Illesztés. Digitális képelemzés alapvető algoritmusai. Adatregistráció és -fúzió 1/2. Adatregistráció és -fúzió 2/2. Csetverikov Dmitrij
|
|
- Tibor Budai
- 8 évvel ezelőtt
- Látták:
Átírás
1 Illesztés Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest Informatikai Kar 1 Megfeleltetés és illesztés a számítógépes latásban Megfeleltetést igénylő képelemzési feladatok Megfeleltetés kritikus problémái 2 Mintaillesztés Eltérési mértékek Hasonlósági mértékek 3 Robusztusság és lokalizációs pontosság 4 Invariancia, robusztusság, sebesség Mintaillesztés felgyorsítása z illesztési konzisztencia ellenőrzése datregistráció és -fúzió 1/2 datregistráció és -fúzió 2/2 Különböző érzékelőkkel képeket készítünk ugyanarról a színtérről. pl. emberi testról MRI, PET, röntgen képeket különböző fizikai eredetű képeket össze kell illeszteni, megfeleltetni. orvosi képalkotásban az ilyen képeket modalitásoknak hívják Ez multimodális képregisztráció. illesztés = matching megfeleltetés = search for correspondence megfeleltetni = find correspondence Ha nem képi, hanem más mérési adatokról, pl. 3D-s ponthalmazokról van szó, akkor adatregistrációról beszélünk. pl. az angol 3D data registration kifejezés gyakran a mért felületek vagy pontfelhők illesztését jelenti Ha különböző adatstruktúrájú adatokat illesztünk össze, akkor inkább az adatfúzió szót használjuk. video és hang adatfúziója, regisztrációja kép és ponthalmaz adatfúziója, regisztrációja
2 Mozgáselemzés Sztereó látás Különböző időpontokban képeket készítünk változó, mozgó színtérről. például arcmozgást, -kifejezést vizsgálunk vagy térmegfigyelést végzünk Ilyenkor kereshetünk egymásnak megfelelő pontokat (correspondences) elmozdulásokat (displacements) változásokat Ez mozgáselemzés. Tipikus példák: mozgáskövetés (motion tracking) optikai áramlás becslése (optical flow estimation) Különböző szemszögből képeket készítünk egy színtérről és keresünk egymásnak megfelelő képpontokat. Ez a sztereó látás. z illesztés biztosítja a diszparitásokat. a két felvétel közötti pontelmozdulásokat Diszparitás és bázistávolság alapján triangulációval meghatározzuk a mélységet. bázistávolság (baseline) a kamerák közötti távolság mélység (depth) a kamera és a 3D-s pont közötti távolság Klasszikus sztereó: kalibrált kamerapár (stereo rig). Általános eset: 3D-s rekonstrukció több felvétel alapján. Mintaillesztés Megfeleltetés nehézségei Olyan kisebb képrészeket keresünk, amelyek egy adott mintára hasonlítanak. mintát mágából a képből, vagy egy másik képből vehetünk. sztereóillesztésnél is lokális mintát keresünk, amikor pontokat (pontkörnyezeteket) megfeleltetünk, korrelálunk mozgáskövetés is gyakran mintaillesztéssel történik kereshetünk minta szerint egy képi adatbázisban is Mintaillesztés egy alapvető felismerési probléma, számtalan feladatban jelenik meg. az előadásban elsősorban mintaillesztésről lesz szó megfeleltetési probléma sikeres megoldása kritikus kérdés a számítógépes látásban. megnyítja az utat további problémák megoldása felé de több elvi nehézséget kell leküzdeni Képalkotási változásokkal szembeni robusztusság térbeli (látószőg, távolság, perspektíva) fotometrikus (világítás, fényvisszaverődés) Más tényezőkkel szembeni robusztusság zaj, képtorzítás takarás (occlusion): nem minden pontnak van megfelelóje, és nem tudjuk, hogy melyiknek nincs láthatóság (visibility) problémája
3 következő változásokat fogjuk vizsgálni: Mintaillesztés fogalma Geometriai transzformációk 2D-s eltolás és elforgatás Fotometrikus transzformációk intenzitás-skálázás és -eltolás I = ai + b z intenzitás-skálázás és -eltolás jelentése a: a direkt megvilágítás erőssége az objektumra irányított, közvetlen megvilágítás b: a szórt fény (ambient light) erőssége a színtér globális fényessége minden irányból érkező fény Minden lehetséges (x, y) pozícióban összehasonlítjuk a w(x, y ) képmintát (részképet) az f(x, y ) képpel más szóval, minden (x, y) pontban illesztjük a w(x, y )-t az f(x + x, y + y )-hez Mintaillesztés: olyan (x, y) helyeket keresünk, ahol kicsi az eltérés a minta és a kép között, vagy nagy a hasonlóság a minta és a kép között angolul: low dissimilarity, high similarity Négyzetes különbségek összege Intenzitás-eltolásra korrigált SSD SSD(x, y) = {f(x + x, y + y ) w(x, y )} 2, ahol az egyszerűség kedvéért = (x,y ) W (x+x,y+y ) F SSD a Sum of Squared Differences rövidítése. W a lokális pozíciók halmaza a w mintán belül F a globális pozíciók halmaza az f képen belül SSD(x, y) nem invariáns 2D-s elforgatásra nem talál meg elforgatott mintát intenzitás-változásokra nem kezel változó világítást SSD SC (x, y) = ] [ ]} 2 {[f(x+x, y+y ) f(x, y) w(x, y ) w f(x, y) az intezitás-átlag az aktuális képrészen. minden (x, y) pozícióban kell kiszámítani hasznaljuk a futó dobozszűrőt! w a minta átlaga. csak egyszer kell kiszámítani SSD SC (x, y) segítségével kompenzálhatjuk az intenzitás-eltolást kezeli a szórt fény változását nem kezeli a direkt megvilágítás változását
4 Nemnormalizált kereszt-korreláció Normalizált kereszt-korreláció CC(x, y) = f(x + x, y + y ) w(x, y ) kereszt-korreláció és a konvolúció tulajdonságait már ismerjük. CC(x, y) formailag ugyanaz, mint az f kép a w maszkkal való szűrése. amit szűrésről tudunk, itt is alkalmazható: normalizálás, szeparábilitás, futószűrés CC(x, y) nem invariáns intenzitás-eltolásra és -skálázásra. mikor w > 0 és f nagy, CC(x, y) is nagy, függetlenül attól, hogy w és f hasonlítanak-e. ezt normalizálással korrigáljuk NCC(x, y) = 1 ] [ ] [f(x + x, y + y ) f(x, y) w(x, y ) w, N 1 ahol N 1 = S f (x, y) S w, S f (x, y) = [f(x + x, y + y ) f(x, y)] 2, S w = (x,y ) W [ w(x, y ) w] 2. S f (x, y)-t sokszor kell kiszámítani, S W -t csak egyszer. NCC(x, y) invariáns minden lineáris intenzitás-változásra Módosított normalizált kereszt-korreláció Mintaillesztés példája MNCC(x, y) = 1 ] [ ] [f(x +x, y +y ) f(x, y) w(x, y ) w, N 2 ahol N 2 = S f (x, y) + S w bal kép minta, kinagyítva jobb kép z MNCC és az NCC között a különbség csak a normalizálásban van: N 1 = S f (x, y) S w. MNCC-vel elkerülhető a numerikus instabilitás, amikor S f (x, y) kicsi. kis képváltozás Elméletileg, az MNCC csak eltolás-korrigált. a gyakorlatban, kevésbé érzékeny skálázásra is: S f (x, y) + S w S f (x, y), közelítve NCC kép NCC felület SDD kép SDD felület jobb képen levő mintán a bal képen keressük. NCC a normalizált kereszt-korreláció SSD a négyzetes különbségek
