A Hardy-Weinberg egyensúly. 2. gyakorlat
|
|
- Gizella Nagyné
- 9 évvel ezelőtt
- Látták:
Átírás
1 A Hardy-Weinberg egyensúly 2. gyakorlat
2 A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben és nőstényekben
3 következményei: nem változnak az allél és genotípusgyakoriságok egyik generációról a másikra a diploidgenotípusok gyakorisága = allélgyakoriságok szorzatával ezek zigóta és felnőttkorban is igazak
4 Csak egy független változó van: p: A allélgyakorisága, q: a allélgyakorisága P: AA genotípus gyakorisága, H: Aa genotípus gyakorisága, Q: aa genotípus gyakorisága p+ q=1, P+ H+ Q=1 p= P+ H/2 elég a p-t megadni, abból már kiszámítható q, P, H, Q
5 Ha Aallélgyakorisága egyaránt pa hímés nőivarsejtben (feltétel volt), akkor a allélgyakorisága: q = 1-p Random párosodást feltételezve annak a valószínűsége, hogy két A-t tartalmazó ivarsejt találkozik és kialakul a AAgenotípus: p x p = p 2 (P) aaesetén: q x q = q 2 (Q) Aaesetén pedig: 2 x p x q = 2pq (H)
6 p q p q
7 F 1 -ben: P' = P+ H/2 = p 2 + pq= p (p+q) = p Vagyis az allélgyakoriságok generációról generációra állandóak.
8 Feladatok:
9 Recesszív autószómás betegségben szenvednek a pedigrén sötéttel jelölt egyének. 7. és 8. egyének tervezett gyermeke (10.) milyen valószínűséggel lesz beteg illetve hordozó?
10 Recesszív autószómás betegségben szenvednek a pedigrén sötéttel jelölt egyének. 7. és 8. egyének tervezett gyermeke (10.) milyen valószínűséggel lesz beteg illetve hordozó? 7 genotípusa: P(Aa) 2/3 P(AA) 1/3 8 genotípusa: P(Aa) 1 Ha 7 AA genotípusú 0% esély a betegségre Ha 7 Aa genotípusú P(beteg): 1/4 P(beteg): 1/4* 2/3+0 * 1/3=1/6
11 Recesszív autószómás betegségben szenvednek apedigrénsötéttel jelölt egyének. 7. és 8. egyének tervezett gyermeke (10.) milyen valószínűséggel lesz beteg illetve hordozó? Mi a valószínűsége, hogy a 4. egyén hordozó annak ismeretében, hogy egyrészt a populációban a káros allél gyakorisága 0,053, másrészt született két egészséges gyermeke (mint a pedigrén jelöltük). Változik-e ez a valószínűség, ha születik még egy egészséges fenotípusú gyermeke (amely a pedigrén nincs feltüntetve)? (Hardy-Weinberg egyensúlyt feltételezünk.)
12 Mi a valószínűsége, hogy a 4. egyén hordozó annak ismeretében, hogy egyrészt a populációban a káros allél gyakorisága 0,053, másrészt született két egészséges gyermeke q legyen káros allél P(q) P(q 2 ) P(p) P(p 2 ) 0.9 P (2pq) 0.1 P(AA) 0.9/( )=0.9 P (Aa) 0.1 P (2szer adott A allélt AA) 1 P (2szer adott A allélt Aa) 1/4
13 Bayes-tétel P( F 2 E ) = P( E F P( E 2) P( F F 2) P( F 2) 2) + P( E F1) P( F1) Kérdés: P(Aa 2szer adott A allélt) P(Aa 2szer adott A allélt)= P(2szer adott A allélt Aa)* *P(Aa) / P(2szer adott A allélt Aa) * P(Aa) + +P(2szer adott A allélt AA) *P(AA)
14 Mi a valószínűsége, hogy a 4. egyén hordozó annak ismeretében, hogy egyrészt a populációban a káros allél gyakorisága 0,053, másrészt született két egészséges gyermeke Bayes-tétel: q legyen káros allél P(q) P(q 2 ) P(p) P(p 2 ) 0.9 P (2pq) 0.1 P(AA) 0.9/( )=0.9 P (Aa) 0.1 P (2szer adott A allélt AA) 1 P (2szer adott A allélt Aa) 1/4 P(Aa 2szer adott A allélt)= P(2szer adott A allélt Aa) P(Aa) / P(2szer adott A allélt Aa) P(Aa) + P(2szer adott A allélt AA) P(AA) P(Aa 2szer adott A allélt)= 1/4*0.1 / (1/4* *0.9)= 1/37
