11.Négymezős táblázatok. Egyezés mérése: kappa statisztika Kockázat becslés: esélyhányados (OR) Kockázat becslés: relatív kockázat (RR)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "11.Négymezős táblázatok. Egyezés mérése: kappa statisztika Kockázat becslés: esélyhányados (OR) Kockázat becslés: relatív kockázat (RR)"

Átírás

1 .Négymezős táblázatok Egyezés mérése: kappa statisztika Kockázat becslés: esélyhányados (OR) Kockázat becslés: relatív kockázat (RR)

2 Az egyezés mérése:cohen s Kappa Kappa: az egyezés mérése két nominális (bináris) változó között. Jacob Cohen ( ). H 0 : =0 H A : 0 2

3 Megfigyelt gyakoriságok Egyezések. Teszt Teszt II Positív Negatív Total Pozitív a b R =a+b R /N Negatív c d R 2 =c+d R 2 /N Total C =a+c C 2 =b+d N N C /N C 2 /N Teszt I pozitív és negatív eredményeinek valószínűsége C /N és C 2 /N Teszt II pozitív és negatív eredményeinek valószínűsége:r /N és R 2 /N a d Megfigyelt egyezési valószínűség: p obs =(a+d)/n p O N 3

4 A valószínűségi függetlenség alapján : Pozitív Negatív Várt gyakoriságok aˆ R C ( AB) P( A) P( B) N N N Test I Pozitív P ˆ R N C N a N Negatív ˆ R 2 N C N d 2 N A várt egyezési valószínűség : p E aˆ N dˆ 4

5 5 Cohen s kappa N d a p observed N d a p E ˆ ˆ E E O p p p Standard error (SE) : } { ) ( ) ( 2 2 i i l i i i E E E Z S N Z S p p N p se A teszt statisztika 2 ) ( se ² eloszlás df. ² táblázat(α=0,05; FG=) érték = 3.84 (=.96²) N c a b a a N R C a N C N R N a B P A P AB P ) )( ( ˆ ˆ ˆ ) ( ) ( ) ( N d b d c d B P A P AB P ) )( ( ˆ ) ( ) ( ) (

6 Kappa tulajdonságai (Fleiss) Kiváló (jó) egyezés : κ0,75 Közepes egyezés : 0,4κ<0,75 Gyenge egyezés : κ<0,4 Megjegyzés: Létezik ötfokozatú bosztás is. 6

7 Az adat táblázat 7

8 Példa Ditchburn and Ditchburn(990) Üledékes vizsgálat alapján 229 gennyes vizeletet vizsgáltak mikrobiológiai laboratóriumban a standardnak tekintett tenyésztéssel, és egy gyors - teszttel. A vizsgálatok eredményeit szintén négymezős táblázatban összefoglalva kapjuk: Tenyésztés Gyors teszt Pozitív Negatív Összesen Pozitív Negatív Összesen a d p O 0,77 N 229 8

9 Megoldás: Várt gyakoriság aˆ C R P( AB) P( A) P( B) N N N * ,3 Tenyésztés Gyors teszt Pozitív Negatív Pozitív 52,3 Negatív 4,869 60,3 a d p 0,77 aˆ dˆ 52,3 60,3 O N 229 p E 0, 49 N 229 po p p 0,4< κ=0,546 <0,75 közepes egyezés. E E 0,546 74,869 9

10 Altman DG, Bland JM. Statistics Notes: Diagnostic tests : sensitivity and specificity BMJ 994; 308 : 552 Megfigyelt gyakoriságok Patológia Ultrahang pozitív negatív Össz pozitív negatív Összesen

11 Várt gyakoriságok aˆ R C RC P( AB) P( A) P( B) aˆ N N N N â =(263/344)*(258/344)*344=97,25 dˆ =(8/344)*(86/344)*344=20,25 Patológia Ultrahang pozitív negatív Össz pozitív 97, negatív (-) 20,25 8 Összesen

12 Cohen s kappa Megfigyelt és várt egyezési valószínűségek p Obs 0,828 p Exp 0,63 Cohen s kappa (κ)=0,53. 0,4<κ 0,75 -> közepes egyezés p obs a d N ,828 p E aˆ dˆ N 97,25 20, ,63 pobs p p E E ,53 2

