IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses"

Átírás

1 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök A nyugvó vllamos ölések közö erőhaásoka a vllamos ér közveí (Coulomb örvénye). A mozgó ölések (vllamos áramo vvő vezeők) közö s fellép erőhaás, am a mágneses ér közveí. Egyenleesen mozgó ölések (egyenáram) haására állandó, válozó sebességgel mozgó (gyorsuló vagy lassuló) ölések haására válozó mágneses ér kelekezk. A mágneses ér mozgás, válozás eseén fzka erőhaás fej k a ölésekre, am ölésszéválaszó (feszülsége ndukáló) haással jár. A mágneses ér Ha vákuumban (vagy levegőben) elhelyezkedő, a kereszmeszeükhöz képes hosszú párhuzamos vezeőkben a ölések egyenlees sebességgel áramlanak (egyenáram folyk), akkor a vezeők közö állandó nagyságú erőhaás lép fel. Ennek az erőnek a nagyságá az áramokkal kfejeze erőörvény írja le, amely szern levegőben, F =F =F jelöléssel F = k l (N), a ahol és a ké vezeő árama, a a vezeők egymásól mér ávolsága, l a vezeők vzsgál szakaszának hossza. F F l a Áramjára vezeőkre haó erők Ha = = A és l=a= m, akkor F = VAs 7 N = m, 7 Vs ebből kövekezően k = 7 Am, áalakíással: k = 4π = π π π 7 Vs = 4 Am a vákuum permeablása. Ez az összefüggés az A nagyságú áram defnálására s alkalmazzák. Az erő nagysága a permeablás aralmazó kfejezéssel felírva: F = l (N). π a A vezeők közö fellépő erő azonos áramrány melle vonzó, ellenkező áramok eseén aszíó rányú. Egyenáramoka feléelezzünk, így a mágneses ér jellemzőnek érelmezése egyszerűbb.

2 VVEA Elekroechnka 4 Az ábrán áramo vvő vezeőre haó F erő fellépésé úgy s érelmezhejük, hogy az áram egyenlees sebességgel áramló ölése a vezeő körül a ér különleges állapoá hozzák lére és ez az állapo a mágneses ér ha az áramo vvő vezeő egyenlees sebességgel áramló ölésere. A mágneses ér egyk jellemzője a mágneses érerősség. Homogén közegben az áram álal lérehozo mágneses érerősség függelen a ere kölő anyagól. H =, amvel az áramo vvő vezeő l hosszúságú szakaszára haó F erő: π a F =H l. H Áramjára egyenes vezeő mágneses ere Egy áramo vvő vezeőől a ávolságra a H mágneses érerősség vekoros alakja: H a d a = l, π ahol a a vezeőől a ér vzsgál ponjának rányába muaó egységvekor, dl a vezeőben folyó áram rányába muaó egységvekor. dl dl a a H a a H A mágneses érerősség vekor képzése A ovábbakban egyszerűsíő jelöléskén az skalár mennység áramo olyan vekornak eknjük, amelynek ránya az áram ránya a vezeőben, nagysága pedg az áram éréke: = dl. nhomogén és ferromágneses közegben a H érerősség számíása bonyolulabb, a gerjeszés örvény szern kell eljárn. A H érerősség vekormennység, ránya a ér mnden ponjában megegyezk a mágnesű észak (É) rányával, am egyelen vezeő eseén az áram rányában haladó jobbmeneű csavar forgásránya. A mágneses érerősség S mérékegysége [ H ] = A m. A érerőssége erővonalakkal ábrázolják, ezek a ér mnden ponjában a érerősség rányába muanak. A mágneses érerősség erővonala önmagukban záródnak, nem kelekeznek és nem végződnek.

3 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök H H F F Áramjára vezeőre haó erő egy másk vezeő érben Egy H erősségű mágneses érbe helyeze, áramo vvő l hosszúságú vezeőre haó erő: F = l H, ahol ránya a pozív ölésáramlás ránya. Az ábrán láhaó esere: F = l H. Szemléleesen: az elmozdulás ránya az erővonalak sűrűsödése felöl a rkulás rányában. Egy A áramo vvő vezeőől m ávolságra a érerősség nagysága H =,59 A m, egy H = A m erősségű mágneses érbe helyeze A áramo vvő vezeőre haó erő nagysága N F = 4π 7 m. A vzsgál ere kölő anyagól függő érjellemző a mágneses ndukcó, am sznén vekormennység, S mérékegysége Tesla szeleére [ ] = T= esla = Vs m. Ado H érerősségnél = r H = H, r a ere kölő közeg anyagára jellemző dmenzó nélkül szám, a relaív permeablás, = r a eljes permeablás. A relaív permeablás gyakran nem állandó, a érerősségől és a kndulás mágneses állapoól s függhe. A H = A m erősségű mágneses ér ndukcója levegőben ( r=) =4π -7 T=,56 mt, a Föld mágneses erének ndukcója a felszínen F =5-65 T. A ndukcó ránya álalában H rányával egyezk, a ér vzsgál ponjába helyeze rányű észak sarkának rányába mua, a mágnesen (pl. az rányűn) belül a dél pólusól az észak, mágnesen kívül az északól a dél felé. Az ndukcóvonalak ehá a mágnesből az észak pó- Tesla, Nkola (856-94) szerb származású mérnök, kuaó 3

4 VVEA Elekroechnka 4 lusánál lépnek k és a dél felé haladnak. Az rányű észak pólusa a földrajz észak sark felé mua. D É É D H A mágneses ér defnícó szern ránya zonyos anyagok a ferromágneses anyagok belsejében az ndukcó jelenősen megnő a vákuumhoz képes. Ennek egyszerű, szemlélees magyarázaa az lyen anyagokban meglévő molekulárs köráramok hozzájárulása a külső ér ndukcójához. r éréke az fejez k, hogy az ndukcó hányszorosára nő az anyag nélkül (vákuum-bel) állapohoz képes, nagysága: r 3-6. r meghaározása bonyolul számíással vagy méréssel örénhe. A mágneses ndukcó s ndukcóvonalakkal szemlélek. Egy ndukcójú mágneses érbe helyeze, áramo vvő l hosszúságú vezeőre haó erő eszőleges anyagú közegben: F = l. Az ábrán láhaó esere F = l. Egy T ndukcójú mágneses érbe helyeze A áramo vvő vezeőre haó erő nagysága F = N m. A ndukcó ado A felülere ve negrálja a felüle Φ fluxusa: Φ = da, homogén érben Φ=A. A fluxus skalár mennység, S mérékegysége Weber szeleére [Φ]=Wb =weber=vs. A mágneses ér szemléleésénél az erővonalaka gyakran fluxusvonalaknak érelmezk, vagys a ér azon részén, ahol nagyobb az ndukcó, o sűrűbbek a vonalak. T ndukcójú homogén mágneses érben az m felüleen áhaladó fluxus nagysága Wb. A magyar műszak nyelvben az ndukcó szó ké fogalma s jelen: - a mágneses ér jellemzője (ulajdonképpen fluxus sűrűség), - jelenség, am a vllamos vezeőben feszülsége hoz lére (ulajdonképpen ölésszéválaszás). A gerjeszés örvény (Ampère örvénye) A mágneses körök számíásának legfonosabb örvénye szern a H érerősség vekor vonalmen negrálja eszőleges zár görbe menén megegyezk a görbével haárol A felüleen áhaladó áramok algebra összegével, a felüle Θ gerjeszésével. Álalános alakja J áramsűrűségű érbel áramlás feléelezésével: A Weber, Wlhelm Eduard (84-89) néme fzkus 4

5 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök Hdl = JdA =Θ. A A gerjeszés skalár mennység, jele Θ, S mérékegysége [Θ]=A. Amennyben a vzsgál görbe homogén érerősségű szakaszokon halad kereszül, akkor a bal oldalon álló negrál, ha a öléshordozók koncenrálan, vllamos vezeőkben áramlanak, akkor a jobb oldalon álló negrál összegezéssé egyszerűsödhe: H l =. Állandó permeablás eseén a gerjeszés örvény más alakban s felírhaó: Hd l = dl = dl =, vagy dl =, = r. Példa Vzsgáljunk egy áramo vvő vezeő. Tőle a ávolságra a mágneses érerősség: H =. π a Ha (nem ferromágneses közegben) a eszőleges zár görbe a vezeőől a ávolságra rajzol (a sugarú) kör és a körüljárás ránya megegyezk H rányával, akkor Hd a d l = l = π a =. π π a Hasonló eredmény kapunk akkor s, ha egy elérő sugarú koncenrkus köríveken záródó görbé vzsgálunk az alább ábra szern: j j l l 3 l 4 r r H l l menén H =, l menén H π r A gerjeszés örvény lluszrálása =, π r l 3 és l 4 menén H merőleges az negrálás úra, így a skalár szorza Hdl =. 3 Hd r r 4 3 l = π = π 4 l Hdl Hd r r 4 = l = π = π 4 l A érerősség smereében a lérehozó vagy a lérehozásához szükséges gerjeszés mndg kszámíhaó. H = cons. görbe menén örénő negráláskor Hdl = Hdl. Ha a válaszo görbe homogén szakaszokra bonhaó, akkor Hdl = H l =Θ. 5

6 VVEA Elekroechnka 4 A mágneses erővonalkép (fluxuskép) Áramjára körvezeő (áramhurok) Hengerszmmerkus ere hoz lére, erővonalképének meszee hasonló a ké, ellenées rányú áramo vvő vezeő fluxusképéhez. Áramjára körvezeő (hurok, mene) mágneses ere Szolenod 3, orod A szolenod ekercsen belül koncenrálódk a mágneses ér és homogénnek eknheő, a ekercsen kívül szészóródk, ezér elhanyagolhaó, amennyben a ekercs hossza sokkal nagyobb az ámérőjénél, l» d, l>(5-)d. Hasonló a helyze orod ekercsnél D» d, D>(5-)d eseén. Ezeknél a ekercs-elrendezéseknél az egyes vezeők (meneek) sorba kapcsolak, bennük azonos áram folyk, ezér a gerjeszés örvény alkalmazásakor Θ=Hl=N, ahol N a meneszám (a vezeők száma). l d d l k =D k π A szolenod és a orod mágneses ere A gerjeszés örvény alkalmazásakor orodnál rendszern a D k közepes ámérő álal meghaározo l k közepes erővonalhosszal számolnak. Ado áramrány melle egy ekercs álal lérehozo mágneses ér ránya a ekercselés (mene)rányáól függ. D k Jobb- és balmeneű ekercs mágneses ere A ovábbakban jobbmeneű ekercseke feléelezünk. 3 Ampère álal bevezee elnevezés a henger felüleen elhelyezkedő csavarvonalú vezeőre. 6