15 Mi a valószínűsége, hogy a 4. egyén hordozó annak ismeretében, hogy egyrészt a populációban a káros allél gyakorisága 0,053, másrészt született két egészséges gyermeke (mint a pedigrén jelöltük). Változik-e ez a valószínűség, ha születik még egy egészséges fenotípusú gyermeke (amely a pedigrén nincs feltüntetve)? (Hardy-Weinberg egyensúlyt feltételezünk.) q legyen káros allél P(q) P(q 2 ) P(p) P(p 2 ) 0.9 P (2pq) 0.1 P(AA) 0.9/( )=0.9 P (Aa) 0.1 P (2szer adott A allélt AA) 1 P (2szer adott A allélt Aa) 1/8
16 Mi a valószínűsége, hogy a 4. egyén hordozó annak ismeretében, hogy egyrészt a populációban a káros allél gyakorisága 0,053, másrészt született két egészséges gyermeke (mint a pedigrén jelöltük). Változik-e ez a valószínűség, ha születik még egy egészséges fenotípusú gyermeke (amely a pedigrén nincs feltüntetve)? (Hardy-Weinberg egyensúlyt feltételezünk.) Bayes-tétel: q legyen káros allél P(q) P(q 2 ) P(p) P(p 2 ) 0.9 P (2pq) 0.1 P(AA) 0.9/( )=0.9 P (Aa) 0.1 P (2szer adott A allélt AA) 1 P (2szer adott A allélt Aa) 1/8 P(Aa 2szer adott A allélt)= P(2szer adott A allélt Aa) P(Aa) / P(2szer adott A allélt Aa) P(Aa) + P(2szer adott A allélt AA) P(AA) P(Aa 2szer adott A allélt)= 1/8*0.1 /(1/8* *0.9)= 1/73
17 Kelus(1976) 3100 lengyel vércsoportját vizsgálta, közülük 1101 volt MM, 1496 MN és 503 NN vércsoportú. Hardy-Weinberg egyensúlyban volt-e ez a populáció erre a tulajdonságra nézve? Következik-e ebből, hogy ez a populáció Hardy-Weinberg egyensúlyban volt más tulajdonságra nézve is?
18 MM MN NN Σ P(p)=(1101*2+1496)/(3100*2)= P(q)= MMexp.=p 2 *n= MNexp.=2pq*n= NNexp.=q 2 *n= MM MN NN Megfigyelt (o) Várt (e)
19 Khi^2-próba A változó megfigyelt gyakoriságát hasonlítjuk (O) a várt gyakoriságához (E). Teszt-statisztika: X^2 Számítása: n χ ( O E ) 2 2 = Σ i i i =11 Ei Ezt hasonlítjuk a X^2 eloszlás kritikus értékeihez df; degrees of freedom/ szabadsági fok: Hardy Weinberg arányokra használva Lehetséges genotípusok száma minusz az allélek száma Itt df=1 Szignifikancia szint: 0.05 (α) X^2 < X^2 krit. -> H0marad
20 Khi^2 táblázat
21 Khi^2 táblázat MM MN NN Σ Megfigyelt (o) Várt (e) (O-E) 2 /E
22 Kelus(1976) 3100 lengyel vércsoportját vizsgálta, közülük 1101 volt MM, 1496 MN és 503 NN vércsoportú. Hardy-Weinberg egyensúlyban volt-e ez a populáció erre a tulajdonságra nézve? igen Következik-e ebből, hogy ez a populáció Hardy-Weinberg egyensúlyban volt más tulajdonságra nézve is? nem
23 New York államban Rochesterbenaz olasz származású amerikaiak között a thalassemia major nevű betegség (egygénes, recesszív öröklődésű) előfordulási valószínűsége 1:2500-hoz. Hány százalék lehet közöttük (az olasz származású amerikaiak között) a hordozók aránya (Hardy-Weinberg egyensúlyt tételezzünk fel)? q 2?, q?,p?,2pq?
24 q 2 =1/2500= P(q)=0.02 P(p)=0.98 2pq= Aa genotípus aránya
25 A Huntington-kór (egygénes, autoszomális, dominánsöröklődésű) kaukázusi típusú emberből körülbelül 5-nél fordul elő. Hardy-Weinberg egyensúlyt tételezünk fel. Egy véletlenszerűen kiválasztott beteg mekkora valószínűséggel homozigóta? q 2?, q?,p?, p 2?, 2pq?,
26 p 2 +2pq= q 2 = q= , p= p 2 =6.25*10-10, 2pq=4.9*10-5 Bayes-tétel: P(AA beteg)=p(beteg AA)*P(AA)/ P(beteg AA)*P(AA)+P(beteg Aa)*P(Aa)= 1*6.25*10-10 /6.25* *10-5 =1.25*10-5
27 A következő táblázat öt hosszúszárnyú bálnapopuláció genetikai variabilitását elemző cikkből származik (Mol BiolEvol, 1997, 14:355). A táblázatban az öt populáció három VNTR lokuszának allélgyakoriságai szerepelnek. NA: Észak-atlanti-térség; IL: Izland; AP: Antarktisz; EA: Kelet-Ausztrália; NP: Csendesóceán északi része A lokuszok nem kapcsoltak és tételezzük fel HWE-t!