13 Példa Egy vizsgálatban a megfigyelt ( p O =0,85) és várt (p E =0,5) valószínűségeket megadták. Számoljuk ki az egyezés mértékét (kappát)! Megoldás: H 0 : =0 H A : 0 Közepes egyezés : 0,4<κ számított =0,7<0,75 p O p p E E 0,85 0,5 0,5 0,35 0,5 0,7 3

14 Vizsga feladat Egy diagnosztikus tesztnél a 300 vizsgálatból 270 valódi pozitív és 30 valódi negatív eredményt találtak. Mekkora a módszer pozitív prediktív értéke? Számítsa ki a kappa értékét! 4

15 Az adatok alapján: Megoldás PPV=a/(a+b)=270/270= P O =(a+d)/n=(270+30)/300= P E =(E(a)+E(d))/N=(243+3)/300=246/300=0,82 E(a)=(270*270)/300=243 és E(d)=(30*30)/300=3 Kappa=(-0,82)/(-0,82)= Teszt I Teszt II pozitív negatív Össz pozitív a= negatív 0 d=30 30 Összesen

16 Odds ratio Esélyhányados

17 incidencia Mérőszámok Újesetek száma a vizsgált periódusban A kockázatnak kitett populáció száma a vizsgálat kezdetén Azaz a vizsgált betegség egy adott(érintett) populációbeli előfordulási gyakoriságát az adott időtartam alatt incidenciának nevezzük. prevalenci a A létező esetek száma Az érintett populáció száma a vizsgált időpontban. Azaz a vizsgált betegség egy adott(érintett) populációbeli előfordulási gyakoriságát a vizsgált időpontban prevalenciának nevezzük. Megjegyzés: a prevalenciát becsülhetjük az incidencia értékkel. 7

18 (Epidemiológiai) vizsgálatok típusai ESET- KONTROLL KOHORSZ Kockázati tényező? ESET EXPONÁLT Megbetegedés? Kockázati tényező? KONTROLL NEM EXPONÁLT Megbetegedés? Időben VISSZAMENVE vizsgálja a kockázati tényezőt Kiindulva a jelenből Időben ELŐRE HALADVA vizsgálja a betegség fellépését 8

19 Mérőszámok Kohorsz Incidencia Relatív kockázat (RR) Eset-Kontroll Esélyhányados (odds ratio) Keresztmetszeti Prevalencia Esélyhányados (odds ratio) 9

20 Kohorsz vizsgálatok Egy populációból vagy annak egy reprezentatív mintájából indul ki és a betegség és a kockázati tényező együttes jelenlétét vizsgálja minden egyes egyén estében a vizsgálat időpontjában. Időben ELŐRE HALADVA vizsgálja a kockázati tényező hatását a betegség kialakulására Kiinduláskor minden személy mentes a vizsgált betegségtől. Csak az exponáltság (kockázati tényező) megléte vagy nem léte ismert. A betegség kialakulásakor válik szét a beteg és kontroll csoport Incidenciát csak kohorsz vizsgálatban tudunk mérni!!! 20

21 Eset-kontroll vizsgálatok Időben VISSZAMENVE vizsgálja a kockázati tényező hatását a betegség kialakulására. Már ismert a diagnózis, így az eset csoportba kerülnek az adott betegségben szenvedők, és a feltételezett rizikó tényező(k) hatását vizsgálja a megfelelően kiválasztott kontroll csoporthoz viszonyítva. 2

22 Keresztmetszeti vizsgálatok Egy populációból vagy annak egy reprezentatív mintájából indul ki és a betegség és a kockázati tényező együttes jelenlétét vizsgálja minden egyes egyén estében a vizsgálat időpontjában. Csak a vizsgált tényező időpontbeli gyakoriságai mérhetők és azok összefüggései elemezhetők, a keresztmetszeti vizsgálatokat szokás prevalencia vizsgálatoknak is nevezni. Tisztázatlan eredetű megbetegedések elsősorban fertőző megbetegedések rövid idő alatti halmozódása esetén Etiológiai hipotézisek felállításához vezethet, amely hipotézisek tesztelése azután eset kontroll vagy kohorszvizsgálatban történhet. 22

23 Esélyhányados és a relatív kockázat Az esélyhányados (OR) az exponáltság és a nem exponáltság esélyarányát méri össze az esetcsoport (a : b) és a kontrollcsoport (c : d) vonatkozásában Relatív kockázat (RR) csak prospektív (kohorsz) vizsgálatokban mérhető, a p, p 2 valószínűségek(incidenciák) hányadosa. Véletlen (=nincs) kockázat esetén mind az OR, mind a RR -gyel egyenlő. Döntés: 95%-os konfidencia intervallummal 23