7 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök Áramjára vezeőre haó erő ránya Az erőre kapo összefüggés alapján F = l, ehá erő akkor lép fel, ha az áramnak van a mágneses érre merőleges összeevője. F F Áramjára vezeőre haó erő homogén érben Összee mágneses ér eseén az eredő ndukcó a komponensek vekoráls összege a ér mnden ponjában. Hasznos és szór mágneses ér Csaol ekercseknél (lyen a ranszformáor és a forgó vllamos gép állórész-forgórész ekercselése) az egyk ekercs álal lérehozo fluxusnak csak egy része kapcsolódk a másk ekerccsel, a fluxus öbb része kszóródk. Ez uóbb nevezk szór fluxusnak. A szórás méréké a σ szórás ényezővel jellemzk. Az rodalomban öbb defnícó s alálhaó: σ φ φ = s e ( σ ), vagy σ φ φ = s h (σ > < ), ahol a φ e eredő (eljes) fluxus a φ s szórás és φ h hasznos fluxus összege φ e =φ s +φ h. zonyos eseekben a szórásnak fonos szerepe van, pl. a szórás ndukvás korláozza a zárla áramo. A mágneses ér örés örvénye Különböző permeablású anyagok haárfelüleén örénő áhaladáskor a H érerősség és a ndukcó ránya megválozk. 7

8 VVEA Elekroechnka 4 Az ndukcó vekor örése A haárréeg egy elem da felüleén áhaladó eljes Φ fluxus a ké anyagban, mndké réeg felöl megközelíve azonos, mvel az ndukcóvonalak mndg zárak: n da= cosα da= cosα da= n da, vagys a ndukcóvekor normáls összeevője válozalan érékű marad. A érerősség vekor örése A gerjeszés örvény érelmében a H érerősség zár görbére ve negrálja nullá kell adjon, ha a haárréegben nncs gerjeszés (nem folyk áram): H dl=h snα dl=h snα dl= H dl, vagys a H érerősség vekor angencáls összeevője marad válozalan érékű. Haárréegnél az ndukcó vekor érnőleges, a érerősség vekor normáls összeevője válozk. A fenek alapján H snα = H snα, vagy a érerőssége az ndukcóval felírva: snα = snα snα snα gα r r r = =. g rcosα rcosα α r cosα = cosα Ha r» r (pl. vas-levegő haáron rv = 6, r l =), akkor gα»gα, α»α, vagys α ~ 9, α ~. Ez az jelen, hogy a szórás erővonalak a vasból a levegőbe közel merőlegesen lépnek k. Az erővonalak ránya vas-levegő haáron 8

9 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök Az ndukcó örvény (Faraday örvénye) Az elekroechnka egyk legfonosabb alapörvénye, az álala leír jelenség felfedezése ee leheővé a vllamos energa nagy eljesíményben való előállíásá és elerjedésé. Ha egy vezeőkör hurok áramkör álal körülfogo fluxus bármlyen okból megválozk, a vezeőben feszülség kelekezk (ndukálódk) vllamos ér jön lére. Az ndukál feszülség arányos a fluxus dőegység ala megválozásával: d () u () = φ. Az ndukál feszülség nem a fluxus, hanem a fluxusválozás nagyságáól és rányáól függ. a) Nyugalm ndukcóról, ranszformáoros (ndukál) feszülségről beszélünk, amkor a vezeő nyugalomban van (a vezeő érben áll), a vele kapcsolódó fluxus pedg dőben válozk a (gerjesző) áramválozás vagy a mágneses kör megválozása ma. b) Mozgás ndukcó akkor lép fel, mozgás (rendszern forgás) ndukál feszülség akkor kelekezk, amkor (állandó) mágneses érben a vezeő mozgás végez és eközben mesz a mágneses ér erővonala, vagys a mozgásnak van az erővonalakra merőleges összeevője. Az ndukcó során a mágneses ér megválozása vllamos ere hoz lére. A fluxusválozás helye az ndukál feszülség fogalmá használva a mágneses jelensége vllamos áramkör jelenséggel, az ndukál feszülséggel helyeesíjük. A nyugalm és a mozgás ndukcó a gyakorlaban sokszor egydejűleg van jelen, pl. amkor válozó érben mozog egy vezeő. Fonos: ha a érben válozó fluxusok vannak, akkor a vllamos ér nem poencálos, ké eszőleges pon közö a feszülség nem függelen az úól! ugyans függ a körülzár fluxusól, lleve annak válozásáól. A vllamos poencálnak mn érjellemzőnek lyenkor nncs érelme. Zár hurokban (áramkörben) az ndukál feszülség a hurokellenállásnak megfelelő áramo léesí. Az ellenállás R ohmos feszülségesése ha a körben nncs más feszülségforrás egyensúly ar az U ndukál feszülséggel, Krchhoff hurokörvénye alapján: R + U =. j j j Álalános eseben a hurokörvény az ohmos feszülségesések, a belső és az ndukál feszülségek eredőjére érvényes: R + U + U =. j j j k U az ndukál, U b a nem ndukcó úján (pl. galvánelemmel) lérehozo belső feszülsége jelen. k k k n bn 9

10 VVEA Elekroechnka 4 Nyugalm ndukcó A fluxusválozás és a ölésszéválaszó vllamos érerősség pozív ránya az ábra szern, U = Edl. E dφ - + U A nyugalm ndukcó pozív ránya φ φ U - + U + - φ dφ > φ dφ < Az ndukál feszülség polarása különböző rányú fluxus és fluxusválozás eseén (φ > )

11 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök U - + U + - φ φ φ dφ > φ dφ < Az ndukál feszülség polarása különböző rányú fluxus és fluxusválozás eseén (φ < ) A ekercsfluxus Amennyben a válozó fluxus nem egyelen hurok, hanem N sorba kapcsol meneből álló ekercs fogja körül és a meneek azonos rányúak (azonos rányban gerjeszenek), akkor az egyes meneekben ndukál feszülségek összeadódnak. Ha mnden mene azonos nagyságú fluxus fog á, akkor az eredő ndukál feszülség N-szerese az egy meneben ndukál feszülségnek (a menefeszülségnek): () u () N d φ N =. A ekercs egy-egy meneével kapcsolódó fluxusok összegezésével kapjuk a ψ=nφ ekercsfluxus, amvel a ekercs eredő ndukál feszülsége: d () u () = ψ. A fluxushoz hasonlóan a ekercsfluxus s skalár mennység, S mérékegysége [Ψ]=Wb=Vs. Lenz 4 örvénye Az energa megmaradásának elvéből kövekező örvény szern az ndukál feszülség olyan rányú, hogy a kelekező áramok és erők gáolják az elődéző állapoválozás. d Nyugalm ndukcó eseén a fluxusválozás kövekezében ndukálódó u = φ feszülség zár áramkörben olyan áramo kel, amelyk az ndukál feszülsége lérehozó fluxus válozásá gáló, késleleő mágneses ere (mágneses ér válozás) hoz lére, az ndukáló haás csökken. Az ndukcó úján kelekező, φ -vel jelöl mágneses ér a kndulás állapo fennarására örekszk. Ez a örvényszerűség az önndukcó alapja. 4 Lenz (Lenc), Henrch Fredrch Eml (84-865) néme származású fzkus

12 VVEA Elekroechnka 4 Mozgás ndukcónál az ndukálódó feszülség zár áramkörben olyan áramo kel, amelyk a mozgással ellenées rányú (a mozgás fékező) erő vagy nyomaéko léesí, amvel az ndukáló haás csökken. φ φ dφ > R U - + Az ndukál feszülség kelee áram mágneses haása A mozgás ndukcó Feszülség ndukálódk egy dőben állandó mágneses ér menén, arra merőleges rányban mozgao vezeőben s, mvel a vezeővel együ mozgó ölésekre erő ha. Ez az erő ulajdonképpen a ölésekre ha, azok adják á a vezeőnek. (Áramjára vezeőnél a fellépő erő: F = l.) Teknsük a vezeőben lévő ölés mozgásá ölésáramlásnak, áramnak. nem gaz áram (mer a ölés nem a vezeőben és nem vllamos ér haására mozog), de, mvel öléshordozó mozgásról van szó, egy F erőhaás számíhaó belőle. Az áram ránya a vezeő mozgásának rányába muaó dh egységvekor rányával egyezk. Ha a ölés aralmazó vezeő dő ala h ávolságo esz meg, sebessége v vekor ránya a mozgás rányába mua v = h dh. h =, a sebesség l +Q dh +Q F E v h A mozgás ndukcó egy leheséges érelmezésének lluszrácója Ha dő ala Q ölés halad á egy ado kereszmeszeen, akkor az fkív áram nagysága:

13 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök Q = dh. ehelyeesíve az erő képleébe: h F = h = Qdh = Qv. Ez az F erő a vezeő ölésere ha ölésszéválaszó erőkén, ehá F -al azonos rányú E erősségű vllamos ér kelekezk. Az E vllamos érerősség a pozív ölésekre haó erő rányába mua, nagysága az egységny ölésre haó erővel egyezk. F E = = Q v, ennek a érerőnek a haására a vezeő ké végén különnemű ölések halmozódnak fel, am ndukál feszülség lérejöé jelen (ölésszéválaszás). Egy l hosszúságú vezeő ké vége közö mérheő feszülség (homogén ér feléelezésével) U = E l = v l = l v, ha a feszülség pozív ránya a felhalmozo (+) ölések felől a (-) ölések felé mua. Ez az U ndukál feszülség belső, forrásfeszülség jellegű, a ölés-széválaszó E érerősség (elekromooros erő) haására jön lére dφ Edl =. A vezeő ké végén felhalmozo ölések közö E érerősség megegyezk a ölésszéválaszó E érerősséggel, de ellenées rányú, a (+) ölések felől a (-) ölések felé mua. Az ndukál feszülség zár áramkörben egy valód áramo ndí, amelynek nagysága az U ndukál feszülségől és az áramköről függ. Ezen áram és a ndukcó kölcsönhaásakén olyan rányú F erő lép fel a vezeőn, amelyk Lenz örvénye érelmében annak mozgása ellen ha, az erővonalak a mozgás rányában sűrűsödnek. Ez az jelen, hogy ha zár az áramkör, a vezeő mozgaásához folyamaosan erőre, energa bevelre van szükség. Ké erőhaás láunk: - a vezeővel együ mozgó ölésekre haó F erő, amnek kövekezménye az E vllamos érerősség (ölés-széválaszó erő) és az U ndukál feszülség, - ennek az U feszülségnek a haására folyó áram kövekezében a vezeőre (a vezeőn belül mozgó ölésekre) haó, a vezeő mozgásával ellenées rányú F erő. E ké erő ránya nem azonos. A vllamos generáor működés elve Teknsük az ábrán láhaó elrendezés: az s - és s -vel jelöl ké vezeő sínre azonos síkban fekee merőleges vezeő rúd mozogha egy merőleges ndukcójú mágneses érben, a sínek és a rúd közö ellenállás-menes csúszókonakus van. A ruda F mozgaó állandó nagyságú külső erővel mozgajuk, a rúd sebessége v. A fluxusválozás, ha a rúd dő ala x ávolságo esz meg Φ=l x, így a rúdban ndukálódó feszülség: U x Φ = = = v l l, álalános eseben U = ( v) l. Az U ndukál feszülség haására kalakuló áram a sínek és a rúd együes R gen (generáor) ellenállás valamn a áplál fogyaszó R fogy ellenállásól függ. A rúdban folyó áram haására kelekező F ellen =l erő Lenz örvénye szern a mozgással ellenées rányú. Ha a súrlódás veszesége elhanyagoljuk, akkor a befekee mechanka eljesímény megegyezk a (ermel) eljes vllamos eljesíménnyel: P vll =U =vl=f ellen v=p mech. 3