5 Numerikus példa mintaillesztésre Területilleztés vagy kontúrillesztés? 1/2 minta input kép CC eredménye NCC eredménye (N)CC: (normalizált) keresz-korreláció az input képet 0-ák veszik körül az eredményekben az 1 alatti értékeket nem mutatjuk Ideális illeszkedés nem sokkal jobb, mint közeli értékek az illesztés nem elég éles minta input kép NCC eredménye Kontúrillesztés élesebb eredményt ad. területilleztés: ideális illesztés és közeli értékek aránya 1.5 kontúrillesztés: az arány 2 Területilleztés vagy kontúrillesztés? 2/2 Robusztusság és lokalizációs pontosság ideális objektum eltorzított objektum szagg. vonal: minta folyt. vonal: objektum körök: átfedő pontok Ideális objektum esetén a minta kis eltolására a kontúrátfedés drasztikusan csökken a területátfedés alig csökken kontúrillesztés élesebb Eltorzított vagy elforgatott objektum esetén a kontúrátfedés kicsi elveszíthetjük az objektumot a területátfedés nagy megtaláljuk az objektumot kontúrillesztés kevésbé robusztus Kontúrillesztés élesebb illesztés: jobb lokalizáció kevésbé robusztus: elveszíthetünk objektumokat gyorsabb Területilleztés kevésbé éles illesztés robusztusabb lassúbb Más detektálási feladatoknál is van hasonló kapcsolat. jobb lokalizációs pontosság gyengébb robusztusság ha megtaláljuk, megmondjuk a pontos helyét, vagy megtaláljuk, de nem tudjuk a pontos helyét
6 Mintaillesztés kritikus problémái Méretváltozás és elforgatás kezelése Méret-változásokra és elforgatásra való invariancia például, közelebbről és/vagy elforgatva látjuk Képtorzítással szembeni robusztusság például, perpektív torzítás "Zajos" illeszkedésekkel szembeni robusztusság váratlanul jól illeszkedő, nem keresett képrészek hasonlósági mértékeink nem ideálisak! Számításigény Képnormalizálás a képet standard méretre és orientációra transzformáljuk feltételezi, hogy képen belül nincs méret- vagy orientáció-változás képorientációt kell definíálni daptív megoldások minden pozícióban variáljuk a minta méretét és orientációját kiválasztjuk a legjobban illeszkedő méretet és orientációt nagyon lassú ha a méretek és szögek száma nagy csak kisszámú méret és szög esetén használjuk! Invariáns megoldások méret- és elforgatás-invariáns leírást használunk nem képeket, hanem képleírásokat hasonlítunk össze Képnormalizálás méretre és orientációra Torzítástűrő illesztés template original image normalised image jobb felső sorokban levő betű mérete és orientációja eltér a többiétől. ez a betű nem fog illeszkedni többi négy betű illeszkedni fog. Hogyan definíáljuk a képorientációt? Rugalmas mintákat használunk. rugalmasan összekötött alminták "rugók" lehetővé teszik a minta kisebb változtatását bevezetünk egy célfüggvényt, amely büntet nagyobb változtatásokat nagyobb változtatásnak nagyobb a költsége kkor működik jól, amikor az alminták elég jellegzetesek megbízható illesztéshez. rcminta mint rugalmasan összekötött alminták rendszere.