24 Az esély (esélyérték, odds) valószínűségszámítási fogalma Ha az A esemény valószínűsége P(A), akkor az A esemény bekövetkezésének esélye: Odds( A) P( A) P( A) P( A) P( A) amely megadja, hogy mennyiszer valószínűbb az A esemény bekövetkezése a be nem következés valószínűségéhez viszonyítva. Kiszámítása klasszikus valószínűség esetén: kedvező esetek száma osztva a kedvezőtlen esetek számával 24

25 A négymezős gyakorisági táblázat Megbetegedés Kockázati tényező: Igen Nem Összesen Igen a b a+b Nem c d c+d Összesen a+c b+d N a b ad OR( EH ) SE( OR) LN(OR),96 a b c d c a b c d bc 95% KI = e d RR a /( a b) c /( c d) SE( RR) a a b c c d 95% KI = e LN(RR),96 a ab c cd 25

26 Esélyhányados (Odds ratio) Eset-kontroll (vagy keresztmetszeti) vizsgálatokban egy kiválasztott rizikó tényező (pl.: dohányzás) adott (vizsgált) betegség kialakulására vonatkozó kockázatát adja meg. H 0 : OR= (esélyhányados a populációban ) H A : OR 26

27 Példa A dohányzás hatását vizsgálták a cervix HPV fertőzés kialakulásánál. H 0 : OR= H A : OR HPV Igen Nem Total Dohányzás Igen Nem Total OR ad 56 *438,9 SE( OR) 0, cb 90 *

28 Eredmények OR ad 56 *438,9 SE( OR) 0, cb 90 * % CI = 2,78 ln(.9) ,30 ; 2,80 Az OR=,9 és 95% konfidencia intervallum (95%KI) [, ] NEM tartalmazza -t, így H A t fogadjuk el. Azaz,9 szeres kockázat a dohányosoknál a cervix HPV fertőzés kialakulása. 28

29 Példa Középiskolások körében vizsgálták a drog kipróblás lehetséges kockázati tényezőit. 29

30 SPSS Eredmény row * column Crosstabul ation Count row Total,00 2,00 column,00 2,00 Total Risk Esti mate Odds Ratio for row (,00 / 2,00) For cohort column =,00 For cohort column = 2,00 N of Valid Cases Value Lower Upper 3,338,527 7,296 2,730,459 5,08,88,690, % Confidence Interv al 30

31 H 0 : OR= H A : OR Számolás Count row Total row * column Crosstabul ation column,00 2,00 Total, , SE( OR) OR=(3*90)/ (37*20)=3,337 ln(or)=,205 SE=0,399 Alsó határ =exp(,205,96*0,399)=,5269 Felső határ=exp(,205+,96*0,399)=7,296 Mivel a 95% konfidencia intervallum [,53 7,29] on kívül esik az, így H A t fogadjuk el. 3

32 Példa A szívkoszorúér megbetegedés kialakulásának kockázatát vizsgálták 906 önkéntesnél, akik közül 479 dohányzott. Dohányzik * Szívkoszorúér betegség Crosstabulation Count Dohányzik Total Nem Igen Szívkos zorúér betegs ég Nem Igen Total

33 H 0 : OR= H A : OR SPSS eredmény Dohányzik * Szívkoszorúér betegség Crosstabulation Count Dohányzik Total Nem Igen Szívkos zorúér betegs ég Nem Igen Total OR=(423*394)/ (56*33)=90,85 ln(or)=4,50 SE=0,23 Alsó határ =exp(4,50,96*0,23)=57,4 Felső határ=exp(4,50+,96*0,23)=4,648 Odds Ratio for Dohányzik (Nem / Igen) For cohort Szívkoszorúér betegség = Nem For cohort Szívkoszorúér betegség = Igen N of Valid Cases Risk Estimate Value Lower Upper 90,85 57,49 4,648 2,099 8,694 6,836,34,05, % Confidence Interval Mivel a 95% konfidencia intervallum [57,4 4,6] on kívül esik az, így H A t fogadjuk el. 33

34 Relative Risk (RR) Relatív Kockázat

35 Null és alternatív hipotézis H 0 : RR= H A : RR 35

36 Relatív kockázat (Relative risk) Diagnózis Kockázati tényező Pozitív Negatív Összesen Van a b a+b Nincs c d c+d Összesen a+c b+d n=a+b+c+d RR I I nem exp exp a /( a b) c /( c d) SE( RR) a a b c c d 95% CI = e ln( RR).96 a ab c cd, ahol e 2,78 36

37 Kockázat becslés kohorsz vizsgálatban Egy kohorsz vizsgálatban a dohányzás kockázatát vizsgálták a tüdőrák kialakulására. Az összegyűjtött adatokat a következő táblázatban foglalták össze. (Forrás: MASD 93, UK) Számoljuk ki a dohányzás relatív kockázatát a betegség kialakulásában! Tüdőrák Igen Nem Összesen Incidencia Dohányzik /30000=,30 Nem-dohányzik /60000=0,0 Összesen A relatív kockázat(relative risk /RR/)=3,0 (,30/0,0) 37

38 Relatív kockázat (RR) Betegség Igen Nem Összesen Dohányzik Nem dohányzik Total a /( a b) RR c /( c d) 95% KI = 2,78 alsó határ / / ,0 ln(3.0).96 ln(3.0) 39 SE( RR) 0, * felső határ ln(3.0).96*

39 Relatív kockázat /Relative risk (RR)/ H 0 : RR= H A : RR RR= nem exp Konfidencia intervallum (RR hez számított): 95% KI = e I RR I exp ln( RR).96 a /( a c /( c a b) 3,0 d) ab cd, és 2,78 Példánkban RR=3,0 és a 95% konfidencia intervallum [5,5 30,7]. NEM tartalmazza -t, így H A t fogadjuk el. Azaz 3 szor (szignifikánsan) magasabb a tüdőrák kockázata a dohányosoknál a nem dohányosokhoz viszonyítva. c e 39

40 Melyik statisztikát használjuk az egyezés mérésére? A kappa=0,3 érték esetén az egyezés mértéke... Kérdések Hogyan számoljuk ki a megfigyelt valószínűséget (po) az egyezés méréséhez (a kappához)? Eset-kontroll vizsgálatoknál a betegségre vonatkozólag milyen kockázat becslést számolunk, azaz mi a próba statisztika neve? Kohorsz vizsgálatoknál a betegségre vonatkozólag milyen kockázat becslést számolunk, azaz mi a próba statisztika neve? Keresztmetszeti vizsgálatoknál a betegségre vonatkozólag milyen kockázat becslést számolunk, azaz mi a próba statisztika neve? A kohorsz vizsgálat definiciója Az eset-kontroll vizsgálat definiciója A keresztmetszeti vizsgálat definiciója Mi az esélyhányadosra (odds ratio) vonatkozó nullhipotézis? Mi az relatív kockázatra (relative risk) vonatkozó nullhipotézis? Mi az egyezés mérésére (kappa) vonatkozó nullhipotézis? Mi az esélyhányadosra (odds ratio) vonatkozó alternatív hipotézis? Mi az relatív kockázatra (relative risk) vonatkozó alternatív hipotézis? Mi az egyezés mérésére (kappa) vonatkozó alternatív hipotézis? Egy vizsgálatban a megfigyelt ( po=0,85) és várt (pe=0,5) valószínűségeket megadták. Számoljuk ki az egyezés mértékét (kappát)! Egy tanulmányban 50 pozitív méhnyak kenetből 40 HPV pozitív fertőzést diagnosztizáltak, míg 60 normál méhnyak kenetből 0 HPV pozitív fertőzést. Számítsa ki az esélyhányadost a HPV fertőzés kockázatára pozitív cytológia esetén! Egy tanulmányban 20 pozitív méhnyak kenetből 8 HPV pozitív fertőzést diagnosztizáltak, míg 20 normál méhnyak kenetből 0 HPV pozitív fertőzést. Számítsa ki az esélyhányadost a HPV fertőzés kockázatára pozitív cytológia esetén! Egy tanulmányban a dohányzás kockázatát vizsgálták a HPV fertőzés kialakulására. A kockázat mérésére,58 értéket (odds ratio) kaptak, és a 95%KI [,06-2,398]. Ezek alapján... hipotézist fogadjuk el. Egy tanulmányban a dohányzás kockázatát vizsgálták a HPV fertőzés kialakulására. A kockázat mérésére,58 értéket (odds ratio) kaptak,és a 95%KI [0,96-2,598].. Ezek alapján... hipotézist fogadjuk el. Egy diagnosztikus tesztnél a 300 vizsgálatból 270 valódi pozitív és 30 valódi negatív eredményt találtak. Számítsa ki a kappa értékét! 40