14 VVEA Elekroechnka 4 A néze F ellen F mozgaó U > U k s + R gen l F ellen U v F mozgaó U k R fogy s x A A generáor működésének elv vázlaa Amennyben a mechanka veszeség (pl. súrlódás) nem elhanyagolhaó, akkor a P mech mechanka eljesímény az s aralmazza, így P vll < P mech. R fogy A generáor kapcsan megjelenő Uk = U kapocsfeszülség megegyezk a fogyaszó R fogy feszülségével. Üresjárásban (R fogy = ) U k =U. Az U ndukál feszülség ehá a Rgen + Rfogy ké ellenálláson eső feszülséggel ar egyensúly: U =lv=r gen +R fogy = R gen +U k, vagys U > U k. R gen U U k R fogy A generáor helyeesíő áramköre a feszülség egyenle alapján A leado vllamos eljesímény az R fogy ellenállásra kerül, aránya a eljes vllamos eljesíményhez a generáor haásfoka a rúd és a sínek (generáor, belső kör) R gen, és a külső kör R fogy ellenállásának arányáól függ: Rfogy Rfogy Rfogy R fogy U Rgen U k η = = = = = =. U U R + R R + R U U ( gen fogy ) gen fogy 4

15 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök A generáorban kelekező R gen vllamos veszeség a haásfok számíásánál nem elhanyagolhaó. A vllamos moor működés elve Az előzőhöz hasonló elrendezésben az U b feszülségű ápforrás a zár áramkörben áramo léesí, am a forrás R b, valamn a vezeő sínek és a rúd R mo ellenállása korláoz. A néze F mo U < U k s + R mo l U v F mo U k R b U b s x A A moor működésének elv vázlaa A ndukcójú homogén mágneses érben lévő vezeőre a raja áfolyó áram kövekezében F mo erő ha, am mozgásba hozza. A vezeő mozgása kövekezében válozk a vele kapcsolódó fluxus, ehá a generáor modellhez hasonlóan benne feszülség ndukálódk. Az U ndukál feszülség Lenz örvénye szern gyekszk ellenées rányú áramo léesíen, mn az U b feszülség, vagys az áramo (vele együ az F mo erő s) csökkenen és ezzel a mozgás akadályozn örekszk. R mo R b U U k U b A moor helyeesíő áramköre a feszülség egyenle alapján Az U k kapocsfeszülség ar egyensúly az U ndukál feszülség és a moor ellenállásán fellépő R mo feszülség eredőjével: U=U +R b +R mo, lleve U k =U +R mo. 5

16 VVEA Elekroechnka 4 Moor üzem eseében U <U k. Ha a súrlódás veszesége elhanyagoljuk, akkor a P fel felve vllamos eljesímény megegyezk a leado P mech mechanka eljesíménnyel: P fel =U k, P mech =F mo v=lv=u. A moorban kelekező vllamos veszeség ebben az eseben az R mo ellenállás veszesége, a felve vllamos eljesímény a mozgaás és a veszesége fedez: P vesz = R mo, P fel =P mech +P vesz U k =U + R mo. A moor haásfoka: Pmech U U Uk Rmo U η = = = = =. Pfel Uk U k U k U + Rmo Amennyben a mechanka veszeség (pl. súrlódás) nem elhanyagolhaó, akkor a P mech mechanka eljesímény az s aralmazza, így egy moor engelyén a leado P eng eljesímény ksebb a felve vllamos eljesíménynél P eng < P vll. 6

17 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök A ferromágneses anyagok jellemző ulajdonsága, a mágneses körök számíás elve A ferromágneses anyagok Fzkában da- para- és ferromágneses anyagoka különbözenek meg, az elekroechnka gyakorlaban álalában mnden nem-ferromágneses anyag vákuumnak (levegőnek) eknheő és relaív permeablása r =. A ferromágneses anyagok (vas, nkkel, kobal és övözeek) relaív permeablása gen nagy, nagyságrendje 3-6. Nem-ferromágneses összeevőkből s készíenek jól mágnesezheő övözeeke (pl. Ag-Mn-Al). A ferromágneses anyagok ndukcó-érerősség összefüggése erősen nemlneárs, ezér annak meghaározása rendszern méréssel örénk. A mágnesezés görbe Az ún. első mágnesezés görbe a mágneses haásnak még nem ke, vagy eljesen lemágneseze anyag ndukcó válozásá muaja a érerősség lassú válozaásakor. max r b c d -H c a H H max A mágnesezés görbe pkus alakja A görbének 4 jellegzees része van: a - nduló szakasz, b - lneárs szakasz, c - könyök szakasz, d - elíés szakasz. Lassú válozásnál a görbe leszálló ága az első mágnesezés görbe fele halad, hszerézses: válozása késk H válozásához képes (késlekedés=hszerézs). H=-nál a remanens ndukcó r >, am csak ellenkező előjelű -H c koercív érerősséggel lehe megszünen. Ado anyagnál a permeablás /H nagysága nem egyérékű, válozása nemlneárs, függ a mágneses előéleől, a H érerősség megelőző érékéől, a válozás sebességéől és mérékéől. A legnagyobb hszerézs görbe a elíés ndukcóval meghaározo max és H max csúcsérékekhez arozk, (a elíés ndukcó fele r ~) a ksebb csúcsérékek hszerézse ezen belül helyezkedk el. Lassú válozásnál sakus hszerézs görbéről beszélünk. 7

18 VVEA Elekroechnka 4 Dnamkus hszerézs görbe Hálóza vagy nagyobb frekvencájú válakozó árammal lérehozo válakozó mágneses ér eseén a munkapon mnden peródus ala egy eljes hszerézs görbé ír le. A válozó fluxus haására a ferromágneses anyagban feszülség ndukálódk, amely ún. örvényáramo hoz lére. Lenz örvénye érelmében az örvényáram kelee mágneses ér ovább késlele a luxusválozás, ezér a hszerézs görbe a frekvenca növekedésével kövéredk a sakushoz képes. sakus dnamkus H Sakus és dnamkus hszerézs görbe Relaív permeablás A mágnesezés görbe mnden munkaponjában számíhaó a = H abszolú és a r = H relaív permeablás. Az erős nemlnearás ma öbbféle egyszerűsíés használnak. A érerősség nagy mérékű válozásánál (pl. előjel válással járó válozásoknál) az első mágnesezés görbével közelíenek, ks mérékű válozásoknál a munkapon körül vselkedés közelík. - eljes (közönséges) permeablás: az orgóból az első mágnesezés görbe ponjahoz húzo egyenes rányangense = r α H = g. Ez a leggyakrabban használ közelíés. α d α α k H A eljes, a dfferencáls és a kezde permeablás érelmezése - kezde permeablás: az első mágnesezés görbe kezde szakaszának meredeksége rk =gα k. 8

19 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök - dfferencáls permeablás: a mágnesezés görbe (pl. első mágnesezés görbe) munkapon meredeksége = d rdff α d dh = g. - nkremenáls permeablás: ado munkapon körül cklkus ks válozások haására kalakuló elem hszerézsre jellemző érék = rnk H. - reverzbls permeablás: megegyezk az nkremenáls permeablással, ha a munkapon körül válozás olyan ks mérékű, hogy az elem hszerézs egy vonallá olvad össze. nkremenáls reverzbls H H H Az nkremenáls és a reverzbls permeablás érelmezése A mágneses körök számíása Mágneses kör a mágneses ér olyan zár része (flxuscsaornája), amelyben a fluxus állandónak eknheő, belőle ndukcóvonalak nem lépnek k. Lényegében mnden zár ndukcóvonal mágneses kör. A mágneses körökben álalában ferromágneses anyagok erelk az ndukcóvonalaka a ér kjelöl részébe. Egyszerűen azok a körök számíhaók, amelyek fluxuscsaornája (geomerája) smer. Néhány mágneses kör lluszrácója A fluxus smereében a gerjeszés könnyen, fordíva csak bonyolulan számíhaó. A szór erővonalaka számíással vagy becsléssel veszk eknebe, gyakran elhanyagolják. 9

20 VVEA Elekroechnka 4 A mágneses körök menén rendszern különböző ulajdonságú (permeablású és geomerájú) anyagok vannak és lehenek elágazások s. A gerjeszés örvény dőben állandó érre és lassú válozások eseére érvényes, egyenáramra és válakozó áram pllanaérékére alkalmazhaó. Gyorsan válozó fluxusnál fgyelembe kell venn az ndukál feszülség haásá s. Soros mágneses körök A soros mágneses körök rendszern egymás köveő különböző kereszmeszeű és különböző anyagú szakaszokból állnak, az egyes szakaszokon belül a mágneses ér jellemző állandónak eknk. Előír fluxus lérehozásához és fennarásához szükséges gerjeszés számíása Legyen a vzsgál kör menén (vagy annak egy szakaszán) a fluxus Φ ado, előír és a szórás elhanyagolhaó Φ s =., H, A, H, l / l l /, H, A A Soros mágneses kör vázlaa A légrés ndukcója ndukcója = Φ, A = Φ, a ovább, homogénnek eknheő ferromágneses szakaszok A = Φ sb. A A légrés érerőssége könnyen számíhaó, H =, míg a ferromágneses szakaszok H, H sb. érerőssége vagy a r és a r sb. relaív permeablása rendszern csak a mágnesezés görbéből olvashaó le: H = = f( ) és H = = f( ). r r A gerjeszés örvény alkalmazásával a kör eredő gerjeszése, az egyes szakaszokra juó gerjeszések összege, = r jelöléssel: Φ l Θ = Θ = Hl = H + Hl+ Hl + K= l =Φ, A A mvel az összegezésnél Φ kemelheő, ha állandó. Azokban az eseekben, amkor a légrésre esk a gerjeszés legnagyobb része, a kör ferromágneses (vas) része gyakran elhanyagolhaó ( vas», ezér H»H vas ).

21 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök Példa Legyen = vas =T (a szórás elhanyagolhaó), = mm, l vas = m, a mágnesezés görbéből rvas = 6. A érerősség a légrésben: 6 6 A H = = =, 8 =, 8 6, 56 m, vas A a vasban: Hvas = = = 8, = 8, rvas rvas m. A eljes gerjeszés a vas és a légrés gerjeszésgényének összege: Θ=Θ vas +Θ. A vasra juó gerjeszés Θ vas =H vas l vas =,8 A, a légrés gerjeszése Θ =H l =8 A, a eljes gerjeszés Θ=8,8 A, amnek dönő része a levegő mágnesezésé szolgálja. Θ 8,8 Egy N meneszámú ekercsnél a szükséges áram: = = ( ) N N A. Ksebb permeablású vasnál (vagy a mágnesezés görbe kevésbé meredek szakaszán) nő a vas gerjeszésszükséglee és nem elhanyagolhaó. Pl. rvas = 3 -éréknél H vas = 8 A m, Θ vas=h vas l vas =8 A, így a eljes gerjeszés Θ=6 A. Ebben az eseben a gerjeszés fele-fele arányban mágnesez a levegő és a vasa. Fordío feladanál, amkor ado az áram (gerjeszés) és a kalakuló fluxus vagy az ndukcó a kérdés, a nehézsége az jelen, hogy a gerjeszés eloszlása az egyes szakaszokra a permeablások arányáól függ, amnek meghaározásához vszon a érerősség smeree lenne szükséges. lyenkor egy célszerű megoldás különböző felve fluxusérékekhez a gerjeszés vagy az áram meghaározása, felrajzolása és a Φ(Θ) vagy Φ() görbéből a felada megoldásának leolvasása vagy számíása. Párhuzamos mágneses körök Az ndukcóvonalak zársága ma a eljes belépő- és a eljes klépő fluxus azonos: Φ=Φ +Φ. Φ, H A l Φ Φ Φ, H A l Párhuzamos mágneses kör vázlaa A gerjeszés örvény felírva az l l zár hurokra H l - H l =, mvel feléelezzük, hogy a görbe nem fog körül áramo. Ebből H l = H l = Θ p, vagys a párhuzamos szakaszokra juó Θ p gerjeszés azonos. ehelyeesíve H Φ = = szern: A

22 VVEA Elekroechnka 4 Φ Φ A A l = l = Θ p, amből Φ = Θ p, lleve Φ = Θ p. A A l l A párhuzamos ágak a eljes Φ fluxus Θ p gerjeszés melle vezek: A A A Φ = Φ + Φ = Θ p + = Θ p. l l l A mágneses Ohm-örvény A gerjeszés örvény Θ = Hdl alakjá módosíva forma hasonlóságok ma az összee mágneses körök egyenleere kapo összefüggés mágneses Ohm-örvénynek s nevezk. H = és = Φ helyeesíéssel a érerősség vonalmen negráljára (a soros mágneses kör A eredő gerjeszésére) kapo összefüggés Φ l Θ = l =Φ A A alakja ugyans emlékeze a véges ellenállással bíró vezeő szakaszok soros eredő feszülségére felírhaó alább képlere: l U = l = = R, γ A γ A ahol γ = - a fajlagos vezeőképesség, a fajlagos ellenállás recproka. ρ A soros mágneses kör eredő gerjeszése ennek alapján így s felírhaó: Um = Φ Rm, ahol U m =Θ az eredő mágneses feszülség (gerjeszés), Rm = l az -dk szakasz mágneses ellenállása. A soros szakaszok eredő mágneses ellenállása: R = R, ezzel U m =ΦR m A. m m Mnél nagyobb a permeablás, annál ksebb a mágneses kör ado szakaszának mágneses ellenállása és azonos fluxus eseén a gerjeszés-szükséglee, mágneses feszülsége. A soros mágneses kör egyes szakaszanak gerjeszés-szükséglee a szakasz mágneses feszülségének s nevezheő, az -dk szakaszra: U m = Φ l. A Ennek alapján a gerjeszés örvény úgy s fogalmazhaó, hogy a felülee haároló zár görbe men mágneses feszülségek eredője a mágneses kör gerjeszése Θ = U m. A párhuzamos mágneses kör eredő fluxusára kapo A Φ = Θ p l összefüggés az előbbek szern Φ = U mp Λ,

23 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök A alakban s felírhaó, ahol Λ = = l Rm az -dk szakasz mágneses vezeőképessége, a mágneses ellenállás recproka. A párhuzamos szakaszok eredő mágneses vezeése: Λ = Λ, amvel Φ =U m Λ m =ΘΛ m. A fen analóga alapján felrajzolhaók a mágneses körök helyeesíő vllamos áramköre. Az lyen helyeesíéssel azonban nagy körüleknéssel kell bánn, mvel a hasonlóság csak forma, ugyans a vllamos és a mágneses körben a fzka jelenségek elérőek: a) A vllamos áram ölések valóságos áramlása, a mágneses fluxus pedg a ér, az anyag állapoá jellemz, nem jár semmlyen részecskemozgással. b) A vllamos áram fennarása veszeséggel jár (az állandó egyenáramé s), a fluxus fennarásához nncs szükség energára (lérehozásához, megválozaásához gen). c) A mágneses feszülség zár görbe men negrálja Hdl akkor zérus, ha nem fog körül áramo, a vllamos feszülség zár görbe men negrálja Edl akkor zérus, ha nem fog körül válozó fluxus. d) A vllamos vezeőképesség állandó hőmérsékleen rendszern állandó, nem függ az áramól, a ferromágneses anyagok permeablása vszon a fluxussal, érerősséggel sb. jelenősen válozk. e) A vllamos vezeő és a vllamos szgeelőanyagok vezeőképessége közö arány nagyságrendű, ezér a szgeelőben folyó szvárgás áram elhanyagolhaó. A mágneses vezeő és a mágneses szgeelőanyagok eseén ez az arány 3-6, ezér a szór fluxusoka, azok haásá gyakran fgyelembe kell venn. f) A szuperpozícó ferromágneses anyago aralmazó (nemlneárs) körökben nem használhaó, álalában csak a gerjeszések összegezheők, az egyes gerjeszések álal lérehozo érerősségek, vagy az ndukcók nem. A lneársnak eknheő vllamos áramkörök vszon szuperpozícóval számíhaók. Önndukcó, önndukcós ényező d () Az ndukcó örvény érelmében egy vezeőben vagy ekercsben u () = ψ ndukál feszülség kelekezk. Ez arra az esere s gaz, ha a fluxusválozás a vezeőben vagy a ekercs- ben magában folyó áram megválozása déz elő. A ekercs áramának válozása a ekercsben magában ndukál feszülsége: önndukcó. Az ndukál feszülség Lenz örvénye szern gáolja az ndukcó okozó folyamao, ehá az áramválozás ellen ha, az akadályozza. Az ndukál feszülség álalánosan, a ekercsfluxus válozásából, mvel ψ = ψ( ()): dψ() dψ() d() u () = =. d() A ψ ekercsfluxus és az áram közö kapcsolao az L ndukvás vagy önndukcós ényező d () erem meg L = ψ, S mérékegysége Henry 5 szeleére d () Vs L = H = henry = = Ω s. A [ ] m m 5 Henry, Joseph ( ) amerka fzkus 3

24 VVEA Elekroechnka 4 () Ezzel az önndukcós feszülség: u() L d =. Az ndukvás segíségével a mágneses ér állapoválozásá egy vllamos áramkör áramválozására vezejük vssza. (Az ndukál feszülség haására zár áramkörben lérejövő áramo szokák ndukál áramnak s nevezn.) () Nem ferromágneses közegben a ψ() összefüggés lneárs, így L = ψ () = Ψ = áll., ferromágneses közegben ψ() áll., ezér L() áll. Ψ = áll. Ψ Ψ áll. Ψ L L Az ndukvás áramfüggése, ha a Ψ() mágnesezés görbe lneárs nemlneárs Vasmenes szolenod homogén erére a gerjeszés örvény (mvel a ekercsen kívül ér elhanyagolhaó és így az erővonalak eljes hossza helye csak a ekercs hosszá kell fgyelembe venn): Φ NΦ Ψ Ψ A N = Hl = l = l = l, amből L = = N = N Λ. A N A N A l H, Φ N l A A szolenod ndukvásának közelíő számíása Az ndukvás a ekercs meneszámáól, geomerájáól és a kölő közeg anyagáól függ, ferromágneses közegben áramfüggő. N érelmezése: egyrész az egyes meneekben folyó áramok a gerjeszés örvény szern mágneseznek, mágneses ere hoznak lére, másrész bennük az ndukcó örvény alapján feszülség ndukálódk. d Az ndukvás L = ψ válozása a mágnesezés görbe alapján meghaározhaó. d ndukvás-szegény áramkör eleme (pl. dobra ekercsel huzalból készül ellenállás) ún. bflárs (flum = szál, fonál) kalakíással lehe előállían. Ennél a megoldásnál ulajdonképpen ké, azonos áramo vvő ekercs van szorosan egymás melle: egy jobb- és egy balmene- 4

25 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök ű. Az ellenées rányú gerjeszések és fluxusok ma a ké ekercs leronja egymás mágneses eré. Az eredő ks (deáls eseben zérus) fluxusnak megfelelően Ψ kcs (így az önndukcós feszülség s kcs), ehá az ndukvás s kcs. ndukvás-szegény ekercselés vázlaa A mágneses ér energája Egy koncenrál paraméerű R ellenállással és L ndukvással jellemze ekercs U=áll. feszülségre kapcsolásakor az U = u () u () u () L d () R d R () () + L = R + = + ψ feszülség egyenle érvényes. R () L U Koncenrál paraméerű ekercs A ekercs álal dő ala felve energa: dw=dw R +dw m =U()= ()R+()dψ(). Az ()R energa a ekercs ellenállásán hővé alakul, ()dψ() energa pedg felhalmozódk a mágneses érben és az áram csökkenésekor a ér leépülésekor vsszanyerheő. Ha egy bekapcsolás folyama ala a ψ() fluxus -ról Ψ érékre nő (az () áram -ról -re), akkor a mágneses érben felhalmozódó eljes W m energa: W m Ψ () = dψ. Lneárs ψ() kapcsola (pl. vasmenes ekercs) eseén L=áll., Ψ =L és dψ=ld, így az negrál egyszerűsíheő: Ψ W = m () dψ = L () d = L = Ψ = Ψ. L ψ Ψ dψ ψ Ψ dψ Egy ekercsben felhalmozo energa nem ferromágneses ferromágneses 5

26 VVEA Elekroechnka 4 A ekercsben felhalmozo mágneses energa a ekercsfluxusból és az áramból számíhaó, azonos áramnál az ndukvással arányos. Ferromágneses anyago aralmazó körben a ψ() kapcsola nemlneárs (pl. vasmagos ekercsnél) L áll., ezér az negrálás nem egyszerűsíheő. Egy ekercse a ápforrásról lekapcsolva a árol energá vsszakapjuk, a fluxuscsökkenés haására kelekező önndukcós feszülség ugyans az áram fennarására örekszk. Ez az ndukív áramkörök megszakíásakor s gaz, ezér az lyen művele különös fgyelme és körüleknés gényel. Homogén, lneárs eseben (=áll. eseén) a mágneses energa egyszerűen kfejezheő a érjellemzőkkel s. A ψ=nφ=na és az N=Hl összefüggések felhasználásával W = = NA H l Ψ = VH, N ahol V=Al a vzsgál érfoga. A érfogaegységben árol energa (energasűrűség): w W = = H = H = V. Homogén, nemlneárs érben ( áll. eseén, pl. orod vasban) ψ ψ Φ Hl W () d N d Hl = ψ = ψ = NdΦ = A Hd = V Hd N l. A érfogaegységben árol energa: w = Hd. Ez az összefüggés az nhomogén ér egyes ponjara s gaz, így álalános eseben, ado érfogara: W = HddV. V Példa Az ndukvás haása (ekercse aralmazó) egyenáramú áramkör be- és kkapcsolása során. a) bekapcsolás U + () R u R () u L () L Egyenáramú R-L áramkör be- és kkapcsolása Az ábrán láhaó R-L áramkör ugrásszerű U feszülségre kapcsolása (a kapcsoló -es állása) kövekezében megndul az áram és a mágneses energa felhalmozódása az ndukvásban. U Ez a folyama az áram állandósul = érékének eléréség ar. Ekkor az L ndukvásban R 6

27 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök árol energa nagysága: W L = L. Az áram növekedése során az ndukváson ndukálódó L d nagyságú (önndukcós) feszülség Lenz örvénye szern késlele az áram kala- kulásá. A hurokörvény érelmében az U kapocsfeszülséggel mnden pllanaban az ohmos feszülségesés és az ndukál feszülség összege ar egyensúly: () U = () R+ L d. Az egyenlee árendezve: U () () R L d = +, R ahol U = az áram állandósul éréke, L = R R T az R-L kör dőállandója. Ezekkel az egyenle: () = () + T d. A válozók széválaszásával, fgyelembe véve, hogy d=-d(-): d( ) =. T Mndké oldal negrálva: = ln ( ) + C. T A kezde feléel árammenes bekapcsolás eseén: (=)=, amből C=-ln(). Ezzel: = ln( ) ln = ln, amből T Az áram válozásának dőfüggvénye: e () T =. R T U L () = e e = R, vagys az () áram exponencáls függvény szern ér el az állandósul T L d = u L () U = éréke. R R=u R R-L áramkör bekapcsolás árama 7

28 VVEA Elekroechnka 4 A bekapcsolás folyama ala az ellenálláson lévő feszülség arányos az árammal, az ndukváson megjelenő feszülség pedg az áram válozásával (derváljával): T ur() = () R = U () e és u () L d L U RT e T Ue T L = = =. b) kkapcsolás Az áramkör kapcsolójá -es állásába képzelve az áramkör ápfeszülsége ugrásszerűen zérussá válk, a csökkenő áramo Lenz örvénye szern az ndukvásban árol energa gyekszk fennaran. Végül ez az energa az ellenálláson dsszpálódk (hővé alakul). Az áram csökkenése ma az ndukváson u () L d L = nagyságú önndukcós feszülség ndukálódk, amvel a hurokörvény érelmében az ohmos feszülségesés ar egyensúly: () = R () + L d (), vagy = () + T d. A válozók széválaszásával: Mndké oldal negrálva: T T d =. () = ln + C. A kezde feléel állandósul állapo kkapcsolás eseén: (=)=, amből C=-ln. Ezzel: = ln, T amből e () T =. () R=u R T L d = u L () L d R-L áramkör kkapcsolás árama 8

29 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök T U Az áram válozásának dőfüggvénye: () = e = R e, az áram exponencáls függvény szern ér el az állandósul = éréke. A kkapcsolás folyama ala az ellenálláson lévő u R () feszülség arányos az árammal, az ndukváson megjelenő u L () feszülség pedg az áram válozásával: T ur() = () R = Ue és u () L d L U RT e T Ue L = = =. Nézzük meg az ámene folyamao akkor, amkor az R-L áramkör egy külső R k ellenállásra kapcsoljuk az ábra szern. L L Ebben az eseben a kkapcsol kör dőállandója T' =, vagys az erede T = dőállandónál ksebb, annak -szerese: T' = R+ R k R R R R+ R k R R T. A ksebb dőállandó az ámene folyama gyorsabb lezajlásá jelen. + k R U R k R L L T R-L áramkör kkapcsolása külső ellenállással Az áram válozásának dőfüggvénye: () = e T' = U R e R+ Rk L amből az ndukváson megjelenő feszülség: () u () L d L U RT e U R R T' + k T L = = = e ', ' R nagyobb a külső ellenállás nélkül esenél. Fzkalag ez úgy érelmezheő, hogy az erőeljesebb áramcsökkenés (T ' < T) ma nagyobb az ndukálódó feszülség. Például, R k =R eseén a kkapcsolás uán pllanaban az erede ápfeszülség készerese lép fel az ndukváson. Az R k ellenállás növelésével az ndukváson megjelenő feszülség nő, az áramkör megszakíásakor elvleg végelen nagy lehe. Ez azonban nem fordul elő, mvel az áüés szlárdság elérése uán az áramkör szkra vagy ív formájában záródk. Áramjára ndukív áramkör megszakíása a fenek szern veszélyes lehe, balesee és anyag kár okozha. Vonakozk ez egy áramkör félvezeő kapcsolóval örénő kkapcsolására s, amkor fennáll a félvezeő réeg áüésének veszélye. L, D Dódás védőkapcsolás 9

30 VVEA Elekroechnka 4 Az ndukváson fellépő kkapcsolás feszülség káros kövekezménye ellen gyakran az ndukvásra kapcsol ellenpárhuzamos dódával védekeznek: ebben az elrendezésben az ndukvás álal fennaro áram a dódán kereszül záródk, a árol energa pedg az ndukvás nem ábrázol ohmos ellenállásán, a vezeő ellenállásán vagy valamlyen külső ellenálláson dsszpálódk. A kölcsönös ndukcó Ha ké ekercs egymás közelében helyezkedk el, akkor az első árama álal lérehozo mágneses ér (fluxus) egy része a másodk ekerccsel s kapcsolódk. Az lyen elrendezés csaol ekercspárnak nevezk. Az első (prmer) ekercs () áramának megválozásakor a másodk (szekunder) ekercs vezeővel kapcsolódó φ ( () ) fluxus megválozása feszülsége ndukál. A nyo szekunder ekercsben ndukál feszülség: dψ ( () ) dψ () d() u() = =. d φ N N u l A H Csaol ekercsek A d ψ dervála kölcsönös ndukcós ényezőnek vagy kölcsönös ndukvásnak nevezk, d jelölése: M vagy L, S mérékegysége egyezk az önndukcós ényező mérékegységével: [M]=H (henry). A kölcsönös ndukcós ényező a ké ekercs kalakíásáól, egymáshoz képes elhelyezkedéséől és a kölő közeg anyagáól függ. Állandó permeablás eseén (pl. vasmenes közegben), állandósul állapoban a kölcsönös ndukvás állandó M = Ψ. A gerjeszés örvény alkalmazva a φ álal kjelöl fluxuscsaornára, egyszerűsíve: φ θ = N = Hl = l = φr m A φ = NΛ ψ N φ M = = = NN Λ. Azér a ké ekercs meneszámának szorzaa szerepel M képleében, mer N meneek mágneseznek, a feszülség pedg N -ben ndukálódk. A kapcsola fordíva s fennáll, a másodk ekercs gerjeszésekor az elsőben ndukálódk feszülség. zorop közegben M =M, mvel Λ =Λ. Csaol ekercsek fluxusának felbonása összeevőkre Csaol ekercsekről akkor beszélünk, ha az egyes ekercsek egymás mágneses erében helyezkednek el, és ha egymás erének haása nem elhanyagolhaó. Alkalmazásól függően lehe 3

31 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök cél a mnél jobb csaolás (pl. energa- vagy jelávelnél), lleve a csaolás elkerülése (pl. elekromágneses zavarcsökkenés érdekében). A kövekezőkben a keős ndex első agja jelöl az a ekercse, amelykre a másodk aggal jelöl ekercs árama álal lérehozo mágneses ér haás fej k. Az egyelen valóságos (eredő) mágneses ér a rendszer geomera kalakíásáól függően különböző mérékben kapcsolódha az egyes ekercsekkel. A szemléleés és az egyszerűbb árgyalás érdekében a ere reprezenáló fluxus 4 összeevőre bonhaó: - az áram álal az. ekercsben lérehozo φ fluxus egy része kapcsolódk a. ekerccsel s (φ ), másk része az első ekercs szór fluxusa csak az -el (φ s ), φ =φ +φ s. - az áram álal a. ekercsben lérehozo φ fluxus egy része kapcsolódk az. ekerccsel s (φ ), másk része a másodk ekercs szór fluxusa csak a.-al (φ s ), φ =φ +φ s. φ φ s φ φ m φ s φ φ A fluxus felbonása összeevőkre A ké áram ( és ) álal lérehozo fluxus komponensek eredője: φ=φ +φ =φ +φ s +φ +φ s =φ m +φ s +φ s. Ezeke a komponenseke kéféle módon szokák csoporosían. A csaol körös elméle erede szern válaszja szé az összeevőke, az egyes ekercsekkel kapcsolódó eredő a eljes sajá fluxus és a másk ekercs csalakozó fluxusának összege: az. ekerccsel kapcsolódó φ összes fluxus φ =φ +φ =φ +φ s +φ, a. ekerccsel kapcsolódó φ összes fluxus φ =φ +φ =φ +φ s +φ. A érelméle funkcó szern válaszja szé az összeevőke, az egyes ekercsekkel kapcsolódó eredő a közös φ m (hasznos, fő) fluxus és a sajá szór fluxus összege: az. ekerccsel kapcsolódó összes fluxus φ =φ m +φ s =φ +φ +φ s, a. ekerccsel kapcsolódó összes fluxus φ =φ m +φ s =φ +φ +φ s. Az eredő ermészeesen mndké érelmezés szern azonos. φ m -nek ké összeevője van: φ m =φ és φ m =φ, így φ m =φ m +φ m =φ +φ. A mágneses kölcsönhaás méréké a csaolás ényező fejez k, am úgy érelmezheő, hogy az áram álal az. ekercsben lérehozo fluxus mekkora része kapcsolódk a. ekerccsel k = φ φ, lleve fordíva, az áram álal a. ekercsben lérehozo fluxus mekkora része kapcsolódk az. ekerccsel k = φ φ. A szórás ényező a csaolásban nem részes komponens arányá fejez k. 3

32 VVEA Elekroechnka 4 A szórás és a csaolás ényezők kapcsolaa: φ s φ φ φ φ s φ φ φ σ = = = = k és σ = = = = k. φ φ φ φ φ φ A vllamos gépeke (pl. a ranszformáoroka, asznkron mooroka) rendszern érelméle megközelíéssel árgyalják, ennek felel meg a fluxusokra vonakozó helyeesíő áramkör s. A modellben az egyes fluxusösszeevőke az áramok egy-egy ndukváson hozzák lére: ψ s Ls ψ s L s m ψ ψ ψ m L m A érelméle felbonás ükröző helyeesíő áramkör Csaol körök mágneses energája Legyen az első ekercs árama állandó, a másodk pedg árammenes. Ebben az eseben az első ekercsben felhalmozo mágneses energa: W = L. A másodk ekercs () áramá nulláról -re növelve a ψ fluxus kalakulása és válozása ma az első ekercsben feszülség ndukálódk, amelynek nagysága a d áramválozásól függ: dψ u M d = =. =áll. = u Kndulás állapo A másodk ekercs áramának növelése Amennyben válozása során a ekercsek azonos rányban mágneseznek (ψ eredő =ψ +dψ ), akkor az ndukálódó u feszülség Lenz örvénye érelmében -e csökkenené (hogy az. ekerccsel kapcsolódó eredő fluxus válozalan maradjon). állandó éréken arásához () válozásáól függő dw=u =M d energa-bevelre van szükség az. ekercse ápláló forrásból. Az () eljes válozás deje ala szükséges öbble energa: W = M d = M A másodk ekercs erének felépíése során a. ekercsben felhalmozo energa: W A ké ekercs együes energája ehá:. = L. 3

33 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök W = L + M + L. A bekapcsolás sorrendjéől a eljes felhalmozo energa álalában nem függ, fordío sorrend eseén, a másodk ekercs uán az első feszülségre kapcsolásakor W = L + M + L. A csaolás ma ag előjele aól függ, hogy a ké áram egymás mágneses haásá erősí vagy < ronja, így M>. Állandó mágnesek Az állandó mágnesek olyan anyagok, amelyek mágneses ere egyszer felmágnesezés uán gerjeszés nélkül s arósan megmarad, am csak erős lemágnesező haással szüneheő meg. Ezeke az anyagoka kemény mágneseknek s nevezk, a könnyen ámágnesezheő lágy mágnesekől elérő ulajdonságak kfejezésére. Egy zár vasgyűrűben a elíés ndukcóg örénő mágnesezésé köveően, a gerjeszés megszűne uán r remanens ndukcó marad fenn. Mvel a Θ gerjeszés zérus, a gerjeszés örvény érelmében a vas H v érerőssége s zérus, így a W m árol mágneses energa s az. l v légrésegyenes r r * ' H H c H v Gyűrű alakú állandó mágnes Állandó mágnes v -H v görbéje A gyűrűbe légrés nyva a gerjeszés örvény szern H v l v +H = (mvel ovábbra sncs gerjeszés), amből a vas megválozo érerőssége: Hv = H =, lv lv l v a közepes erővonalhossz a vasban. Tehá negaív előjelű, lemágnesező érerősség alakul k a vasban, az ndukcó pedg a mágnesezés görbe szern ' érékre csökken. Ha a szórás elhanyagolhaó, Φ s =, akkor a fluxus a vasban és a légrésben megegyezk, Φ v =Φ vagy v A v = A, amből A v = v. A kfejezésé a gerjeszés örvény előző összefüggésébe helyeesíve: Av Hv = v = av, A lv vagys a légrés méreéől függő lneárs kapcsolao kapunk az állandó mágnes érerőssége és ndukcója közö (légrésegyenes). 33

34 VVEA Elekroechnka 4 Ha a légrés szórása nem elhanyagolhaó, akkor a légrés fluxusa ksebb, mn a vasé. σ = Φ s Φ v érelmezéssel: Φ =Φ v -Φ s =Φ v -σφ v =(-σ)φ v. ( σ) Av Av Ebből = v és Hv = σ v = ( σ) av. A A lv Az állandó mágnes munkadagramja a v (H v ) mágnesezés görbe leszálló ága, amből a munkapono a légrésegyenes kmesz (mágnesezés görbe + gerjeszés örvény). A légrés használaos méree az alkalmazásól függ. A mágnes mnőségének egyk jellemzője az, hogy a légrés megszüneése, a H v érerősség sméel zérusra csökkenése uán kalakuló * r ndukcó ksebb-e és mlyen mérékben a kezde r -nél. Kemény mágnesek opmáls khasználása Az állandó mágneseke aralmazó mágneses körök rendszern lágy mágnesből készül szakaszoka és légrés s aralmaznak. A kemény mágnes anyagok magas ára ndokolja a mnél ksebb mennység felhasználásá. Az állandó mágnesek munkaarománya rendszern a v -H v görbe lneárs, elíés szakaszára esk, ezér számíásoknál relaív permeablásá r =-nek vagy közel -nek veszk. r opmáls munkapon v H H c H v Az opmáls munkapon grafkus meghaározása A szórás és a lágyvas szakaszok mágneses feszülségének (gerjeszésének) elhanyagolásával H =-H v l v és Φ =Φ v = v A v, a v ndex a kemény mágnesre vonakozk. Φ v Φ Az állandó mágnes anyag érfogaa, ha Av = = : v v H Φ Vv = lvav = = Φ. Hv v A Hvv Ado légrés mére és légrés fluxus eseén a szükséges kemény mágnes érfogaa akkor a legksebb, ha a H v v szorza (jóság szorza, energa szorza) a legnagyobb: Vv mn = c. ( H v v) max (H v v ) max közelíően grafkus úon haározhaó meg. 34

35 V. A mágneses ér alapfogalma, alapörvénye, mágneses körök Permanens mágnes övözeek Különböző összeéelű Al-N-Co acél övözeek, Ag-Mn-Al nem ferromágneses anyagok övözee, W-acél, Fe-Co-V, Fe-N-Cu, Fe-P, Co-P, Sm -Co 7, Nd-Fe- Az állandó mágnes erőhaása Zár (légrésmenes) mágnes energája (munkavégző képessége) zérus, mvel H=. Légrésnyás uán H, a befekee mechanka energa árol mágneses energává és veszeséggé alakul. Válozásokra: dw mech =dw mágn +dw vesz, ahol dw mech a bev mechanka energa, dw mágn a mágneses energa, dw vesz a veszeség energa megválozása. Ha a veszeség és a szórás elhanyagolhaó, akkor dw vesz =, Φ =Φ v =Φ, Φ a légrés, Φ v a vas fluxusa. A mechanka energa megválozása dx elmozdulás során: dw mech =F k dx=-f m dx, F k a külső erőhaás, F m a mágnes álal kfeje húzóerő. A negaív előjel az jelen, hogy x felve (+) ránya melle F m haására dx csökken. F m nagysága a vruáls munkavégzés alapján számíhaó. F m x dx F k A mágneses erőhaás számíása A vruáls munka elve Anyag rendszer akkor van egyensúlyban, ha a rá haó erők eredője zérus. Ez az erőegyensúly meghaározhaó a vruáls munka számíásával. Vruáls munka: a rendszerre haó valóságos erőknek (F k, F m ) egy vruáls (leheséges) dx elmozdulás során végze munkája. A valóságos erők egyensúlyának az a feléele, hogy az eredő vruáls munka zérus legyen. Vagys, egy valóságos, működő erőknek ke rendszer akkor, és csaks akkor van egyensúlyban, ha a valóságos erők álal végze eredő vruáls munka zérus: F k dx+f m dx=. Ha egy valóságos erő nem smer, de a vele egyensúly aró másk erő álal végze munká energaválozásból am megegyezk az smerelen erő álal végze munkával számían udjuk, akkor az smerelen erő jelen eseben F m meghaározhaó. A árol dw mágn mágneses energa a vasban (dw vas ) és a légrésben (dw ) halmozódk fel: dw mágn = dw vas + dw. A vasban felhalmozo eljes energa W = V H d, így annak megválozása vas vas vas vas vas 35

36 VVEA Elekroechnka 4 dw vas =V vas H vas d vas =l vas A vas H vas d vas =l vas H vas dφ, mvel V vas =A vas l vas. A légrésben felhalmozo eljes energa W V H V = =. A zárólemez dx mérékű elmozdulása kövekezében a légrés méree (érfogaa) s és az ndukcó s válozk, ezér W dw V dv W d = +. A légrés érfogaa és annak megválozása: V =A, dv =A dx, így dw Adx V d Adx VHd = + = + = Adx + Hd Φ. Ezekkel az energaegyenle: Fdx k = lvas HvasdΦ + Adx + Hd Φ = ( lvas H vas + H ) d Φ + Adx. Mvel a gerjeszés örvény szern l vas H vas +H =, sakus állapoban a mágnes álal kfeje erő: F = m A. Az elekromágnes erőhaása Az energa megmaradás elve érelmében a külső forrásból felve vllamos energa válozás és a (külső) mechanka munka válozás összege megegyezk a veszeségek és a árol mágneses energa válozásának összegével: dw vll + dw mech =dw mágn +dw vesz. A veszeség energa főleg a ekercs ohmos veszesége. Amennyben az áram állandó, úgy a P= R veszeség eljesímény s állandó, vagys dw vesz közel zérus. F m x dx F k Az elekromágneses erőhaásának számíása Válozalan gerjeszés melle θ = H = l áll. a légrés növekedésekor a fluxusnak csökkenn, csökkenésekor növekedn kell. A fluxusválozás ma kelekező u ndukál feszülség vszon a ekercs áramával olyan dw vll (vllamos) energá jelen, amelyk (Lenz örvénye érelmében) a válozás ellen ha 36

Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek, mutatós műszerek működésének alapja

Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek, mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A vllamos forgógépek, mutatós műszerek működésének alapja Magnetosztatka mező: nyugvó állandó mágnesek és egyenáramok dőben állandó

Részletesebben

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű, ellenállással és nduktvtással jellemzett tekercs Uáll feszültségre kapcsolásakor az

Részletesebben

Elektromágneses indukció (Vázlat)

Elektromágneses indukció (Vázlat) Elekromágneses ndukcó (Vázla). z elekromágneses ndukcó és annak fajá. mozgás ndukcó 3. Lenz-örvény 4. yugalm ndukcó 5. Időben válozó mágneses mező álal kele elekromos mező ulajdonsága 6. Kölcsönös és önndukcós

Részletesebben

Matematika III. elıadások

Matematika III. elıadások Maemaka III. elıadások MINB083, MILB083 Gépész és Vllamosmérnök szak BSc képzés 007/008. ısz félév. éma Görbék dervál vekora. Görbék érnıje. Mozgások sebesség és gyorsulás vekora. Görbék ívhossza. Felüleek

Részletesebben

( ) Feszültségcsökkentő (buck) szaggató. Folyamatos i L = = . L. Folyamatos-szaggatott i L határ 1 Iˆ. Ellenállás terhelésnél: TR. Szaggatott i L I L

( ) Feszültségcsökkentő (buck) szaggató. Folyamatos i L = = . L. Folyamatos-szaggatott i L határ 1 Iˆ. Ellenállás terhelésnél: TR. Szaggatott i L I L Feszülségcsökkenő (uck) szaggaó u o i u u i i D Folamaos-szaggao i haár i i u u o i D Folamaos i ( ) 0 i i ( ) i erhelés u u o u i Î u h h ( + ) h h áll áll 8 0 05 ˆ ˆ h h ahol ˆ h ( ) vag h ( ) Ellenállás

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű R ellenállással és L nduktvtással jellemzett tekercs U=áll feszültségre kapcsolásakor

Részletesebben

Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító.

Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. 1. Értelmezze az áramokkal kifejezett erőtörvényt. F=mű0 I1I2 l/(2pi a) Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I2 áramot vivő vezetőre

Részletesebben

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható:

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható: 1. Értelmezze az áramokkal kifejezett erőtörvényt. Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I 2 áramot vivő vezetőre ható F 2 erő fellépését

Részletesebben

1. feladat Összesen: 17 pont

1. feladat Összesen: 17 pont 1. felada Összesen: 17 pon Ké arály közöi folyadékszállíás végzünk. Az ábrán egy cenrifugálszivayú és egy csővezeéki (erhelési) jelleggörbe láhaó. H [m] 10 9 8 7 6 5 4 3 2 1 0 M 0 1 2 3 4 5 6 V m 3 h A

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

HAVRAN DÁNIEL. Pénzgazdálkodási szokások hatása a működőtőkére. A Magyar Posta példája

HAVRAN DÁNIEL. Pénzgazdálkodási szokások hatása a működőtőkére. A Magyar Posta példája HAVRAN DÁNIEL Pénzgazdálkodás szokások haása a működőőkére. A Magyar Posa példája A hálózaos parágakban, ahogy a posa szolgálaásoknál s, a forgalomban lévő készpénz nagyméreű működőőké jelenhe. A Magyar

Részletesebben

1. Ellenütemű végfokozatok: 1.1. Rajzolja le a komplementer tranzisztorokkal felépített A osztályú ellenütemű végfokozatot!

1. Ellenütemű végfokozatok: 1.1. Rajzolja le a komplementer tranzisztorokkal felépített A osztályú ellenütemű végfokozatot! Elekronka ZH 04 07 Név: Megoldás Nepun: Σ 0 0 70 0 Ellenüemű végfokozaok: ajzolja le a komplemener ranzszorokkal felépíe A oszályú ellenüemű végfokozao! (pon) Mől, hogyan függ az A oszályú végfokoza opmáls

Részletesebben

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc.

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc. Vllamosságtan Dr. adács László főskola docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mal: Honlap: elkrad@un-mskolc.hu www.un-mskolc.hu/~elkrad Ajánlott rodalom Demeter Károlyné - Dén Gábor Szekér Károly

Részletesebben

IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses

IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses V. A mágneses ér alapfogalma, alapörvénye, mágneses körök A nyugvó vllamos ölések közö erőhaásoka a vllamos ér közveí (Coulomb örvénye). A mozgó ölések (vllamos áramo vvő vezeők) közö s fellép erőhaás,

Részletesebben

Mágneses jelenségek. 1. A mágneses tér fogalma, jellemzői

Mágneses jelenségek. 1. A mágneses tér fogalma, jellemzői . mágneses tér fogama, jeemző Mágneses jeenségek mágneses tér jeenségenek vzsgáatakor a mozgó vamos tötések okozta jeenségekke fogakozunk mozgó vamos tötések (áram) a körüöttük évő teret küöneges áapotba

Részletesebben

Jelek és rendszerek 2. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 2. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 2 10/9/2011 Dr. Buchman Aila Informaikai Rendszerek és Hálózaok Tanszék 1 A múl hei előadás összefoglalója1 Jel - eg válozó azon részének maemaikai leírása, amel a számunkra léneges

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:

Részletesebben

A mágneses tér alapfogalmai, alaptörvényei

A mágneses tér alapfogalmai, alaptörvényei A mágneses ér alapfogalma, alapörvénye A nyugvó vllamos ölések közö erőhaásoka a vllamos ér közveí (Coulomb örvénye). A mozgó ölések (vllamos áramo vvő vezeők) közö s fellép erőhaás, am a mágneses ér közveí.

Részletesebben

Egyszerű áramkörök vizsgálata

Egyszerű áramkörök vizsgálata A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)

Részletesebben

II./2. FOGASKEREKEK ÉS FOGAZOTT HAJTÁSOK

II./2. FOGASKEREKEK ÉS FOGAZOTT HAJTÁSOK II./. FOGASKEREKEK ÉS FOGAZOTT HAJTÁSOK A FOGASKEREKEK FUNKCIÓJA ÉS TÍPUSAI : Az áéel (ahol az index mindig a hajó kereke jelöli): n ω i n ω A fogszámviszony (ahol az index mindig a kisebb kereke jelöli):

Részletesebben

Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)

Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet) Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV. Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Órai kidolgozásra: 1. feladat Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

ELVÉTELES KONDENZÁCIÓS ÉS ELLENNYOMÁSÚ GŐZTURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHATÓSÁGI MODELLEZÉSE

ELVÉTELES KONDENZÁCIÓS ÉS ELLENNYOMÁSÚ GŐZTURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHATÓSÁGI MODELLEZÉSE EVÉEES KONENZÁCIÓS ÉS EENNYOMÁSÚ GŐZURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHAÓSÁGI MOEEZÉSE r. Fazekas Anrás Isván Magyar Vllamos Művek Zr. / Buapes Buapes Műszak és Gazaságuomány Egyeem Energeka Gépek és Renszerek

Részletesebben

III. Áramkör számítási módszerek, egyenáramú körök

III. Áramkör számítási módszerek, egyenáramú körök . Árakör száítás ódszerek, egyenáraú körök A vllaos ára a vllaos töltések rendezett áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb

Részletesebben

Elektromechanika. 3. mérés. Háromfázisú transzformátor

Elektromechanika. 3. mérés. Háromfázisú transzformátor Elektromechanika 3 mérés Háromfázisú transzformátor 1 Milyen feltételezésekkel élünk ideális transzformátor tárgyalásakor? 1 A primertekercs és a szekundertekercs ellenállása egyaránt zérus (R 1 = 0; R

Részletesebben

GERSE KÁROLY KAZÁNOK II.

GERSE KÁROLY KAZÁNOK II. GERSE KÁROLY KAZÁNOK II. Gerse Károly KAZÁNOK II. BME Energeka Gépek és Rendszerek Tanszék, Budapes, 04 Gerse Károly: Kazánok II. Első kadás Szerző jog Gerse Károly, 04 ISBN 978-963-33-00-8 (Nyomao váloza)

Részletesebben

A mérések eredményeit az 1. számú táblázatban tüntettük fel.

A mérések eredményeit az 1. számú táblázatban tüntettük fel. Oktatási Hivatal A Mérések függőleges, vastag falú alumínium csőben eső mágnesekkel 2011/2012. tanévi Fizika Országos Középiskolai Tanulmányi Verseny döntő feladatának M E G O L D Á S A I. kategória. A

Részletesebben

Ikerház téglafalainak ellenőrző erőtani számítása

Ikerház téglafalainak ellenőrző erőtani számítása BME Hidak és Szerkezeek Tanszék Fa-, falazo és kőszerkezeek (BMEEOHSAT19) Ikerház églafalainak ellenőrző erőani számíása segédle a falaza ervezési feladahoz v3. Dr. Varga László, Dr. Koris Kálmán, Dr.

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

k u = z p a = 960 3 = 2880, k M = z p 2πa = 960 3 (b) A másodpercenkénti fordulatszám n = 1000/60 1/s,

k u = z p a = 960 3 = 2880, k M = z p 2πa = 960 3 (b) A másodpercenkénti fordulatszám n = 1000/60 1/s, 1. feladat : Egy egyenáramú gép hullámos tekercselésű armatúráján összesen z = 960 vezető van. A gép póluspárjainak száma p = 3 és az armatúrát n = 1000 1/perc fordulatszámmal forgatjuk. (a) Határozza

Részletesebben

Elméleti közgazdaságtan II.

Elméleti közgazdaságtan II. Elméle közgazdaságan II. Makroökonóma Műszak haladás műszak haladás lehe uonóm és ndukál Megesesül és nem megesesül Hcks szern semleges Harrod szern semleges Solow szern semleges Műszak haladás műszak

Részletesebben

Előadásvázlat Kertészmérnök BSc szak, levelező tagozat, 2015. okt. 3.

Előadásvázlat Kertészmérnök BSc szak, levelező tagozat, 2015. okt. 3. Előadásvázla Kerészmérnök BSc szak, levelező agoza, 05. ok. 3. Bevezeés SI mérékegységrendszer 7 alapmennyisége (a öbbi származao): alapmennyiség jele mérékegysége ömeg m kg osszúság l m idő s őmérsékle

Részletesebben

IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses

IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses V. A mágneses ér alapfogalma, alapörvénye, mágneses körök A nyugvó vllamos ölések közö erőhaásoka a vllamos ér közveí (Coulomb örvénye). A mozgó ölések (vllamos áramo vvő vezeők) közö s fellép erőhaás,

Részletesebben

8 A teljesítményelektronikai berendezések vezérlése és

8 A teljesítményelektronikai berendezések vezérlése és 8 A eljesíményelekronikai berendezések vezérlése és szabályzása Vezérlés ala a eljesíményelekronikában a vezérel kapcsolók vezérlõjeleinek elõállíásá érjük. Egy berendezés mûködésé egyrész az alkalmazo

Részletesebben

Azonosító jel: Matematika emelt szint

Azonosító jel: Matematika emelt szint I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012

Részletesebben

ELEKTRONIKAI TECHNIKUS KÉPZÉS E R Ő S Í T Ő K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

ELEKTRONIKAI TECHNIKUS KÉPZÉS E R Ő S Í T Ő K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR LKTONKA TCHNKS KÉZÉS 0 3 Ő S Í T Ő K ÖSSZÁLLÍTOTTA NAGY LÁSZLÓ MÉNÖKTANÁ - - Taralomjegyzék Az erősíők fogalma, feloszása...3 Az erősíő fokozaok kialakíásának lépései...3 A vezérlés folyamaa közös emieres

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek

Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.

Részletesebben

Merev test mozgása. A merev test kinematikájának alapjai

Merev test mozgása. A merev test kinematikájának alapjai TÓTH : Merev test (kbővített óraválat) Merev test mogása Eddg olyan dealált "testek" mogását vsgáltuk, amelyek a tömegpont modelljén alapultak E aal a előnnyel járt, hogy nem kellett foglalkon a test kterjedésével

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 582 03 Hűtő-, klíma- és hőszivattyú

Részletesebben

1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,00 250,00 kpa,

1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,00 250,00 kpa, 1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,0 250,0 kpa, pontossága 3% 2 osztás. Mekkora a relatív hibája a 50,0 kpa, illetve a 210,0 kpa értékek mérésének? rel. hiba_tt

Részletesebben

Lécgerenda. 1. ábra. 2. ábra

Lécgerenda. 1. ábra. 2. ábra Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel

Részletesebben

IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses

IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses V A mágneses ér alapfogalma, alapörvénye, mágneses körök A nyugvó vllamos ölések közö erőhaásoka a vllamos ér közveí (Coulomb örvénye) A mozgó ölések (vllamos áramo vvő vezeők) közö s fellép erőhaás, am

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

Nyeregetetős csarnokszerkezetek terhei az EN 1991 alapján

Nyeregetetős csarnokszerkezetek terhei az EN 1991 alapján BME Hdak és Szerkezetek Tanszék Magasépítés acélszerkezetek tárgy Gyakorlat útmutató Nyeregetetős csarnokszerkezetek terhe az EN 1991 alapján Összeállította: Dr. Papp Ferenc tárgyelőadó Budapest, 2006.

Részletesebben

Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.

Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos

Részletesebben

A kereslet hatása az árak, a minõség és a fejlesztési döntések dinamikájára

A kereslet hatása az árak, a minõség és a fejlesztési döntések dinamikájára VERSENY ÉS SZABÁLYOZÁS Közgazdasági Szemle, LV. évf., 2008. december (1094 1115. o.) VÖRÖS JÓZSEF A keresle haása az árak, a minõség és a fejleszési dönések dinamikájára A anulmány egy nagyon álalános

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

Elektrotechnika Feladattár

Elektrotechnika Feladattár Impresszum Szerző: Rauscher István Szakmai lektor: Érdi Péter Módszertani szerkesztő: Gáspár Katalin Technikai szerkesztő: Bánszki András Készült a TÁMOP-2.2.3-07/1-2F-2008-0004 azonosítószámú projekt

Részletesebben

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Tartalom Egyensúly elágazási határállapot Rugalmas nyomott oszlop kritikus ereje (Euler erő) Valódi nyomott oszlopok

Részletesebben

Elektrotechnika. 4. előadás. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet

Elektrotechnika. 4. előadás. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet udapest Műszaki Főiskola ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utechnikai ntézet Elektrotechnika 4. előadás Összeállította: Langer ngrid őisk. adjunktus Háromázisú hálózatok gyakorlatban

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

Elektrotechnika jegyzet

Elektrotechnika jegyzet SZÉCHENYI ISTVÁN EGYETEM ATOMATIZÁLÁSI TANSZÉK Elektrotechnika jegyzet Elektrotechnika jegyzet Készítette: dr. Hodossy László fiskolai docens eladásai alapján Tomozi György Gyr, 4. - - Tartalomjegyzék

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek

Részletesebben

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése.

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése. 26. HÁLÓZATI TÁPEGYSÉGEK Célkiűzés: A hálózi egyenirányíó és silizáló lpkpcsolások és jellemzőinek megismerése, illeőleg mérése. I. Elmélei áekinés Az elekronikus készülékek működeéséhez legöször egyenfeszülségre

Részletesebben

+ - kondenzátor. Elektromos áram

+ - kondenzátor. Elektromos áram Tóth : Eektromos áram/1 1 Eektromos áram tapasztaat szernt az eektromos tötések az anyagokban ksebb vagy nagyobb mértékben hosszú távú mozgásra képesek tötések egyrányú, hosszútávú mozgását eektromos áramnak

Részletesebben

1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi

1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi 1 Mélyhúzott edény teríték méretének meghatározása 1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi A mélyhúzott edény kiindulási teríték átmérőjének meghatározása a térfogat-állandóság alapján

Részletesebben

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE Készítette: Ács György RTO FORRÁS: FLUXUS SZONDA ÉS ALKALMAZÁSA KTT MÉRNÖKI IRODA 11SP mérési eredményei A forgórész menetzárlat okozta

Részletesebben

A nyugalomban levő levegő fizikai jellemzői. Dr. Lakotár Katalin

A nyugalomban levő levegő fizikai jellemzői. Dr. Lakotár Katalin A nyugalomban levő levegő fizikai jellemzői Dr. Lakotár Katalin Száraz, nyugalomban levő levegő légköri jellemzői egyszerűsített légkör modell állapotjelzői: sűrűség vagy fajlagos térfogat térfogategységben

Részletesebben

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt

Részletesebben

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Módszertani megjegyzések a hitelintézetek összevont mérlegének alakulásáról szóló közleményhez

Módszertani megjegyzések a hitelintézetek összevont mérlegének alakulásáról szóló közleményhez Módszerani megjegyzések a hielinézeek összevon mérlegének alakulásáról szóló közleményhez 1. A forinosíás és az elszámolás kezelése a moneáris saiszikákban Az egyes fogyaszói kölcsönszerződések devizanemének

Részletesebben

A fény diszperziója. Spektroszkóp, spektrum

A fény diszperziója. Spektroszkóp, spektrum A éy diszpeziója. Speoszóp, speum Iodalom [3]: 5, 69 Newo, 666 Tiszább, élesebb szíépe ad a öveező eledezés A speum szíe ovább má em boaó. A speum szíee úja egyesíve eé éy apu. Sziváváy Newo Woolsope-i

Részletesebben

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com Rezgésdiagnoszika. Bevezeés rezgésdiagnoszika a űszaki diagnoszika egy eghaározo erülee. gépek állapovizsgálaánál alán a legelerjedebb vizsgálai ódszer a rezgésérés. Ebben a jegyzeben először a rezgésérés

Részletesebben

Földrajzi helymeghatározás

Földrajzi helymeghatározás A mérés megnevezése, célkitűzései: Földrajzi fokhálózat jelentősége és használata a gyakorlatban Eszközszükséglet: Szükséges anyagok: narancs Szükséges eszközök: GPS készülék, földgömb, földrajz atlasz,

Részletesebben

[MECHANIKA- HAJLÍTÁS]

[MECHANIKA- HAJLÍTÁS] 2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás

Részletesebben

VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN

VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN Bevezetés: Folyadékok - elsősorban savak, sók, bázsok vzes oldata - áramvezetésének gen fontos gyakorlat alkalmazása vannak. Leggyakrabban az elektronkus

Részletesebben

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása Póda László Urbán ános: Fizika. Emelt szintű képzéshez c. tankönyv (NT-75) feladatainak megoldása R. sz.: RE75 Nemzedékek Tudása Tankönyvkiadó, Budapest Tartalom. lecke Az elektromos állapot.... lecke

Részletesebben

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés 6. MENETMEGMUNKÁLÁSOK A csavarfelületek egyrészt gépelemek összekapcsolására (kötő menetek), másrészt mechanizmusokban mozgás átadásra (kinematikai menetek) szolgálnak. 6.1. Gyártási eljárások a) Öntés

Részletesebben

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével.

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. Eszközszükséglet: kaloriméter fűtőszállal digitális mérleg tanulói tápegység vezetékek

Részletesebben

1.8. Ellenőrző kérdések megoldásai

1.8. Ellenőrző kérdések megoldásai 1.8. Ellenőrző kérdések megoldásai 1. feladat: Számítsuk ki egy cm átmérőjű, cm hosszú, 1 menetes tekercs fluxusát, ha a tekercsben,1 -es áram folyik! N I 1 3,1 H = = 5. l, m Vs B = µ H = 4π 5 = π. m Φ

Részletesebben

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást! 2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának

Részletesebben

Tiszta és kevert stratégiák

Tiszta és kevert stratégiák sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,

Részletesebben

Bevezetés a kémiai termodinamikába

Bevezetés a kémiai termodinamikába A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal

Részletesebben

1. DINAMIKUS OPTIMALIZÁLÁS

1. DINAMIKUS OPTIMALIZÁLÁS Szolnok Tudományos özlemények XV. Szolnok, 2011. Fazekas Tamás 1 A DINAMIUS OPTIMALIZÁLÁS MÓDSZERÉNE ALALMAZÁSA A MAROÖONÓMIAI MODELLEZÉSBEN A anulmányban rövd összefoglaló és áeknés adok arról, hogy a

Részletesebben

Forgómozgás alapjai. Forgómozgás alapjai

Forgómozgás alapjai. Forgómozgás alapjai Forgómozgás alapjai Kiterjedt test általános mozgása Kísérlet a forgómozgásra Forgómozgás és haladó mozgás analógiája Merev test általános mozgása Gondolkodtató kérdés Összetett mozgások Egy test általános

Részletesebben

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy Név Neptun-kód Hallgató aláírása 0-15 pont: elégtelen (1) 16-21 pont: elégséges (2) 22-27 pont: közepes (3) 28-33 pont: jó (4) 34-40 pont: jeles (5) Érzékelők jellemzése Hőmérsékletérzékelés Erő- és nyomásmérés

Részletesebben

Konfidencia-intervallumok

Konfidencia-intervallumok Konfdenca-ntervallumok 1./ Egy 100 elemű mntából 9%-os bztonság nten kéített konfdenca ntervallum: 177,;179,18. Határozza meg a mnta átlagát és órását, feltételezve, hogy az egé sokaság normáls elolású

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2006. október 2. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. október 2. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Hidraulikus és pneumatikus eszközök működtető mágnesei. Összeállította Dr. Blága Csaba egyetemi docens

Hidraulikus és pneumatikus eszközök működtető mágnesei. Összeállította Dr. Blága Csaba egyetemi docens Hdraulkus és pneumatkus eszközök működtető mágnese Összeállította Dr. Blága Csaba egyetem docens Szakrodalom Dr. Fodor György, Elmélet elektrotechnka, I.-II., Tankönyvkadó, Budapest, 1979 1. Mágneses körök

Részletesebben

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt . Gyakorlat: asbeton gerenák nyírásvizsgálata Készítették: Frieman Noémi és Dr. Huszár Zsolt -- A nyírási teherbírás vizsgálata A nyírási teherbírás megfelelő, ha a következő követelmények minegyike egyiejűleg

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 006. május 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 006. május 18. 1:00 Az írásbeli vizsga időtartama: 0 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

(2) A R. 3. (2) bekezdése helyébe a következő rendelkezés lép: (2) A képviselő-testület az önkormányzat összes kiadását 1.1369.

(2) A R. 3. (2) bekezdése helyébe a következő rendelkezés lép: (2) A képviselő-testület az önkormányzat összes kiadását 1.1369. Enying Város Önkormányzata Képviselő-testületének 20/2010. (X. 05.) önkormányzati rendelete az Enying Város Önkormányzatának 2100. évi költségvetéséről szóló 7/2010. (II. 26.) önkormányzati rendelete módosításáról

Részletesebben

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés

Részletesebben

Oktatási segédlet. Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra. Dr. Jármai Károly.

Oktatási segédlet. Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra. Dr. Jármai Károly. Oktatási segédlet Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra a Létesítmények acélszerkezetei tárgy hallgatóinak Dr. Jármai Károly Miskolci Egyetem 013 1 Acél- és alumínium-szerkezetek

Részletesebben

Váltakozóáramú hajtások Dr. TARNIK István 2006

Váltakozóáramú hajtások Dr. TARNIK István 2006 AUTOMATIZÁLT VILLAMOS HAJTÁSOK Válakozóáramú hajások Pollack Mihály Műszaki Kar Villamos Hálózaok Taszék Dr. TARNIK Isvá doces Válakozó áramú hajások 1. Aszikro gépek elvi felépíése. 1.1. Az aszikro gépek

Részletesebben

5.3 Erővel záró kötések

5.3 Erővel záró kötések 5.3 Erővel záró köések Az erővel záró köésekben z elemeke olyn mérékben szoríják össze, hogy felfekvő felüleükön ébreő súrlóás elmozulásuk megkályozz. Teherbírásuk z összeszoríó erő ( felülei nyomás) és

Részletesebben

Schmitt-trigger Átmenet az analóg és digitális világ között

Schmitt-trigger Átmenet az analóg és digitális világ között Schmi-rigger Ámene az analóg és digiális világ közö Dr. Sükösd Csaba, Bera Miklós 1. Bevezeés,,Analóg makroszkopikus világunkban nagyon sok fizikai mennyiség folyonos érékkészleû. Magáól éreõdõen ilyenek

Részletesebben

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés.

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés. MŰSZAKI HŐTAN II.. ZÁRTHELYI Adja meg az Ön képzési kódját! N Név: Azonosító: Terem Helyszám: K - Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl

Részletesebben

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek! 1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,

Részletesebben

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a

Részletesebben

Agrárgazdasági Kutató Intézet Piac-árinformációs Szolgálat. Borpiaci információk. III. évfolyam / 7. szám 2005. április 28. 14-15.

Agrárgazdasági Kutató Intézet Piac-árinformációs Szolgálat. Borpiaci információk. III. évfolyam / 7. szám 2005. április 28. 14-15. A K I Borpiaci információk III. évfolyam / 7. szám 25. április 28. 14- Bor piaci jelentés Borpiaci információk 1-4. táblázat, 1-8. ábra: Belföldi értékesítési-árak és mennyiségi adatok 2. oldal 3-7. oldal

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

[ ] ELLENÁLLÁS-HİMÉRİK

[ ] ELLENÁLLÁS-HİMÉRİK endszerek Tanszék HİMÉSÉKLETFÜGGİ ELLENÁLLÁSOK Alapfogalmak és meghaározások ELLENÁLLÁS-HİMÉİK (Elmélei összefoglaló) Az ellenállás fogalma és egysége Valamely homogén, végig állandó kereszmeszeő vezeı

Részletesebben

MUNKAANYAG. Szabó László. Hőközlés. A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok

MUNKAANYAG. Szabó László. Hőközlés. A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok Szabó Lázló Hőközlé köveelménymodul megnevezée: Kőolaj- é vegyipari géprendzer üzemeleője é vegyipari echniku feladaok köveelménymodul záma: 047-06 aralomelem azonoíó záma é célcoporja: SzT-08-50 HŐTNI

Részletesebben

Kereskedelmi, háztartási és vendéglátóipari gépszerelő 31 521 14 0000 00 00 Kereskedelmi, háztartási és vendéglátóipari gépszerelő

Kereskedelmi, háztartási és vendéglátóipari gépszerelő 31 521 14 0000 00 00 Kereskedelmi, háztartási és vendéglátóipari gépszerelő A 10/007 (. 7.) SzMM rendelettel módosított 1/006 (. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben