a felbontható és az egyenletes kódok között? 440. Mlyen kapcsokat van az egyenletes és a prefx kódok között? 441. Mlyen kapcsolat van a vesszős és az egyenletes kódók között? 442. Legyen A és B véges ábécé, és : A + B + betűnként kódolás. M a szükséges és elégséges feltétele, hogy a kód felbontható legyen? 443. Igazolja, hogy egy vesszős kód prefx. 444. Igazolja, hogy egyenletes kód prefx. 445. Adjon szükséges feltételt arra, hogy egy kód felbontható legyen. 446. Ismertesse a McMllan egyenlőtlenséget. 447. M a tartalma a McMllan egyenlőtlenségnek? 448. Érvényes-e egy prefx kódra a McMllan egyenlőtlenség? 449. Igaz-e, hogy ha egy betűnként kódra teljesül a McMllan egyenlőtlenség, akkor a kód felbontható? 450. Ismertesse a McMllan egyenlőtlenség megfordítását. 451. Igaz-e, hogy bármely felbontható kódhoz meg lehet adn olyan prefx kódot, ahol azonos betű kódjának hossza a két kódban azonos? 452. Defnálja a Hammng-távolságot. 453. Defnálja egy kód Hammng-távolságát. 454. Defnálja a Hammng-súlyt. 455. Defnálja egy kód Hammng-súlyát. 456. Igazolja, hogy a Hammng-távolság metrka. 457. M a kapcsolat Hammng-távolság és Hammng-súly között? 458. Igaz-e, hogy egy kód Hammng-távolsága és Hammng-súlya azonos? 459. Adjon elégséges feltételt arra, hogy egy halmaz Hammng-távolsága és Hammng-súlya megegyezzen. 460. Igaz-e, hogy ha egy halmaznak van Hammng-távolsága, akkor van olyan elempár a halmazban, amelyek Hammng-távolsága megegyezk a halmaz Hammng-távolságával? 461. Igaz-e, hogy ha egy halmaznak van Hammng-súlya, akkor van olyan elem a halmazban, amelynek Hammng-súlya megegyezk a halmaz Hammng-súlyával? 462. M az elégséges feltétele, hogy két kódszó körül t-sugarú gömb dszjunkt legyen? 463. Igaz-e, hogy d-távolságú kód bármely két kódszava körül, 2 d -nél ksebb sugarú gömb dszjunkt? 464. Igaz-e, hogy d-távolságú kód bármely két kódszava körül, 2 d -nél nem nagyobb sugarú gömb dszjunkt? 465. Igaz-e, hogy d-távolságú kód bármely két kódszava körül, gömb nem dszjunkt? d -nél nagyobb sugarú 2 466. Igaz-e, hogy d-távolságú kód bármely két kódszava körül, 2 d -nél nem ksebb sugarú gömb nem dszjunkt?