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

Diagnosztikus tesztek értékelése

Diagnosztikus tesztek értékelése Δn e Δc Δn b Δc szegregancia relevancia Diagnosztikus tesztek értékelése c Átlapoló eloszlások feltételezés: egy mérhető mennyiség (pl. koncentráció) megnövekszik a populációban (a megváltozás a lényeges

Részletesebben

EPIDEMIOLÓGIA I. Alapfogalmak

EPIDEMIOLÓGIA I. Alapfogalmak EPIDEMIOLÓGIA I. Alapfogalmak TANULJON EPIDEMIOLÓGIÁT! mert része a curriculumnak mert szüksége lesz rá a bármilyen tárgyú TDK munkában, szakdolgozat és rektori pályázat írásában mert szüksége lesz rá

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

EPIDEMIOLÓGIA I. Alapfogalmak

EPIDEMIOLÓGIA I. Alapfogalmak EPIDEMIOLÓGIA I. Alapfogalmak TANULJON EPIDEMIOLÓGIÁT! mert része a curriculumnak mert szüksége lesz rá a bármilyen tárgyú TDK munkában, szakdolgozat és rektori pályázat írásában mert szüksége lesz rá

Részletesebben

Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. ROC analízis.

Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. ROC analízis. Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. ROC analízis. Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati

Részletesebben

Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR.

Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika

Részletesebben

Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR.

Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika

Részletesebben

13. Túlélési analízis. SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D.

13. Túlélési analízis. SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D. 13. Túlélési analízis SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D. Túlélési analízis Eredetileg biológiai és orvosi alkalmazásoknál használták Egyéb alkalmazások pl. szociológia, ipar, közgazdaságtan

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézis Állítás a populációról (vagy annak paraméteréről) Példák H1: p=0.5 (a pénzérme

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR.

Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika

Részletesebben

Statisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI

Statisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő

Részletesebben

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

[Biomatematika 2] Orvosi biometria. Visegrády Balázs [Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Az első számjegyek Benford törvénye

Az első számjegyek Benford törvénye Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

Logisztikus regresszió október 27.

Logisztikus regresszió október 27. Logisztikus regresszió 2017. október 27. Néhány példa Mi a valószínűsége egy adott betegségnek a páciens bizonyos megfigyelt jellemzői (pl. nem, életkor, laboreredmények, BMI stb.) alapján? Mely genetikai

Részletesebben

Diagnosztikus tesztek értékelése

Diagnosztikus tesztek értékelése n e c n b c szegregancia relevancia Diagnosztikus tesztek értékelése c Átlapoló eloszlások feltételezés: egy mérhető mennyiség (pl. koncentráció) megnövekszik a populációban (a megváltozás a lényeges és

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém

Részletesebben

Nem-paraméteres és paraméteres módszerek. Kontingencia tábla, rangtranszformálás, párosított minták, két független minta

Nem-paraméteres és paraméteres módszerek. Kontingencia tábla, rangtranszformálás, párosított minták, két független minta Nem-paraméteres és paraméteres módszerek Kontingencia tábla, rangtranszformálás, párosított minták, két független minta Az előadások célja bemutatni a hipotézis vizsgálat elveinek alkalmazását a gyakorlatban

Részletesebben

Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER

Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER KLINIKAI ALKALMAZÁSOK GYÓGYSZER TESZTELÉS MIK LEHETNEK A PROBLÉMÁK? STATISZTIKAI ALAPKÖVEK GYÓGYULÁSI ESÉLYEK TARTALOM

Részletesebben

EPIDEMIOLÓGIAI ALAPFOGALMAK ÉS STANDARDIZÁLÁS

EPIDEMIOLÓGIAI ALAPFOGALMAK ÉS STANDARDIZÁLÁS EPIDEMIOLÓGIAI ALAPFOGALMAK ÉS STANDARDIZÁLÁS TANULJON EPIDEMIOLÓGIÁT! mert része a curriculumnak mert szüksége lesz rá a bármilyen tárgyú TDK munkában, szakdolgozat és rektori pályázat írásában mert szüksége

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

V. Gyakorisági táblázatok elemzése

V. Gyakorisági táblázatok elemzése V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e

Részletesebben

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,

Részletesebben

Nemzeti Onkológiai Kutatás-Fejlesztési Konzorcium 1/48/ Részjelentés: November december 31.