28 VNTR lokuszok Variable Number Tandem Repeats(VNTR) Tekintettel az alternatív allélok gyakoriságára, ezeket a lokuszokat hipervariabilis lokuszoknak is szokás nevezni Nem kódoló régiók feltételezhetően alternatív változások neutrálisak a szelekció szempontjából Sok lokusz vizsgálata egyedek azonosítására alkalmas DNS-ujjlenyomat
29
30
31 Milyen bálnát találnánk nagyobb valószínűséggel: egy EV1 125,125 EV94 210,214 genotípusút Izlandnál, vagy egy EV1 125,125 EV37 210,232 genotípusút Kelet-Ausztráliánál?
32 Az acatalactanevű betegséget (egygénes, autoszomális, diallélikus) Japánban fedezték fel először. A heterozigóták azonosíthatóak, mivel vérükben a katalázenzim szintje közepes értéket mutat a kétféle homozigóta enzimszintjéhez képest. A heterozigóták aránya 0,09% Hiroshimában, de 1,4% Japán többi részén. Hardy-Weinberg egyensúlyt feltételezve mik lehetnek az allélgyakoriságok Hiroshimában illetve Japán többi részén?
33 P(Aa)=0.09% 2pq= pq=2p(1-p)= p 2 -p =0... q= p= HF: másik kérdés!!
34 A sárga bohócvirág (Mimulus guttatus) egy populációjában vizsgáljuk az X enzim polimorfizmusát gélelektroforézissel. Az alábbi ábrán láthatjuk a talált fenotípusokat, valamint azt, hogy az egyes típusokból mennyit találtunk a populációban. Hányféle fenotípusttalálunk közöttük ezzel a módszerrel?
35 Tegyük fel, hogy ezt az enzimet egy autoszomális gén kódolja! Mik az allélgyakoriságok? Hardy-Weinberg-egyensúlybanvan-e ez a populáció?
36 2 vagy több allél esetén a homozigóták gyakorisága az allélgyakoriság négyzete A heterozigóták gyakorisága A1 allél gyakorisága*a2 allél gyakorisága*2 P(A1)=(4+12/2+20/2)=0.2 P(A2) P(A3) P(A1A1)exp=(0.2) 2 =0.04 P(A2A2)exp, P(A3A3)exp, P(A1A2)exp, P(A1A3)exp, P(A2A3)exp
37 A Labrador kutyák színét 2 lokuszbefolyásolja: a B lokuszona fekete színt okozó B allél domináns a barna b-vel szemben az E lokuszrecesszív episztázistgyakorol a B lokuszfelett az eegenotípusú egyedek aranyszínűek lesznek a B lokusztól függetlenül BBee(arany) és bbee (barna) keresztezéséből a következő F2 arányokat kaptuk: fekete:arany:barna = 287:80:68. Megfelelnek ezek az arányok a várt mendeli arányoknak?
38 BBee (zsemle) x bbee (csoki) F1: BbEe (fekete) F2: BE be Be be BE BBEE BbEE BBEe BbEe be BbEE bbee BbEe bbee Be BBEe BbEe BBee Bbee be BbEe bbee Bbee bbee Gyakoriság Σ Megfigyelt (o) Várt (e) (9/16)*435 (4/16)*435 3/16*435
39 Σ Megfigyelt (o) Várt (e) (9/16)*435 (4/26)*435 3/16*435 (o-e) 2 /e Khi^2 táblázat
Szelekció. Szelekció. A szelekció típusai. Az allélgyakoriságok változása 3/4/2013
Szelekció Ok: több egyed születik, mint amennyi túlél és szaporodni képes a sikeresség mérése: fitnesz Szelekció Ok: több egyed születik, mint amennyi túlél és szaporodni képes a sikeresség mérése: fitnesz
Populációgenetikai. alapok
Populációgenetikai alapok Populáció = egyedek egy adott csoportja Az egyedek eltérnek egymástól morfológiailag, de viselkedésüket tekintve is = genetikai különbségek Fenotípus = külső jellegek morfológia,
Hátterükben egyetlen gén áll, melynek általában számottevő a viselkedésre gyakorolt hatása, öröklési mintázata jellegzetes.
Múlt órán: Lehetséges tesztfeladatok: Kitől származik a variáció-szelekció paradigma, mely szerint az egyéni, javarészt öröklött különbségek között a társadalmi harc válogat? Fromm-Reichmann Mill Gallton
A Hardy Weinberg-modell gyakorlati alkalmazása
1 of 6 5/16/2009 2:59 PM A Hardy Weinberg-modell gyakorlati alkalmazása A genotípus-gyakoriság megoszlásának vizsgálata 1. ábra. A Hardy Weinberg-egyensúlyi genotípus-gyakoriságok az allélgyakoriság Számos
Sodródás Evolúció neutrális elmélete
Sodródás Evolúció neutrális elmélete Egy kísérlet Drosophila Drosophila pseudoobscura 8 hím + 8 nőstény/tenyészet 107 darab tenyészet Minden tenyészet csak heterozigóta egyedekkel indul a neutrális szemszín
POPULÁCIÓGENETIKA GYAKORLAT
POPULÁCIÓGENETIKA GYAKORLAT Az S vércsoport esetében három genotípus figyelhető meg: - SS homozigóták (az antigént normál mennyiségben tartalmazzák) - Ss heterozigóták (plazmájuk fele mennyiségű antigént
Domináns-recesszív öröklődésmenet
Domináns-recesszív öröklődésmenet Domináns recesszív öröklődés esetén tehát a homozigóta domináns és a heterozigóta egyedek fenotípusa megegyezik, így a három lehetséges genotípushoz (példánkban AA, Aa,
Nincs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy
Véges populációméret okozta beltenyésztettség incs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy utódba 2 IBD allél Előadásról: -F t (-/2)
A genetikai sodródás
A genetikai sodródás irányított, nem véletlenszerű Mindig a jobb nyer! természetes szelekció POPULÁCIÓ evolúció POPULÁCIÓ A kulcsszó: változékonyság a populáción belül POPULÁCIÓ nem irányított, véletlenszerű
Példák a független öröklődésre
GENETIKAI PROBLÉMÁK Példák a független öröklődésre Az amelogenesis imperfecta egy, a fogzománc gyengeségével és elszíneződésével járó öröklődő betegség, a 4-es kromoszómán lévő enam gén recesszív mutációja
10. GYAKORLÓ FELADATSOR MEGOLDÁSA
10. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Egy vállalatnál 180 férfi és 120 nő dolgozik. A férfiak közül 70-en, a nők közül 30-an hordanak szemüveget. Kiválasztunk véletlenszerűen egy dolgozót. (a) Mi a valószínűsége
BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA
BIOKÉMIA, GENETIKA 1. Nukleinsavak keresztrejtvény (12+1 p) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 1. A nukleinsavak a.-ok összekapcsolódásával kialakuló polimerek. 2. Purinvázas szerves bázis, amely az
Populációgenetika. 2. Egy populáció egyedeinek a 90%-a AA, 10%-a aa genotípusú. Mekkorák az allélgyakoriságok?
Populációgenetika 1. Egy populáció egyedeinek genotípus szerinti megoszlása a következő: 10 AA, 50 Aa, 30 aa. Mekkorák az allélgyakoriságok? Követi-e a Hardy-Weinberg eloszlást a populáció? p = D+H/ alapján
A PKU azért nem hal ki, mert gyógyítják, és ezzel növelik a mutáns allél gyakoriságát a Huntington kór pedig azért marad fenn, mert csak későn derül
1 Múlt órán: Genetikai alapelvek, monogénes öröklődés Elgondolkodtató feladat Vajon miért nem halnak ki az olyan mendeli öröklődésű rendellenességek, mint a Phenylketonuria, vagy a Huntington kór? A PKU
Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak.
Evolúció Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak. Latin eredetű szó, jelentése: kibontakozás Időben egymást
Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll
Többgénes jellegek Többgénes jellegek 1. 1. Klasszikus (poligénes) mennyiségi jellegek Multifaktoriális jellegek: több gén és a környezet által meghatározott jellegek 2.Szinte minden jelleg több gén irányítása
A genetikai lelet értelmezése monogénes betegségekben
A genetikai lelet értelmezése monogénes betegségekben Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika A ~20 ezer fehérje-kódoló gén a 23 pár kromoszómán A kromoszómán található bázisok száma: 250M
HÁZI FELADAT. Milyen borjak születését várhatja, és milyen valószínûséggel az alábbi keresztezésekbõl:
HÁZI FELADAT Egy allélos mendeli 1. A patkányokban a szõrzet színét autoszómás lókusz szabályozza: a fekete szín domináns, az albínó recesszív allél. Ha egy fekete heterozigótával kereszteznek egy fehér
Természetes populációk változatossága (variabilitása)
Természetes populációk változatossága (variabilitása) Darwinizmus alapfeltétele, hogy vannak és képződnek változatok a populációban. Ez kérdéseket vet fel: Van-e változatosság? Mi generálja a változatokat?
Populációgenetika és evolúció
Populációgenetika és evolúció 1 Koncepció 2 Populációgenetika 3 A változatosság eredete 4 A változatosság fenntartása 5 Adaptív evolúció 6 Fenotípus evolúció Populációgenetika és evolúció 1/42 Jellegek
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
INCZÉDY GYÖRGY SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM
INCZÉDY GYÖRGY SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM Szakközépiskola Tesztlapok Biológia - egészségtan tantárgy 12. évfolyam Készítette: Perinecz Anasztázia Név: Osztály: 1. témakör: Az élet kódja.
ÁLLATTENYÉSZTÉSI GENETIKA
TÁMOP-4.1.2-08/1/A-2009-0010 project ÁLLATTENYÉSZTÉSI GENETIKA University of Debrecen University of West Hungary University of Pannonia The project is supported by the European Union and co-financed by
(b) Legyen E: 6-ost dobunk, F: páratlan számot dobunk., de ha mártudjuk azt, hogy akísérletbenpáratlanszámotdobtunk, akkorazösszeslehetőség1, 3,
X. FELTÉTELES VALÓSZÍNŰSÉG, VALÓSZÍNŰSÉG A GENETIKÁBAN X.. Feltételes valószínűség. Példák a kockadobásnál. (a) Hogyan változik annak a valószínűsége, hogy 6-os a dobott szám, ha megtudjuk, hogy páros?
A a normál allél (vad típus), a a mutáns allél A allél gyakorisága 50% a allél gyakorisága 50%
Lehetséges tesztfeladatok: Tudjuk, hogy egy családban az anya Huntington érintett (heterozigóta), az apa nem. Ugyanakkor az apa heterozigóta formában hordozza a Fenilketonúria mutáns allélját (az anya
GENETIKA MEGOLDÁS EMELT SZINT 1
GENETIKA MEGOLDÁS EMELT SZINT 1 I. A színtévesztés öröklése (15 pont) 1. X kromoszómához kötődő recesszív mutáció 2 pont 2. X S X s (más betűjelölés is elfogadható) (mert az apától csak X s allélt kaphatott)
Genetika 3 ea. Bevezetés
Genetika 3 ea. Mendel törvényeinek a kiegészítése: Egygénes öröklődés Többtényezős öröklődés Bevezetés Mendel által vizsgált tulajdonságok: diszkrétek, két különböző fenotípus Humán tulajdonságok nagy
DNS viszgálatok, számítási módszerek
DNS viszgálatok, számítási módszerek Apasági vizsgálatok Kizárás: -a gyereknél az apától örökölt allél nem egyezik a feltételezett apáéval - 3 kizárás esetén az apaság kizárható -100% Anya: 12-13, kk.
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
http://www.sulinet.hu/eletestudomany/archiv/2001/0101/diakold/popul/popul.html
1 of 8 5/16/2009 3:04 PM Populáció-genetika A kiszámíthatatlan genetikai sodródás kiszámítható következményei Vagy 5 millió évvel ezelőtt egy pintycsapat sodródott az Egyenlítőn fekvő Galapagos-szigetek
A FELTÉTELES VALÓSZÍNŰSÉG, A TELJES VALÓSZÍNŰSÉG TÉTELE,
A FELTÉTELES VALÓSZÍNŰSÉG, A TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE, FÜGGETLENSÉG Populációgenetika gyakorlat 2013.02.06. A teljes valószínűség tétele A teljes valószínűség tétele azt mondja ki, hogy
Johann Gregor Mendel Az olmüci (Olomouc) és bécsi egyetem diákja Brünni ágostonrendi apát (nem szovjet tudós) Tudatos és nagyon alapos kutat
10.2.2010 genmisk1 1 Áttekintés Mendel és a mendeli törvények Mendel előtt és körül A genetika törvényeinek újbóli felfedezése és a kromoszómák Watson és Crick a molekuláris biológoa központi dogmája 10.2.2010
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal
Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:
Tehát a kérdés az, hogy megváltoznak-e az allélgyakoriságok az egyes nemzedékben?
A populációk genetikai összetételének leírása Szerkesztette: Vizkievicz András A populációgenetika tudománya a populációk genetikai összetételével, illetve a genetikai összetételt változtató mechanizmusokkal
Téma 2: Genetikai alapelvek, a monogénes öröklődés -hez szakirodalom: (Plomin: Viselekedésgenetika 2. fejezet) *
Téma 2: Genetikai alapelvek, a monogénes öröklődés -hez szakirodalom: (Plomin: Viselekedésgenetika 2. fejezet) * A mendeli öröklődés törvényei A Huntington-kór (HD) kezdetét személyiségbeli változások,
3. Mi az esélye annak, hogy egymás után 2 fekete golyót húzok ki (vagy egyszerre két golyót megragadva mindkettő fekete lesz?
1. Egy zsákban nagyszámban és egyenlő mennyiségben fekete és fehér golyók vannak. Mi a valószínűsége annak, hogy elsőre fekete golyót húzunk? 2. Mi az esélye annak, hogy a következő golyó is fekete lesz?
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
A konfidencia intervallum képlete: x± t( α /2, df )
1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,
Demonstrációs célú szimulációk egyszer populációdinamikai folyamatok modellezésére
Eötvös Loránd Tudományegyetem Természettudományi Kar Demonstrációs célú szimulációk egyszer populációdinamikai folyamatok modellezésére Szakdolgozat Sáfár Rebeka Matematika B.Sc., elemz szakirány Témavezet
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Tudománytörténeti visszatekintés
GENETIKA I. AZ ÖRÖKLŐDÉS TÖRVÉNYSZERŰSÉGEI Minek köszönhető a biológiai sokféleség? Hogyan történik a tulajdonságok átörökítése? Tudománytörténeti visszatekintés 1. Keveredés alapú öröklődés: (1761-1766,
Természetes szelekció és adaptáció
Természetes szelekció és adaptáció Amiről szó lesz öröklődő és variábilis fenotípus természetes szelekció adaptáció evolúció 2. Természetes szelekció Miért fontos a természetes szelekció (TSZ)? 1. C.R.
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
BIOLÓGIA 11. ÉVFOLYAM I. beszámoló. A genetika alaptörvényei
BIOLÓGIA 11. ÉVFOLYAM 2015-2016. I. beszámoló A genetika alaptörvényei Ismétlés: a fehérjék fölépítése Új fogalom: gének: a DNS molekula egységei, melyek meghatározzák egy-egy tulajdonság természetét.
BME Nyílt Nap november 21.
Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
HAPMAP -2010 Nemzetközi HapMap Projekt. SNP GWA Haplotípus: egy kromoszóma szegmensen lévő SNP mintázat
HAPMAP -2010 Nemzetközi HapMap Projekt A Nemzetközi HapMap Project célja az emberi genom haplotípus* térképének(hapmap; haplotype map) megszerkesztése, melynek segítségével katalogizálni tudjuk az ember
++ mm. +m +m +m +m. Hh,fF Hh,fF hh,ff hh,ff. ff Ff. Hh hh. ff ff ff ff. Hh Hh hh hh
Múlt órán: Genetikai alapelvek, monogénes öröklődés Elgondolkodtató feladat Vajon miért nem halnak ki az olyan mendeli öröklődésű rendellenességek, mint a Phenylketonuria, vagy a Huntington kór? A PKU
A pumi színgenetikája
A pumi színgenetikája Az eredeti cikk itt olvasható: http://www.abiquadogs.com/pumi/pumicolor.htm Az a cél vezérelt minket, hogy jobban megértsük, milyen gének határozzák meg a különböző színeket a pumiknál.
Genetika 2. előadás. Bevezető
Genetika 2. előadás Genetikai alapelvek: hogyan öröklődnek a tulajdonságok Mendeli genetika Bevezető Mi okozza a hasonlóságokat és különbségeket a családtagok között? Gének: biológiai információ alapegysége
BIOLÓGIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK (2000)
BIOLÓGIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK (2000) MEGOLDÁSOK A javítási útmutatóhoz rendelkezésre áll a feladatlap. A pályázóknak megoldásaikat külön lapra kellett leírniuk. A bíráló a javítási útmutatóban
Evolúcióbiológia. Biológus B.Sc tavaszi félév
Evolúcióbiológia Biológus B.Sc. 2011. tavaszi félév A biológiában minden csak az evolúció fényében válik érthetővé Theodosius Dobzhansky : Nothing in biology makes sense except in the light of evolution.
Kiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2018 Statisztika - Gyakorlat Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Példa I (Vonat probléma) Aladár 25 éves és mindkét nagymamája él még: Borbála és Cecília.
Á É ő é ü ö á á ö é á é ö á á é ő á á ő á á á ő á ő é á é ő ö ó é ő é é á ó á á á á ó á á ö ö é á é Ó É á á ő á á ú ü ö á á á á é á á á á é é ő á á á á é ü á á ő ú á é á á ü ö á á á á é é á á á á ő á ő
Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet
Evolúció Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Mi az evolúció? Egy folyamat: az élőlények tulajdonságainak változása a környezethez való alkalmazkodásra Egy
Biológiai feladatbank 12. évfolyam
Biológiai feladatbank 12. évfolyam A pedagógus neve: A pedagógus szakja: Az iskola neve: Műveltségi terület: Tantárgy: A tantárgy cél és feladatrendszere: Tantárgyi kapcsolatok: Osztály: 12. Felhasznált
Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály
Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály Definíció A prenatális diagnosztika a klinikai genetika azon
Altruizmus. Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között?
Altruizmus Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között? Altruizmus rokonok között A legtöbb másolat az adott génről vagy az egyed
Altruizmus. Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között?
Altruizmus Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között? Altruizmus rokonok között A legtöbb másolat az adott génről vagy az egyed
Kvantitatív genetikai alapok április
Kvantitatív genetikai alapok 2018. április A vizsgálható tulajdonságok köre: egyed - szám Egyedek morfológiai tulajdonságai: testméretek, arányok, testtömeg Egyedek fiziológiai tulajdonságai: vérnyomás,
Statisztika, próbák Mérési hiba
Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:
MUTÁCIÓK. A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik.
MUTÁCIÓK A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik. Pontmutáció: A kromoszóma egy génjében pár nukleotidnál következik be változás.
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2017. 03. 20. Khí-négyzet (χ 2 ) Próba Ha mérés során kapott adatokról eleve tudjuk, hogy nem követik a normális vagy más ismert eloszlást, akkor a korábban
Í Í Í Í Ó Í Í Í Í É Í Ú ű É Á ű ű Ú É ű ű ű É Í É Á Í Í Ő Á É Ú ű Í Í ű Í Á Í Ü Á Á Í Í Í Í Í ű Í ű Ü Í ű ű É Á É Ú Á Ö Í Á ű ű Á É É Í Í Í Í ű É ű ű Á ű ű É É É ű Ü Í É Í ű Á É É Í Í Í ű Ö Ö Í Á É Í Ü
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói
Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus
A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot.
Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két
Statisztikai módszerek 7. gyakorlat
Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i
Mendeli genetika, kapcsoltság 26
Mendeli genetika, kapcsoltság 26 6. MENDELI GENETIKA. KAPCSOLT- SÁG ÉS GÉNTÉRKÉPEK. Mendel szabályai. Az örökl dés típusai. Független kombinálódás. Kapcsoltság, crossing over és géntérképek. egyformák.
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Környezet statisztika
Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)
Evolúcióelmélet és az evolúció mechanizmusai
Evolúcióelmélet és az evolúció mechanizmusai Az élet Darwini szemlélete Melyek az evolúció bizonyítékai a világban? EVOLÚCIÓ: VÁLTOZATOSSÁG Mutáció Horizontális géntranszfer Genetikai rekombináció Rekombináció
Fogalmak IV. Színöröklés elméleti alapjai
Fogalmak IV. Színöröklés elméleti alapjai A színeződés a melanintól függ, ami szemcsék formájában rakódik le a bőrbe, illetve a szőrbe. A melanint speciális pigmentképző sejtek termelik. A pigmentképződés
ő á ö é é í í ó ű á ő é é ő á á á é á é á é é é é ő é á á é é é é ö ö ú é íí ü é é ú ő ő é ó í é é é é ó í é é é ü ö ö á é ó é ő ó é á í ó é í ü é é á é é í é é ü é é á í ó í é ü ö ö é é ó ó é ó ó é á
Ü Á É É í Ő É Ő Á Ü Ó í Á É Ü Á É É í ŐÉ Ő Á Ü ü Ó Ó ö ő ö ö ö ő ó Ó ö ű ö ő ó Ó Ó ö ö Ó í ő ü ü ü Ü Á É í ő ő ü ú í ú Ü ű ö ü ö ü ü ú Ü í í ó ó É Ö ü ő ü ö ú Ü ö ö ü ő ő í ő Á Ó Ó í Ó ú ő ó í Ö Ó ö ö
ó ö ó őé é ü ő É ö ó ő é ű Ü ú é ü é ő ó ó ó é ő ó é é ó ö ó őé é Ü ő ó ő ú ó é ű Ü ú é ü é ó ó ö é ő ó é ó é ó ó ó ö ó ó őé é ü ő ő őé ü é ó ó ő é ű ü ú é ü é ő ó ö ó é ó é é ó ó Ó Á Á Á é é é ő ő é é
Í Á ÓÉ Ú Á ö ú ö ó ö ü ö ó ö ü ö ó ö ú ú ö ú ó ó ö ó ó ó ö ó ó ű ó ö ó ö ö ú ó ó ú ö Ö ó ö Ö ö ó ó ó ö ö ú ó ö ú ó ó ó ü ó ú ó ö ö ú ó ó Á Á ú ó ü ö Ö ó ö ö ó ö ú Á ö ú ö ö ö ö ö ú ö ú ü ö ú ű ö ö ó ó
ő ö é Ü ü é Ó é é ú ü ö ű é é é é í Ü Ö ö ö ö ü ö é é Ó é é ő é ű í ű ő ő é é é ő é é é Ü Ü Ö Ö ő Ö é ü ö ü ő é é é ő ő é ü í ő é ő ő é é é é é é é é ő í ö é ö ő é ő é é ő é ü ő é é é é ú ő é é ő ő é é
Í Í Á Í Á Ü Ö ü Á ü ó Í ó ű ó ü ó ó ó ú ű ó ó ü ű ó ó ű ó ü ü ü ű Í ű ü ü ű ó ű ü ó ű ü ű ű ü ű óé ű ü ó ű ű ü ü ó ú ü ű ó ü ü É ü ó ó ű ó ó ó ú ó ü ó ü ű ü ó ü ú ó Í ó ó ó ó ó ü ü ó ó ú ó ű ü ú ú ó ü
ö ö É Ú Á í ö í ö ö öé ö í ö ö Ö Ö Ö ó ó ó ö Ö í í í ó ó Ö í Ö ű í ö ő í ő ü Ö ű í í Ö ó í ű Ö ó í í ó ó ö í Ö Ö Ö ű ó ó ő ő ő ő í ó ó í ó ű ó Ö Ö ű í ő ú ó ő Ö Ö ö Ö ü Ő ö ü ó ó í í ö ü ő Ö ü í ú ó ó
A Hardy-Weinberg egyensúly
Hrdy-Weinerg egyensúly Evolúciót úgy definiáltuk, hogy ouláción z llélgykoriságok megváltozás. Egy ideális ouláció olyn, hogy n evolúció nincs. Ismérvei megmuttják, hogy mely folymtos vezethetnek evolúcióhoz.
Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet
Evolúció Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Mi az evolúció? Egy folyamat: az élőlények tulajdonságainak változása a környezethez való alkalmazkodásra Egy
A populációgenetika alaptörvénye
1 of 5 5/16/2009 2:58 PM A Hardy Weinberg-egyensúly A populációgenetika alaptörvénye A felfedezőiről elnevezett Hardy Weinberg egyensúlyi állapot az ideális populáció-ban fordul elő, egy olyan populációban,
Molekuláris genetikai vizsgáló. módszerek az immundefektusok. diagnosztikájában
Molekuláris genetikai vizsgáló módszerek az immundefektusok diagnosztikájában Primer immundefektusok A primer immundeficiencia ritka, veleszületett, monogénes öröklődésű immunhiányos állapot. Családi halmozódást
Vizsgakövetelmények Magyarázza a számfelező osztódás lényegét, szerepét az ivarsejtek létrejöttében és a genetikai sokféleség fenntartásában.
1 Vizsgakövetelmények Magyarázza a számfelező osztódás lényegét, szerepét az ivarsejtek létrejöttében és a genetikai sokféleség fenntartásában. Értse, hogy a meiózis folyamata miként eredményez genetikai
1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.
IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk
A szarvasmarha növekedési hormon és növekedési hormon receptor gének AluI polimorfizmusának vizsgálata magyar holstein-fríz bikanevelő állományban
A szarvasmarha növekedési hormon és növekedési hormon receptor gének AluI polimorfizmusának vizsgálata magyar holstein-fríz bikanevelő állományban Doktori értekezés tézisei Kovács Katalin Gödöllő 2006
B I O L Ó G I A. ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK május 22. du. JAVÍTÁSI ÚTMUTATÓ. Kérjük, olvassa el a bevezetőt!
B I O L Ó G I A ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2002. május 22. du. JAVÍTÁSI ÚTMUTATÓ Kérjük, olvassa el a bevezetőt! A javítási útmutatóhoz rendelkezésre áll a feladatlap. A pályázóknak megoldásaikat
HUMÁNGENETIKA. összeállította: Perczel Tamás
HUMÁNGENETIKA összeállította: Perczel Tamás Fenotípus változatok A MENNYISÉGI JELLEGEK folyamatos, átfedő tulajdonságok testmagasság, testtömeg, IQ, bőrszín több gén határozza meg, számtalan kölcsönhatás
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Az első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
Populációgenetikai vizsgálatok eredményei hangulatzavarokban. Képalkotó vizsgálatok alkalmazása a neuropszichofarmakológiában
Populációgenetikai vizsgálatok eredményei hangulatzavarokban Képalkotó vizsgálatok alkalmazása a neuropszichofarmakológiában Juhász Gabriella Semmelweis Egyetem, GYTK, Gyógyszerhatástani Intézet Neuroscience
Tartalom. Javítóvizsga követelmények BIOLÓGIA...2 BIOLÓGIA FAKULTÁCIÓ...5 SPORTEGÉSZSÉGTAN évfolyam évfolyam évfolyam...
Tartalom BIOLÓGIA...2 10. évfolyam...2 11. évfolyam...3 12. évfolyam...4 BIOLÓGIA FAKULTÁCIÓ...5 11. évfolyam...5 12. évfolyam...6 SPORTEGÉSZSÉGTAN...7 1 BIOLÓGIA 10. évfolyam Nappali tagozat Azírásbeli
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Ö Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É
ö ö ö ö ö ö ö ű ű ö ö ö ö ö Ő ö Ó Ú ö Ö ö ö ö ö Ö Ő ö ö Í Ó Ó Ő ö ö ö ö ö Ő Ő Ó Ő É ö Ú ö ö Ő ö ö ö ö ö ö ö Ő ö Ő É ö Ő ö ö Ő ö ö ö Ó ű ö ö ö Ő ö ö ö Í Ő Ó Í ö ö ö ö Ő Ő Ő Ő Í Ó Ő Ő Í Ő ö ö ö ö ö Ő Ő ö
Ú ű ü ü Ü ű É É Ö Ö Á ü ü ü ű É ú Á Ö Ü ü ü ű É Á É Ű ű Ü Ü ű ü ű ü ű ü Ü ü ü Ű Á Á Á ű ú ű Á Ó Ó É Á Ó Á Ó ű ü ü ű ű ü ú ú ü ü ü ű ü ű Ü ű ü ü ú ü Ö ü ú ú ü ü ü ü ű ú ü Ó ü Ó Ó ü ü Ó ü ü Ó ű ű ú ű ű ü
Á É É Á Á Á ő ő ő ő É Ó Á Á Á ő Á Ú Ú ő É Á ő Á ő Á ő ő Á É ő Á ő Á É Á É Á Á É É ű ő ű É Ú ő Á Ú Ó Á Á Ó ő Á É ő Á Ó É Ó É Ó Ú Á Á Á Ü ű ő É Á É ő Á ő ő É É É É Á Á É Á Á Á É É ű É Á Á ő É É Á Á Á Á ű