7 Mintaillesztés felgyorsítása jellemzőpontokkal Mintaillesztés felgyorsítása FFT-vel Nem képekkel és mintákkal dolgozunk, hanem lokális jellemzőpontjaikkal. például élekkel, sarkokkal kkor hasznos, amikor a képi sajátságok viszonylag ritkák, de megbízhatóak. Másfelöl, ez a megoldás torzításérzékeny lehet. emlékezzünk vissza kontúrillesztésre! Nagy minták esetén a kereszt-korrelációt célszerű Gyors Fourier Transzformációval, FFT-vel implementálni. f w = IFFT [FFT [ f(x, y) ] [ ] ] FFT w(x, y) IFFT az inverz FFT X az X komplex konjugáltja N N-es képre az FFT műveletigénye O(N 2 log N) a direkt implementáció műveletigénye O(N 4 ) Ökölszabály "nagy mintára": nagyobb mint pixel. Nem illeszkedő régiók gyors kiszűrése: alapötlet Gyors kiszűrés ritkított mintavételezéssel 1 Gyorsan kiszűrjük a nyilvánvalóan nem illeszkedő régiokat. 2 Csak a megmaradt, válogatott régiókat, jelölteket vizsgáljuk meg alaposan. zért hatékony, mert a mintára egyáltalán nem hasonló régióból gyakran sokkal több van, mint a hasonlóból. De vigyázni kell vele, mert elveszíthetünk igazi, keresett régiókat. ha ügyetlenül szűrűnk Először nem minden pontban illesztünk, hanem nagyobb lépéssel mozgatjuk a mintát. Kiszűrjük a nyilvánvalóan nem illeszkedő helyeket, aztán csak a megmaradt helyekkel foglalkozunk. Ezt egy képpiramissal is meg lehet csinálni. Gyakorlatilag, a keresztkorrelációs függvény egyre finomabb mintavételezéséről van szó. elveszíthetünk nagyon keskeny csúcsokat, maximumokat!
8 Gyors kiszűrés más módszerekkel z oda-vissza illesztés Kiszámítjuk minta és régió egyszerű tuljadonságait. kiszűrjük a régiót, ha a tulajdonságok nagyon eltérnek Hamis illeszkedések kiszűrésére alkalmazott módszer. Csak akkor fogadunk el illesztést, ha fordítva is érvényes. Kisebb almintákat használunk. kiszűrjük a régiót, ha az alminták nem illeszkednek Küszöböt szabunk kumulatív (összegző) eltérési mértékre. kiszűrjük a régiót, ha a mérték eléri a küszöböt nem kell végig számolni az eltérést! de a küszöb jó beállítása nem egyszerű dolog legyen inkább óvatos, viszonylag magas érték! bal kép jobb kép eredet IH konzistens IH Takart pontok kiszűrése sztereóillesztésben. Illesztési Hiba: világosabb pixel nagyobb hiba konzisztencia-ellenőrzés kiszűri a takart pontokat
8. Pontmegfeleltetések
8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01
Köszönetnyilványítás. Digitális képelemzés alapvető algoritmusai. A kurzus témái. Képelemzés és képszűrés alapfogalmai. Csetverikov Dmitrij
Köszönetnyilványítás Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai Kar A kurzus megírásában az
Képszűrés II. Digitális képelemzés alapvető algoritmusai. Laplace-operátor és approximációja. Laplace-szűrő és átlagolás. Csetverikov Dmitrij
Képszűrés II Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai Kar 1 Laplace-szűrő 2 Gauss- és Laplace-képpiramis
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Panorámakép készítése
Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)
Képfeldolgozás Szegmentálás Osztályozás Képfelismerés Térbeli rekonstrukció
Mesterséges látás Miről lesz szó? objektumok Bevezetés objektumok A mesterséges látás jelenlegi, technikai eszközökön alapuló világunkban gyakorlatilag azonos a számítógépes képfeldolgozással. Számítógépes
Sergyán Szabolcs szeptember 21.
Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív
3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás,
Képregisztrációs eljárások. Orvosi képdiagnosztika 2016 ősz
Képregisztrációs eljárások Orvosi képdiagnosztika 06 ősz Két kép egymáshoz igazítása, illesztése Példák: Időbeli követés Regisztráció célja Eltérő modalitások (PET-CT, Röntgen-MRI, UH-MRI,...) fúzió Műtét
Digitális képelemzés alapvető algoritmusai Csetverikov, Dmitrij
Csetverikov, Dmitrij írta Csetverikov, Dmitrij Publication date 2015 Szerzői jog 2015 Csetverikov Dmitrij Tartalom Digitális képelemzés alapvető... 1 1. 1 Bevezetés... 1 1.1. 1.1 A jegyzet tematikája...