Nemzeti Onkológiai Kutatás-Fejlesztési Konzorcium 1/48/ Részjelentés: November december 31. Nemzeti Kutatási és Fejlesztési Program 1. Főirány: Életminőség javítása Nemzeti Onkológiai Kutatás-Fejlesztési Konzorcium a daganatos halálozás csökkentésére 1/48/2001 3. Részjelentés: 2003. November

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

EPIDEMIOLÓGIA I. Alapfogalmak

EPIDEMIOLÓGIA I. Alapfogalmak EPIDEMIOLÓGIA I. Alapfogalmak TANULJON EPIDEMIOLÓGIÁT! mert része a curriculumnak mert szüksége lesz rá a bármilyen tárgyú TDK munkában, szakdolgozat és rektori pályázat írásában mert szüksége lesz rá

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Egy és többváltozós logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban

Egy és többváltozós logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban Egy és többváltozós logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika 2015-11-26 prohoz@kut.sote.hu

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

A 0 64 éves férfiak és nők cerebrovascularis betegségek okozta halálozásának relatív kockázata Magyarországon az EU 15

A 0 64 éves férfiak és nők cerebrovascularis betegségek okozta halálozásának relatív kockázata Magyarországon az EU 15 A hipertónia, mint kiemelt kardiovaszkuláris rizikófaktor befolyásoló tényezőinek és ellátásának vizsgálata az alapellátásban Dr. Sándor János, Szabó Edit, Vincze Ferenc Debreceni Egyetem OEC Megelőző

Részletesebben

nem kezelt 1.29, 1.60, 2.27, 1.31, 1.81, 2.21 kezelt 0.96, 1.14, 1.59

nem kezelt 1.29, 1.60, 2.27, 1.31, 1.81, 2.21 kezelt 0.96, 1.14, 1.59 1. feladat Egy szer rákellenes hatását vizsgálták úgy, hogy 9 egér testébe rákos sejteket juttattak be. Közülük 3 véletlenszerűen kiválasztott egérnek kezelésként beadták a vizsgálandó szert, 6-nak pedig

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Elemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet

Elemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Elemszám becslés Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Miért fontos? Gazdasági okok: Túl kevés elem esetén nem tudjuk kimutatni a kívánt hatást Túl kevés elem esetén olyan eredmény

Részletesebben

Statisztikai módszerek 7. gyakorlat

Statisztikai módszerek 7. gyakorlat Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i

Részletesebben

A pont-prevalencia vizsgálat epidemiológiája

A pont-prevalencia vizsgálat epidemiológiája A pont-prevalencia vizsgálat epidemiológiája Mi a prevalencia? Adott jelleg vagy jelenség (pl. betegség) által aktuálisan érintett egyének száma a populációban egy bizonyos időpontban. Kifejezése: százalék

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2

Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2 Esettanulmány A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre Tartalomjegyzék 1. Bevezetés... 2 2. A lineáris modell alkalmazhatóságának feltételei... 2 3. A feltételek teljesülésének

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Tovább csökkent az influenzaszerű megbetegedések száma

Tovább csökkent az influenzaszerű megbetegedések száma Az Országos Epidemiológiai Központ tájékoztatója az influenza figyelőszolgálat adatairól Magyarország 2017. 6. hét Tovább csökkent az influenzaszerű megbetegedések száma 2017. február 612. között a figyelőszolgálatban

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Egy és (többváltozós) logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban

Egy és (többváltozós) logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban Egy és (többváltozós) logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika 2016-11-24 prohoz@kut.sote.hu

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Tovább csökkent az influenzaszerű megbetegedések száma

Tovább csökkent az influenzaszerű megbetegedések száma Az Országos Epidemiológiai Központ tájékoztatója az influenza figyelőszolgálat adatairól Magyarország 2017. 8. hét Tovább csökkent az influenzaszerű megbetegedések száma A figyelőszolgálatban résztvevő

Részletesebben

Súlyos infekciók differenciálása a rendelőben. Dr. Fekete Ferenc Heim Pál Gyermekkórház Madarász utcai Gyermekkórháza

Súlyos infekciók differenciálása a rendelőben. Dr. Fekete Ferenc Heim Pál Gyermekkórház Madarász utcai Gyermekkórháza Súlyos infekciók differenciálása a rendelőben Dr. Fekete Ferenc Heim Pál Gyermekkórház Madarász utcai Gyermekkórháza Miért probléma a lázas gyermek a rendelőben? nem beteg - súlyos beteg otthon ellátható

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Statisztikai csalások és paradoxonok. Matematikai statisztika Gazdaságinformatikus MSc november 26. 1/31

Statisztikai csalások és paradoxonok. Matematikai statisztika Gazdaságinformatikus MSc november 26. 1/31 Matematikai statisztika Gazdaságinformatikus MSc 11. előadás 2018. november 26. 1/31 A tojást rakó kutya - a könyv Hans Peter Beck-Bernholdt, Hans-Hermann Dubben: A tojást rakó kutya c. könyve alapján

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Minőség-képességi index (Process capability)

Minőség-képességi index (Process capability) Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

X PMS 2007 adatgyűjtés eredményeinek bemutatása X PMS ADATGYŰJTÉS

X PMS 2007 adatgyűjtés eredményeinek bemutatása X PMS ADATGYŰJTÉS X PMS ADATGYŰJTÉS 2007 1 Tartalom Összefoglalás...3 A kutatásba beválasztott betegek életkora... 4 A kutatásba bevont betegek nem szerinti megoszlása... 5 Az adatgyűjtés során feltárt diagnózisok megoszlása...

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

A khi-négyzet próba és alkalmazásai: illeszkedésés függetlenségvizsgálat. khi-(χ 2 )-négyzet próba

A khi-négyzet próba és alkalmazásai: illeszkedésés függetlenségvizsgálat. khi-(χ 2 )-négyzet próba A khi-négyzet próba és alkalmazásai: illeszkedésés függetlenségvizsgálat khi-(χ 2 )-négyzet próba Khi-(χ 2 )-négyzet próba A χ 2 -négyzet próbát leggyakrabban a következő problémák megoldásánál alkalmazzák:

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés

Részletesebben

A Hardy-Weinberg egyensúly. 2. gyakorlat

A Hardy-Weinberg egyensúly. 2. gyakorlat A Hardy-Weinberg egyensúly 2. gyakorlat A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben

Részletesebben

Statisztika Elıadások letölthetık a címrıl

Statisztika Elıadások letölthetık a címrıl Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

Sugárbiológiai ismeretek: LNT modell. Sztochasztikus hatások. Daganat epidemiológia. Dr. Sáfrány Géza OKK - OSSKI

Sugárbiológiai ismeretek: LNT modell. Sztochasztikus hatások. Daganat epidemiológia. Dr. Sáfrány Géza OKK - OSSKI Sugárbiológiai ismeretek: LNT modell. Sztochasztikus hatások. Daganat epidemiológia Dr. Sáfrány Géza OKK - OSSKI Az ionizáló sugárzás biológiai hatásai Determinisztikus hatás Sztochasztikus hatás Sugársérülések

Részletesebben

Tudományos következtetések. A Prevora tudományos értékelésének átfogó összegzése

Tudományos következtetések. A Prevora tudományos értékelésének átfogó összegzése II. MELLÉKLET AZ EURÓPAI GYÓGYSZERÜGYNÖKSÉG (EMA) ÁLTAL BETERJESZTETT TUDOMÁNYOS KÖVETKEZTETÉSEK, A POZITÍV VÉLEMÉNY, AZ ALKALMAZÁSI ELŐÍRÁS, A CÍMKESZÖVEG, VALAMINT A BETEGTÁJÉKOZTATÓ MÓDOSÍTÁSÁNAK INDOKLÁSA

Részletesebben

A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében

A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében Kiegészítő elemzés A rádió és televízió műsorszórás használatára a 14 éves

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Tüdőrák kockázata PVC előállításával foglalkozó munkások körében

Tüdőrák kockázata PVC előállításával foglalkozó munkások körében MUNKABALESETEK ÉS FOGLALKOZÁSI MEGBETEGEDÉSEK.2 Tüdőrák kockázata PVC előállításával foglalkozó munkások körében Tárgyszavak: PVC; por; porexpozíció; tüdőrák; foglalkozási betegség. A vinil-klorid monomer

Részletesebben