Képregisztrációs eljárások. Orvosi képdiagnosztika 13. ea ősz
Képregisztrációs eljárások Orvosi képdiagnosztika 3. ea. 05 ősz Két kép egymáshoz igazítása, illesztése Példák: Időbeli követés Regisztráció célja Eltérő modalitások (PET-CT, Röntgen-MRI, UH-MRI,...) fúzió
Számítógépes látás alapjai
Számítógépes látás alapjai Csetverikov Dmitrij, Hajder Levente Eötvös Lóránd Egyetem, Informatikai Kar Csetverikov, Hajder (ELTE Informatikai Kar) Számítógépes látás 1 / 23 Rekonstrukció speciális hardverekkel
Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi
Grafikonok automatikus elemzése
Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Képrekonstrukció 3. előadás
Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések
6. Modell illesztés, alakzatok
6. Modell illesztés, alakzatok Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 ROBOSZTUS EGYENES ILLESZTÉS Egyenes illesztés Adott a síkban
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform
Transzformációk Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Koordinátarendszerek: modelltér Koordinátarendszerek: világtér Koordinátarendszerek: kameratér up right z eye ahead
4. Jellemző pontok kinyerése és megfeleltetése
4. Jellemző pontok kinyerése és megfeleltetése Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Jellemzők és megfeleltetésük A képfeldolgozás,
Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.
Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom
Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.
Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?
Kétdimenziós alakelemzés. Digitális képelemzés alapvető algoritmusai. Alakelemzés feladatai. Kétdimenziós alakelemzés tárgyai. Csetverikov Dmitrij
Kétdimenziós alakelemzés Digitális képelemzés alapvető algoritmusai 1 Alakelemzés alapfogalmai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai
Automatikus irányzás digitális képek. feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA
Automatikus irányzás digitális képek feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA Koncepció Robotmérőállomásra távcsővére rögzített kamera Képek alapján a cél automatikus detektálása És az irányzás elvégzése
5. 3D rekonstrukció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
5. 3D rekonstrukció Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 PASSZÍV SZTEREÓ 3 Passzív sztereó 3D rekonstrukció egy sztereó kamera
3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ
Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ
Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a
Felvétel készítése Képfeldolgozás (ábragyűjtemény) IV.
Felvétel készítése Képfeldolgozás (ábragyűjtemény) IV. Dr. Kohut József 1. felbontás (resolution) 2. látómező (field of view, FOV) 3. tárgy-távolság (working distance) 4. érzékelő (sensor) 5. tárgy/mező
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni.
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Kezdjük a sort a menetidőgörbékről, illetve az NMO korrekcióról tanultakkal. A következő ábrán
Bevezetés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
Bevezetés Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Digitális képfeldolgozás digitális képfeldolgozás számítógépes grafika digitális
A KLT (Kanade Lucas Tomasi) Feature Tracker Működése (jellegzetes pontok választása és követése)
A KL (Kanade Lucas omasi) Feature racker Működése (jellegzetes pontok választása és követése) Készítette: Hajder Levente 008.11.18. 1. Feladat A rendelkezésre álló videó egy adott képkockájából minél több
Számítógépes látás alapjai
Számítógépes látás alapjai Csetverikov Dmitrij, Hajder Levente Eötvös Lóránd Egyetem, Informatikai Kar Csetverikov, Hajder (ELTE Informatikai Kar) Számítógépes látás 1 / 44 Többkamerás 3D-s rekonstrukció
2. Pont operációk. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
2. Pont operációk Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Kép transzformációk típusai Kép értékkészletének (radiometriai információ)
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
A 3D-2D leképezés alatt melyek maradnak robusztus képjellemzők?
A 3D-2D leképezés alatt melyek maradnak robusztus képjellemzők? Vagyis mely képjellemzőket érdemes a vetületképekből kihámozni? Az attól függ Térbeli viszonyok egyenes méret párh. / szög alak síkok helyzete
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Szenzorcsatolt robot: A szenzorcsatolás lépései:
1. Mi a szenzorcsatolt robot, hogyan épül fel? Ismertesse a szenzorcsatolás lépéseit röviden az Egységes szenzorplatform architektúra segítségével. Mikor beszélünk szenzorfúzióról? Milyen módszereket használhatunk?
Transzformációk. Szécsi László
Transzformációk Szécsi László A feladat Adott a 3D modell háromszögek csúcspontjai [modellezési koordináták] Háromszögkitöltő algoritmus pixeleket színez be [viewport koordináták] A feladat: számítsuk
Képfeldolgozás és képfúzió a hibrid technikában
Képfeldolgozás és képfúzió a hibrid technikában Képfúzió vagy képregisztráció? Regisztráció: annak a térbeli transzformációnak a meghatározása, amelyik segítségével két kép anatómiai illesztése megoldható
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
PONTFELHŐ REGISZTRÁCIÓ
PONTFELHŐ REGISZTRÁCIÓ ITERATIVE CLOSEST POINT Cserteg Tamás, URLGNI, 2018.11.22. TARTALOM Röviden Alakzatrekonstrukció áttekintés ICP algoritmusok Projektfeladat Demó FORRÁSOK Cikkek Efficient Variants
CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens
CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi
Kamerakalibráció és pozícióbecslés érzékenységi analízissel, sík mintázatokból. Dabóczi Tamás (BME MIT), Fazekas Zoltán (MTA SZTAKI)
, 2008 feb. 4-5 Kamerakalibráció és pozícióbecslés érzékenységi Bódis-Szomorú András Dabóczi Tamás (BME MIT), Fazekas Zoltán (MTA SZTAKI) Méréstechnika- és Információs Rendszerek Tanszék BME Rendszer-
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
6. Éldetektálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
6. Éldetektálás Kató Zoltán Képeldolgozás és Számítógépes Graika tanszék SZTE (http://www.in.u-szeged.hu/~kato/teaching/) 2 Élek A képen ott található él, ahol a kép-üggvény hirtelen változik. A kép egy
Geofizikai kutatómódszerek I.
Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
Számítógépes Grafika SZIE YMÉK
Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
Láthatósági kérdések
Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
Orientáció és skálázás invariáns. Darya Frolova, Denis Simakov, David Lowe diáit is felhasználva
Invariáns képjellemzők detektálása és követése Orientáció és skálázás invariáns jellemzők detektálása és követése Darya Frolova, Denis Simakov, David Lowe diáit is felhasználva Detektálás és követés -
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás
Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű
Mérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést
Loványi István vizsgakérdései kidolgozva (béta)
Loványi István vizsgakérdései kidolgozva (béta) 1. Morfológiai képfeldolgozás elmélete 1. Alapvető halmazműveletek, tulajdonságaik Műveletek: egyesítés (unió) metszet negált összetett műveletek... Tulajdonságok:
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Miről lesz szó? Videó tartalom elemzés (VCA) leegyszerűsített működése Kültéri védelem Közúthálózat megfigyelés Emberszámlálás
Videóanalitikát mindenhova! Princz Adorján Miről lesz szó? Videó tartalom elemzés (VCA) leegyszerűsített működése Kültéri védelem Közúthálózat megfigyelés Emberszámlálás VCA alapú detektorok Videótartalom
Tárgy. Forgóasztal. Lézer. Kamera 3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL
3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL. Bevezetés A lézeres letapogatás a ma elérhet legpontosabb 3D-s rekonstrukciót teszi lehet vé. Alapelve roppant egyszer : egy lézeres csíkkal megvilágítjuk a tárgyat.
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
Képfeldolgozás jól párhuzamosítható
Képfeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, 2nd ed., 2005. könyv 12. fejezete alapján Vázlat A képfeldolgozás olyan alkalmazási terület,
Plakátok, részecskerendszerek. Szécsi László
Plakátok, részecskerendszerek Szécsi László Képalapú festés Montázs: képet képekből 2D grafika jellemző eszköze modell: kép [sprite] 3D 2D képével helyettesítsük a komplex geometriát Image-based rendering
Képrestauráció Képhelyreállítás
Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni
DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG:
DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: kisszandi@mailbox.unideb.hu ImageJ (Fiji) Nyílt forrás kódú, java alapú képelemző szoftver https://fiji.sc/ Számos képformátumhoz megfelelő
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
1. Bevezetés 1. Köszönetnyilvánítás 1. 2. A számítógépes játékfejlesztésről 3
1. Bevezetés 1 Köszönetnyilvánítás 1 2. A számítógépes játékfejlesztésről 3 2.1. Néhány tanács játékfejlesztőknek 3 2.2. Hogyan fogjunk saját játék írásához? 4 2.3. A számítógépes játék főbb elemei 9 3.
Képelemzési módszerek. Automatikus retina képelemzési módszerek 3/3/2011. MI módszerek a képelemzésben. A retina analízis digitális képei
Képelemzési módszerek Mesterséges Intelligencia II. előadás Dr. Nyúl László Szegedi Tudományegyetem Képeld 2011.03.01. MI módszerek a képelemzésben Képjavítás Képszegmentálás Alakelismerés Képleírás (jelenet
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012
2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,
Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken
Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.
Rendszámfelismerő rendszerek
Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013 Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek Motiváció
4. Szűrés frekvenciatérben
4. Szűrés frekvenciatérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) Unitér transzformációk Az unitér transzformációk olyan lineáris,
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Geometrikus deformálható modellek Görbe evolúció Level set módszer A görbe evolúció parametrizálástól független mindössze geometriai
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer
Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera
STATISZTIKAI PROBLÉMÁK A
STATISZTIKAI PROBLÉMÁK A HULLÁMTÉR REPRODUKCIÓ TERÜLETÉN 2012. május 3., Budapest Firtha Gergely PhD hallgató, Akusztikai Laboratórium BME Híradástechnikai Tanszék firtha@hit.bme.hu Tartalom A hangtér
Az ipari komputer tomográfia vizsgálati lehetőségei
Az ipari komputer tomográfia vizsgálati lehetőségei Dr. Czinege Imre, Kozma István Széchenyi István Egyetem 6. ANYAGVIZSGÁLAT A GYAKORLATBAN KONFERENCIA Cegléd, 2012. június 7-8. Tartalom A CT technika
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási
3D Számítógépes Geometria II.
3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
Mozgásmodellezés. Lukovszki Csaba. Navigációs és helyalapú szolgáltatások és alkalmazások (VITMMA07)
TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK () BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM (BME) Mozgásmodellezés Lukovszki Csaba Áttekintés» Probléma felvázolása» Szabadsági fokok» Diszkretizált» Hibát
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás
32. A Knuth-Morris-Pratt algoritmus
32. A Knuth-Morris-Pratt algoritmus A nyers erőt használó egyszerű mintaillesztés műveletigénye legrosszabb esetben m*n-es volt. A Knuth-Morris-Pratt algoritmus (KMP-vel rövidítjük) egyike azon mintaillesztő
Robotika. Relatív helymeghatározás Odometria
Robotika Relatív helymeghatározás Odometria Differenciális hajtás c m =πd n /nc e c m D n C e n = hány mm-t tesz meg a robot egy jeladó impulzusra = névleges kerék átmérő = jeladó fölbontása (impulzus/ford.)
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás