A működő avagy kinematikai szögekhez

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A működő avagy kinematikai szögekhez"

Átírás

1 A működő avagy kinmatikai szögkhz A szrszámok síkbli, a szrszám fő forgácsolóélér mrőlgs mtsztbn érttt α, β, γ, δ jllmző szögi: a statikus ( nyugalmi ) szögértékk ld.: [ 1 ]!, mlyk gy fltétlztt mozgásirányon alapulnak. Az 1. ábra stébn a szrszámtst haladó mozgásának v sbsségét tétlzzük fl, a. ábránál pdig a szrszámtst forgó mozgásának v krülti sbsségét vsszük a szögmghatározás alapjául. 1. ábra Forrása: [ ]. ábra Forrása: [ 3 ] A két ábra közös vonása, hogy az α ( és δ ) szögk gyik szára a szrszám valamly élpontjában a v sbsséggl párhuzamos, ill. gybső, azzal llntéts irányítású félgyns. A továbbiakban a forgó főmozgású szrszámok gy fontos stébn, az gyszrűbb maró-, ill. gyaluszrszámok stébn vizsgáljuk mg az összttt forgácsoló mozgás során fllépő kinmatikai avagy látszólagos jllmző szögk kialakulásának és mghatározásának módját. Ezk a szögk már nm a fltétlztt, hanm a ténylgs mozgásirány ismrtébn határozandók mg. Ez azért lénygs tudnivaló, mrt a szrszám valójában a mozgó avagy működő szögkt érzékli, mlyk alakulása fontos a forgácsoló tchnológia szakszrű, sikrs kivitlzés céljából. Tudjuk például, hogy az α hátszög mglét a hátlapnak a munkadarabon való súrlódását, záltal a káros hőfjlődés fllépését és az anyagok nmkívánatos hőkzlésénk kialakulását akadályozza mg. Ha a szrszám gyári, azaz statikus hátszög a forgácsoló mozgás során lénygsn lcsökknht, akkor z a szrszám és a munkadarab károsodásához vztht. Ez már lgndő ok arra, hogy a jlnségt alaposabban is mgvizsgáljuk.

2 A gomtriai viszonyokat a 3. ábra szmléltti. v f = v + 3. ábra A 3. ábra gyik fő mondanivalója, hogy a jllmző kinmatikai szögk viszonyítási alapja már nm a v élkörsbsség, hanm a v f forgácsolási sbsség hatásvonala. Az ábra szrint: 1 ; ( 1 ) 1, ( ) ahol α 1 : a kinmatikai hátszög; γ 1 : a kinmatikai homlokszög; η : a hatásirány- szög ld.: [ 3 ]! Most határozzuk mg η - t! Az ábra jlölésivl:

3 3 QT tg ; ( 3 ) TP1 majd QT sin ; ( 4 ) továbbá TP v cos ; ( 5 ) 1 zután ( 3 ), ( 4 ), ( 5 ) - tl: sin tg, ( 6 ) v cos vagy kissé átalakítva: sin tg v. ( 7 ) 1 cos v Innn: sin arctg v. 1 cos ( 8 ) v Folytatva: ( 1 ) és ( 8 ) - cal: sin v 1 arctg 1 cos ; ( 9 ) v majd ( ) és ( 8 ) - cal: sin v 1 arctg. 1 cos v Még adjuk mg a φ változó érték - tartományát! A 3. ábra alapján: R H H H cos 1 1, R R D innn: ( 10 ) max ( 11 )

4 4 H max arccos 1. D Most már flírhatjuk, hogy H 0 max arccos 1. D ( 1 ) ( 13 ) Most határozzuk mg a forgácsolási sbsség nagyságát is! A 3. ábra szrint, Pitagorász - tétlll: v cos sin ; ( 14 ) átalakítások után: v vcos. ( 15 ) ( 15 ) - ből kimléssl: v 1 cos ; v v ( 16 ) végül gyökvonás után: v 1 cos. v v ( 17 ) Most nézzük mg, hogyan alakulnak képltink abban az stbn, ha 1! v ( 18) Ekkor ( 8 ) - ból: arctg sin ; v ( 19 ) flhasználva, hogy x << 1 stén fnnáll az arctg x x összfüggés ld. pl.: [ 4 ], kapjuk, hogy sin. ( 0) v Nézzük, mkkora lsz η max! A ( 0 ) képltből: max sin max. ( 1 ) v Ehhz fjzzük ki sinφ max - ot, ( 11 ) sgítségévl is! H sin max 1cos max 11 ; rndzv: D ( )

5 5 sin max H H H H 1 1 4, D D D D vagyis ( 3 ) H H sin max 1. D D ( 4 ) Most vgyük még figylmb, hogy a szokásos gyakorlati stkbn fnnáll, hogy H 1, D ( 5 ) így ( 4 ) és ( 5 ) - tl: H sin. D max ( 6 ) Most ( 1 ) és ( 6 ) - tal: H v D N fldjük, hogy a ( 7 ) szrint kiszámolt szög még radiánban van, zért átszámoljuk fokra: max. ( 7 ) H max max. v D Most ( 1 ) és ( 8 ) - cal: ( 8 ) 180 H 1,min max ; ( 9 ) v D ( 0 ) - ból is láthatóan: min 0, ha =0, ( 30 ) így ( 1 ) és ( 9 ) - cl: 1,max, ha =0. ( 31 ) A ( 9 ) képlt akár llnőrzésr, ill. a paramétrk trvzésér is használható lht; pl.: gy ( 3 ) mg 1,min 1 alakú kövtlmény támasztásával, ahol α 1 mg : gy mgkövtlt, lgalsó hátszög - érték, amly a tchnológia igényi szrint adandó mg. A fntikhz hasonlóan, ( ), ( 8 ) és ( 30 ) - cal: 180 H 1,max max ; v D ( 33 )

6 6 1,min 0. ( 34 ) Most nézzük a mtszőszögk alakulását! Mghatározás szrint:, ( 35 ) továbbá a 3. ábra szrint is. ( 36 ) 1 1 Ezután ( 1 ), ( 35 ), ( 36 ) - tal: 1 ( ) ( ). ( 37 ) Majd ( 37 ) és ( 30 ) alapján: 1,max min 0 ; ( 38 ) hasonlóan ( 37 ) és ( 9 ) szrint: 180 H 1,min max. ( 39 ) v D Egy mg 1,min 1 ( 4 0 ) alakú korlátozással képltink llnőrzésr, ill. trvzésr is alkalmasak lhtnk. Most térjünk rá a forgácsolósbsség nagyságát mgadó képlt taglalására! ( 18 ) fnnállása stén írható, hogy 0; v ( 41 ) zután ( 17 ) és ( 41 ) - gyl: v 1 cos ; v ( 4 ) most alkalmazzuk az x << 1 stén fnnálló 1 1 x 1 x összfüggést ld. pl.: [ 4 ] ( 4 ) - r: v 1 cos v cos. v ( 43 ) A szélső értékk, ( 43 ) szrint:,max v, ( 44 ) H,min v cos max v 1. D ( 45 ) Vgyük észr, hogy a ( 44 ) összfüggés pontos, ahogyan az pl. ( 15 ) - ből is kiolvasható. Érdks lht a jllmző szögk és a forgácsolósbsség nagyságának változása.

7 7 A jllmző kinmatikai szögk nagyságának változása: ( ) ; 1 1,max 1,min max max ( ) ; 1 1,max 1,min max max ( ), 1 1,max 1,min max max azaz ( 46 ), ( 47 ), ( 48 ) és ( 8 ) szrint: H max max max v D A forgácsolósbsség nagyságának változása: ( 46 ) ( 47 ) ( 48 ). ( 49 ) v v v (v ) (v cos ) (1 cos ); f f,max f,min max max most ( 50 ) és ( 11 ) - gyl: H H 1 1. D D Figylmb vév ( 5 ) - öt is, ( 51 ) alapján írhatjuk, hogy f ( 50 ) ( 51 ) v. ( 5 ) Az alábbiakban két mintapéldát számolunk végig, valóság - közli adatokkal. 1. Példa A kményfát forgácsoló, kményfém lapkás marószrszám élkörátmérőj 140 mm, fordulatszáma / min, hátszög 15, élszög 55. A munkadarab lőtolási sbsség 1 m / min nagyságú, a fogásmélység,0 mm. Határozzuk mg a szrszám ~ élkör - sbsségénk nagyságát; ~ forgácsolósbsségénk, ~ kinmatikai jllmző szögink lgnagyobb és lgkisbb értékét, zk ltérését! Mgoldás Adott: D = 140 mm; n = / min; = 1 m / min; H = mm; α = 15 ; β = 55. Krstt: v; v f,min ; v f,max ; Δv; α 1,min ; α 1, max ; γ 1,min ; γ 1,max ; δ 1,min ; δ 1,max ; max.

8 8 a.) A szrszám élkör - sbsségénk nagysága: 3500 v D n 0,14 m 5,656 m / s ; 60 s v 5,656 m / s. b.) A forgácsolósbsség lgnagyobb érték: 1m,max v 5,656 m / s 60s 5,656 m / s 0, m / s 5,856 m / s ;,max 5,856 m / s. c.) A forgácsolósbsség lgkisbb érték: H mm cos max ,086 0,9714; D 140 mm H 1cos max 0, 086; D v v cos 5,656 m / s 0, m / s 0,9714 5,850 m / s; f,min f,min max v 5,850 m / s. d.) A b.) és c.) rdményk ltérés: H 0,m / s0,086 0,0057 m / s 0,006 m / s ; D v 0,006 m / s. f.) A kinmatikai hátszög lgnagyobb érték: 1,max 15 ; 1,max 15. f.) A kinmatikai hátszög lgkisbb érték: 180 H 360 0, m / s mm max 0,1068 0,11 ; v D 5,656 m / s 140 mm 1,min max 15 0,11 14,89 ;

9 9 1,min 14,89. g.) A kinmatikai homlokszög lgkisbb érték: 1,min ; 1,min 0. h.) A kinmatikai homlokszög lgnagyobb érték: 1,max max 0 0,11 0,11 ; 1,max 0,11. i.) A kinmatikai mtszőszög lgnagyobb érték: 1,max ; 1,max 70. j.) A kinmatikai mtszőszög lgkisbb érték: 1,min max 70 0,11 69,89 ; 1,min 69,89. k.) A jllmző szögk mozgásbli változásának nagysága: max 0,11.. Példa Az 1. példa adatai alapján vizsgáljuk mg, hogy milyn fltétlk mlltt érné l a kinmatikai és a statikus hátszögk közti ltérés a ξ α = 1 % - os értékt! Mgoldás Dfiniáljuk a ξ α szögltérési százalékot! 1 1 max , ahol flhasználtuk ( 49 ) - t is. Részltzv: ( a )

10 H 1. D v ( b ) Most az / v arányt krssük, a többi adat változatlan értékét fltétlzv. Bhlyttsítv az ismrt adatokat: mm 1, mm v azaz ( c ) 91,309 1, v vagy 1. v ( ) 91,3 Minthogy a 1. példában 1, v ( f ) 1 18,3 zért az / v arányt az 1 v 91,3 18,3 1, ,3 ( g ) v 18,3 1 szorzóval növlt értékr klln mlni, hogy a. példában lőírt fltétl tljsüljön, vagyis hogy a statikus és a kinmatikai hátszögk közti ltérés lérj az 1 % - ot. ( d ) Mgjgyzésk: M1. Az 1. példa adatai stén a forgácsolósbsség és a jllmző szögk mozgásbli változása jlntéktln, gyakorlatilag lhanyagolható. Ez ( 18 ) fnnállása miatt van így. Minthogy a faipari gyakorlatban z a jllmző hlyzt, a tan - és szakkönyvk nm is foglalkoznak az ttől ltérő stkkl. Ez azt a vélményt szülhti, hogy az ltérő stk csak lméltilg lhtnk érdksk. Gondoljuk végig! M. Itt csak az llnirányú forgácsolás stévl foglalkoztunk. Fontos, hogy az Olvasó mgválaszolja a kövtkző találós kérdést! Hogyan lht szó a 3. ábra szrinti stbn llnirányú forgácsolásról, miközbn az lőtolási sbsség és a v élsbsség - vktorok gyállásúak, az élkör lgmélybb pontjában?

11 11 Flhasznált irodalom: [ 1 ] Bali János: Forgácsolás Tankönyvkiadó, Budapst, 1988 [ ] Lugosi Armand: Faipari szrszámok és gépk kézikönyv Műszaki Könyvkiadó, Budapst, 1987 [ 3 ] Lugosi Armand ( szrk. ): Faipari kézikönyv Műszaki Könyvkiadó, Budapst, 1976 [ 4 ] I. N. Bronstjn K. A. Szmngyajv: Matmatikai zsbkönyv. kiadás, Műszaki Könyvkiadó, Budapst, 1963 Sződligt, Összállította: Galgóczi Gyula mérnöktanár

Szerző: Böröcz Péter János H-9026, Egyetem tér 1. Győr, Magyarország

Szerző: Böröcz Péter János H-9026, Egyetem tér 1. Győr, Magyarország In: Kóczy L, éánczos L, Bakó A, Prznszki J, Szgdi Z, Várlaki P (szrk.) Játéklmélt alkalmazási lhtőségi a logisztikai rndszrkbn - az gy- és többutas szállítási csomagolási szközök közötti döntéslmélti probléma

Részletesebben

1. FELADATLAP TUDNIVALÓ

1. FELADATLAP TUDNIVALÓ 0851 modul: GEOMETRII ISMÉTLÉS z alakzatokról tanultak ismétlés 135 TUDNIVLÓ Egy alakzatot akkor nvzünk tnglysn szimmtrikusnak, ha létzik lgalá gy olyan gyns, amlyr az alakzatot tnglysn tükrözv önmagát

Részletesebben

Mágneses anyagok elektronmikroszkópos vizsgálata

Mágneses anyagok elektronmikroszkópos vizsgálata Mágnss anyagok lktronmikroszkópos vizsgálata 1. Transzmissziós lktronmikroszkóp 1.1. A mágnss kontraszt rdt a TEM-bn Az lktronmikroszkópban 100-200 kv-os (stlg 1 MV-os) gyorsítófszültséggl gyorsított lktronok

Részletesebben

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn Modrn piaclmélt ELTE TáTK Közgazdaságtudományi Tanszék Sli Adrinn A tananyag a Gazdasági Vrsnyhiatal Vrsnykultúra Központja és a Tudás-Ökonómia Alapítány támogatásáal készült az ELTE TáTK Közgazdaságtudományi

Részletesebben

A szelepre ható érintkezési erő meghatározása

A szelepre ható érintkezési erő meghatározása A szlpr ható érintkzési rő mghatározása Az [ 1 ] műbn az alábbi fladatot találtuk. A fladat: Adott az ábra szrinti szlpmlő szrkzt. Az a xcntricitással szrlt R sugarú bütyök / körtárcsa ω 1 állandó szögsbsséggl

Részletesebben

Országos Szilárd Leó fizikaverseny feladatai

Országos Szilárd Leó fizikaverseny feladatai Országos Szilárd Ló fizikavrsny fladatai I katgória döntő, 5 április 9 Paks A fladatok mgoldásáoz 8 prc áll rndlkzésr Mindn sgédszköz asználató Mindn fladatot külön lapra írjon, s mindn lapon lgyn rajta

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Koordináta-gomtria szürkíttt háttrű fladatrzk nm tartoznak az érinttt témakörhöz azonban szolgálhatnak fontos információval az érinttt fladatrzk mgoldásához! 1)

Részletesebben

Kör kvadratúrája. Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra

Kör kvadratúrája. Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra 1 Kör kvadratúrája Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra Ez az ábra hibás, hiába javított kiadásról van szó. Nézzük, miért! Az ábrázolt kék kör és rózsaszín négyzet területe egyenlő.

Részletesebben

Nyomott - hajlított fagerenda szilárdsági méretezése ~ egy régi - új megoldás

Nyomott - hajlított fagerenda szilárdsági méretezése ~ egy régi - új megoldás Nyomott - ajlított fagerenda szilárdsági méretezése ~ egy régi - új oldás Már régóta foglalkozom erőtani problémákkal, ám nagy lepetésemre a minap egy olyan érdekes feladat - oldást találtam, amilyet még

Részletesebben

KOD: B377137. 0, egyébként

KOD: B377137. 0, egyébként KOD: 777. Egy csomagológép kilogrammos zacskókat tölt. A zacskóba töltött cukor mnnyiség normális loszlású valószínûségi változó kg várható értékkl és.8 kg szórással. A zacskó súlyra nézv lsõ osztályú,

Részletesebben

A központos furnérhámozás néhány alapösszefüggése

A központos furnérhámozás néhány alapösszefüggése A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.

Részletesebben

A művészeti galéria probléma

A művészeti galéria probléma A műészti galéria probléma A műészti galéria probléma (art galry problm): A műészti galéria mgfigylés kamrákkal / őrökkl. Hálózattrzés Alapjai 2007 8: Műészti Galéria Probléma Őrzési / Mgilágítási problémák

Részletesebben

Lécgerenda. 1. ábra. 2. ábra

Lécgerenda. 1. ábra. 2. ábra Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel

Részletesebben

Villamos érintésvédelem

Villamos érintésvédelem Villamos érintésvédlm A villamos nrgia ipari mértű flhasználása a század ljén kzdtt gyr nagyobb mértékbn ltrjdni és zzl gyidőbn jlntkztk az áramütésből rdő balstk is. Ennk kövtkztébn nagyarányú kutatás

Részletesebben

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve) Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapest, Egry J. u. 1. Email: juhaszm@erg.bme.hu Tel: 1/463 40 22 www.erg.bme.

DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapest, Egry J. u. 1. Email: juhaszm@erg.bme.hu Tel: 1/463 40 22 www.erg.bme. DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapst, Egry J. u. 1. Email: juhaszm@rg.bm.hu Tl: 1/463 40 22 www.rg.bm.hu A KIVÁLASZTÁS ÉS A MUNKAKÖRI ALKALMASSÁG PSZICHOLÓGIÁJA II. Az lızı

Részletesebben

[MECHANIKA- HAJLÍTÁS]

[MECHANIKA- HAJLÍTÁS] 2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás

Részletesebben

A szintvonalas eljárásról. Bevezetés

A szintvonalas eljárásról. Bevezetés A szintvonalas eljárásról Bevezetés A tetőket építő ács a kötőács napi munkájának része leet a fedélidom - közepelés is. Ennek során megszerkeszti a tető felülnézeti képét, ennek birtokában pedig a további

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2008. jnuár 31. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 31. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto

Részletesebben

E E E W. Előszó. Kifejtés

E E E W. Előszó. Kifejtés Géptan HF - Előszó A fenti feladatot a http://wwwuni-miskolchu/~gtbweb/tantargyak/geptanfeladat04pdfa internet - címen találtam Alább megkísérlem megoldani A feladat összetett az egyes részek külön előadás

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Koordináta - geometria I.

Koordináta - geometria I. Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor

Részletesebben

Az ablakos problémához

Az ablakos problémához 1 Az ablakos problémához A Hajdu Endre által felvetett, egy ablak akadályoztatott kinyitásával kapcsolatos probléma a következő. Helyezzünk el egy d oldalhosszúságú, álló, négyzet alapú egyenes hasábot

Részletesebben

Tartályfedél rögzítő csavarok. HENNLICH Industrietechnik. Lapos körmös kivitel Íves körmös kivitel Tartozékok

Tartályfedél rögzítő csavarok. HENNLICH Industrietechnik. Lapos körmös kivitel Íves körmös kivitel Tartozékok HENNLICH Inustritnik ás s l!...t n á s H-6000 Kskmét-Kflv, Hliport-Rptér.Tl.: +36 76 509 655. Fx: +36 76 470 308. rmturtnik@nnli.u. www.nnli.u Trtályfél rögzítő svrok Lpos körmös kivitl Ívs körmös kivitl

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MUNKAANYAG, A KORMÁNY ÁLLÁSPONTJÁT NEM TÜKRÖZI

MUNKAANYAG, A KORMÁNY ÁLLÁSPONTJÁT NEM TÜKRÖZI Az önkormányzati és trültfjlsztési minisztr../2008. (..) ÖTM rndlt a katasztrófavédlmi szrvk és az önkormányzati tűzoltóság hivatásos szolgálati viszonyban álló tagjaival kapcsolatos munkáltatói jogkörök

Részletesebben

MINŐSÉGIRÁNYÍTÁSI KÉZIKÖNYV

MINŐSÉGIRÁNYÍTÁSI KÉZIKÖNYV Lap: 1/145 AZ INCZÉDY GYÖRGY KÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM MINŐSÉGIRÁNYÍTÁSI E AZ MSZ EN ISO 9001 SZABVÁNY ALAPJÁN, ILLETVE MINŐSÉGIRÁNYÍTÁSI PROGRAMJA A KÖZOK-TATÁSI TÖR- VÉNY (1993. ÉVI LXXIX.)

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat

Részletesebben

Élesmenetű csavar egyensúlya másként

Élesmenetű csavar egyensúlya másként Élesmenetű csavar egyensúlya másként A szakirodalom ld pl: [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] tanulmányozása során feltűnt, hogy ~ leginkább a laposmenetű csavar erőjátékának vizsgálatát közlik, annak egyensúlyi

Részletesebben

Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról

Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról 1 Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról Korábban már több egyszerűbb tető - alak geometriáját leírtuk. Most egy kicsit nehezebb feladat megoldását tűzzük ki

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE. A mérés élja A mérés fladat égyzt krsztmtsztű satorába bépíttt, az áramlás ráyára mrőlgs szmmtratglyű, külöböző átmérőjű hgrkr ható ( x, y ) rő

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A

Részletesebben

Operatív döntéstámogatás módszerei

Operatív döntéstámogatás módszerei ..4. MSKOLC YM azaságtuomáyi Kar Üzlti formációgazálkoási és Mószrtai tézt Számvitl tézti aszék Opratív ötéstámogatás mószri Dr. Musiszki Zoltá Opratív ötéstámogatás mószri Statisztikai, matmatikai mószrk

Részletesebben

Teherhordó üveg födémszerkezet: T gerenda ragasztott öv-gerinc kapcsolatának numerikus vizsgálata

Teherhordó üveg födémszerkezet: T gerenda ragasztott öv-gerinc kapcsolatának numerikus vizsgálata Tudományos Diákköri Konrncia Thrhordó üvg ödémszrkzt: T grnda ragasztott öv-grinc kapcsolatának numrikus vizsgálata Készíttt: Gál Tamás F17JCS építőmérnök hallgató Konzulns: Dr. Vigh László Grgly Egytmi

Részletesebben

Tengely kritikus fordulatszáma

Tengely kritikus fordulatszáma BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlkdésmérnöki Kar Budapsti Mőszaki és Gazdaságtudományi Egytm Közlkdésmérnöki Kar Jármőlmk és Hajtások Tanszék Jármőlmk és Hajtások Tanszék Tngly itikus

Részletesebben

Feladatok megoldással

Feladatok megoldással Fladatok mgoldással. sztmbr 6.. Halmazrdszrk. Igazoljuk! A \ B A r (A r B) (A [ B) r ((A r B) [ (B r A)) Mgoldás. A r (A r B) A \ A \ B A \ A [ B A \ A [ (A \ B) A \ B (A [ B) r ((A r B) [ (B r A)) (A

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai Bojtár Imr Gáspár Zsolt A végslmmódszr matmatka alapja Elktronkusan ltölthtő lőadásvázlat építőmérnök hallgatók számára. http://www.pto.bm.hu/m/htdocs/oktatas/oktatas.php Kadó: BME Tartószrkztk Mchankája

Részletesebben

Villamosságtan példatár 1.4 verzió A példatár hibáit a. email címeken szíveskedjen mindenki jelenteni!

Villamosságtan példatár 1.4 verzió A példatár hibáit a. email címeken szíveskedjen mindenki jelenteni! Vszrémi Egym Auomaizálás anszék Villamosságan éldaár. vrzió A éldaár hibái a nova@axl.hu ohrola@vn.hu mail címkn szívskdn mindnki lnni! Villanyan éldaár Bvzés: A Villamosságan éldaár a Vszrémi Egymn okao

Részletesebben

MATEMATIKA HETI 3 ÓRA

MATEMATIKA HETI 3 ÓRA EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE

BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE BACZY"SKI Gábor Budape?ti 1Iűszaki Egyetem, Közlekedésmérnöki Kar Epítő- és Anyagmozgató Gépek Tanszék Körkeresztmetszet{Í

Részletesebben

Az optimális csatorna - keresztmetszet feladatáról

Az optimális csatorna - keresztmetszet feladatáról z imális csatorna - keresztmetszet feladatáról Ez a idraulikai proléma már az egyetemi tanulmányok során is érdekesnek tűnt. Most valamiért újra előjött. Talán azért, mert a vizsgán proléma adódott ezzel

Részletesebben

Jelek tanulmányozása

Jelek tanulmányozása Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás

Részletesebben

Az Integrációs Pedagógiai Rendszer projektelemeinek beépülése

Az Integrációs Pedagógiai Rendszer projektelemeinek beépülése Az Intgrációs Pdagógiai Rndszr projtlmin bépülés a Fsttics Kristóf Általános Művlődési Központ Póaszpti 1-8. évfolyamos és a Paodi 1-4. évfolyamos Általános Isola tagintézményin otató-nvlő munájába 2011/2012.

Részletesebben

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Gépszerkezettan tanszék Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Összeállította: Dr. Stampfer Mihály Pécs, 0. . A fogaskerekek előtervezése.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III. Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.

Részletesebben

Analízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem

Analízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása

Részletesebben

A rögzített tengely körül forgó testek kiegyensúlyozottságáról kezdőknek

A rögzített tengely körül forgó testek kiegyensúlyozottságáról kezdőknek A rögzített tengely körül forgó tetek kiegyenúlyozottágáról kezdőknek Bevezeté A faiparban nagyon ok forgó mozgát végző gépelem, zerzám haználato, melyek rende működéének feltétele azok kiegyenúlyozottága.

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

FOGASSZÍJHAJTÁS KISFELADAT

FOGASSZÍJHAJTÁS KISFELADAT dr. Lovas László FOGASSZÍJHAJTÁS KISFELADAT Segédlet a Járműelemek II. tantárgyhoz Kézirat 5 . Adatválaszték Ssz. Hajtó gép Hajtott gép P [kw] Napi üzemidő [h] n [/min] n [/min] d max [mm] a [mm] Dízelmotor,

Részletesebben

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés 6. MENETMEGMUNKÁLÁSOK A csavarfelületek egyrészt gépelemek összekapcsolására (kötő menetek), másrészt mechanizmusokban mozgás átadásra (kinematikai menetek) szolgálnak. 6.1. Gyártási eljárások a) Öntés

Részletesebben

Azonosító jel: Matematika emelt szint

Azonosító jel: Matematika emelt szint I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012

Részletesebben

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL ADOTT: Az ábrán látható db végslmből álló tartószrkzt gomtriája, mgfogása és trhlés. A négyzt alakú síkalakváltozási végslmk mért 0 X 0 mm. p Anyagjllmzők:

Részletesebben

ebben R a hajó ellenállása, H vontató esetén a kifejtendő kötél-vonóerő, t a hajó szokásos értelmezésű szívási tényezője,

ebben R a hajó ellenállása, H vontató esetén a kifejtendő kötél-vonóerő, t a hajó szokásos értelmezésű szívási tényezője, 4.3.2.3.1.2.2 Gyűrűben dolgozó (K és K.a) hajócsavar-modell sorozatok A Kort-gyűrű jellemző adatainak megválasztása Korábbi kutatások. A Kort-gyűrű elméletével igen sokan foglalkoztak. Nincs értelme ezen

Részletesebben

KÉRDÉSEK_TECHNOLÓGIA MUNKATERÜLET: GÉPÉSZET ÉS FÉMMEGMUNKÁLÁS OKTATÁSI PROFIL: LAKATOS

KÉRDÉSEK_TECHNOLÓGIA MUNKATERÜLET: GÉPÉSZET ÉS FÉMMEGMUNKÁLÁS OKTATÁSI PROFIL: LAKATOS KÉRDÉSEK_TECHNOLÓGIA MUNKATERÜLET: GÉPÉSZET ÉS FÉMMEGMUNKÁLÁS OKTATÁSI PROFIL: LAKATOS 1. Egy vagy több nagyság összehasonlítását egy másik azonos nagysággal, a következő képen nevezzük: 2 a) mérés b)

Részletesebben

VT 265 www.whirlpool.com

VT 265 www.whirlpool.com VT 265.hirlpool.com 1 BEÜZEMELÉS A HÁLÓZATRA CSATLAKOZTATÁS ELŐTT ELLENŐRIZZE, HOGY A TÖRZSLAPON jlztt fszültség mggyzik- a lakás fszültségévl. NE TÁVOLÍTSA EL A MIKROLLÁM-BEVEZETÉST VÉDŐ LE- MEZEKET,

Részletesebben

A FORGÁCSLEVÁLASZTÁS ALAPJAI

A FORGÁCSLEVÁLASZTÁS ALAPJAI MEGMUNKÁLÁSI TECHNOLÓGIÁK AJ005_2 Gépészmérnöki (BSc) szak, Mérnök tanár szak A FORGÁCSLEVÁLASZTÁS ALAPJAI 6. előadás Összeállította: 1. A forgácsolás igénybevételei modellje 2. A forgácsolási alapmodell

Részletesebben

segítségével! Hány madárfajt találtál meg? Gratulálunk!

segítségével! Hány madárfajt találtál meg? Gratulálunk! Odú llnőrzés CSORMÍVES Ha mgfogadtad a téli számban javasolt odúkihlyzést, vagy már volt odú kihlyzv a krtbn, márciustól már érdms figylgtnd trmésztsn csak gy kissé távolabbról hogy van- a környékén mozgolódás,

Részletesebben

FORGÁCSOLÁSELMÉLET. Forgácsolószerszámok élgeometriája. Oktatási segédlet. Összeállította: Prof. Dr. Kundrák János egyetemi tanár

FORGÁCSOLÁSELMÉLET. Forgácsolószerszámok élgeometriája. Oktatási segédlet. Összeállította: Prof. Dr. Kundrák János egyetemi tanár FORGÁCSOLÁSELMÉLET Frgáclózerzámk élgemetriája Oktatái egédlet Özeállíttta: Prf. Dr. Kundrák Ján egyetemi tanár Dr. Dezpth Itván tanzéki mérnök Miklc, 2007. 1. Frgácló zerzámk élgemetriája (imétlé) 1.1.

Részletesebben

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke? 5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,

Részletesebben

RSA. 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2

RSA. 1. Véletlenszerűen választunk két nagy prímszámot: p1, p2 RS z algoritmus. Véltlnszrűn választunk két "nagy" prímszámot: p, p, p p. m= pp, φ ( m) = ( p -)( p -)., < φ( m), ( φ( m ),) = - 3. d = ( mod φ( m) ) 4. k p s = ( m,), = ( d, p, p ) k. Kódolás: y = x (

Részletesebben

Forgómozgás alapjai. Forgómozgás alapjai

Forgómozgás alapjai. Forgómozgás alapjai Forgómozgás alapjai Kiterjedt test általános mozgása Kísérlet a forgómozgásra Forgómozgás és haladó mozgás analógiája Merev test általános mozgása Gondolkodtató kérdés Összetett mozgások Egy test általános

Részletesebben

Ezeket az előírásokat az alábbiakban mutatjuk be részletesebben:

Ezeket az előírásokat az alábbiakban mutatjuk be részletesebben: KEL-1 Minimális telekméret: 1400 nm Maximális építmény magasság: 6,5m Lakásszám: maximum 8 Minimális telekméret: 1400 nm ennél kisebb építési telket ebben az övezetben nm/nm. Ez határozza meg, hogy a telek

Részletesebben

2010.05.12. 1300 Infó Rádió. Hírek

2010.05.12. 1300 Infó Rádió. Hírek 2010.05.12. 1300 Infó Rádió Hírek 100512 1303 [1127h GAZ MKIK - pozitív index MTI km 100512] Jelentősen javultak a magyar vállalatok várakozásai a következő félévre a Magyar Kereskedelmi és Iparkamara

Részletesebben

A DÖNTÉS SORÁN FENNAKADT FÁK MOZGATÁSA

A DÖNTÉS SORÁN FENNAKADT FÁK MOZGATÁSA A DÖNTÉS SORÁN FENNAKADT FÁK MOZGATÁSA A FENNAKADÁS KÉT TÍPUSA Galgóczi Gyula Hajdu Endre Az alábbiakban a kézi eszközökkel végzett fakitermelés egyik balesetveszélyes mozzanatáról lesz szó. Arról a folyamatról,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög

Részletesebben

FAIPARI ALAPISMERETEK

FAIPARI ALAPISMERETEK Faipari alapismeretek középszint 1221 ÉRETTSÉGI VIZSGA 2014. október 13. FAIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Órai kidolgozásra: 1. feladat Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk,

Részletesebben

FAIPARI ALAPISMERETEK

FAIPARI ALAPISMERETEK Faipari alapismeretek középszint 1311 ÉRETTSÉGI VIZSGA 2014. május 20. FAIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók

Részletesebben

ORSZÁGOS KÖRNYEZETEGÉSZSÉGÜGYI INTÉZET AEROBIOLÓGIAI MONITOROZÁSI OSZTÁLY

ORSZÁGOS KÖRNYEZETEGÉSZSÉGÜGYI INTÉZET AEROBIOLÓGIAI MONITOROZÁSI OSZTÁLY ORSZÁGOS KÖRNYEZETEGÉSZSÉGÜGYI INTÉZET AEROBIOLÓGIAI MONITOROZÁSI OSZTÁLY 197 Budapest, Gyáli út 2-6. Levélcím: 1437 Budapest Pf. 839. Telefon: (6-1) 476-1215 Fax: (6-1) 476-1215 E-mail: pollen@oki.antsz.hu

Részletesebben

Földművek gyakorlat. Vasalt talajtámfal tervezése Eurocode szerint

Földművek gyakorlat. Vasalt talajtámfal tervezése Eurocode szerint Földműve gyaorlat Vasalt talajtámfal tervezése Eurocode szerint Vasalt talajtámfal 2. Vasalt talajtámfal alalmazási területei Úttöltése vasúti töltése hídtöltése gáta védműve ipari épülete öztere repülőtere

Részletesebben

Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a

Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a 1) Adott két pont: 1 A 4; és 2 3 B 1; Írja fl az AB szakasz flzőpontjának 2 2) Egy kör sugarának hossza 4, középpontja a B ( 3;5) pont. írja fl a kör gynltét! 3) Írja fl a ( 2;7 ) ponton átmnő, ( 5;8)

Részletesebben

Tudtad? 11. Ezt a kérdést azért tesszük fel, mert lehet, hogy erre még nem gondoltál.

Tudtad? 11. Ezt a kérdést azért tesszük fel, mert lehet, hogy erre még nem gondoltál. Tudtd? 11. Ezt kérdést zért tesszük fel mert lehet hogy erre még nem gondoltál. Most tekintsük z 1. árát! 1. ár Forrás: http://vmek.oszk.hu/0100/015/html/04/img/-14.jpg Itt különöző tetőlkokt szemlélhetünk.

Részletesebben

Tető nem állandó hajlású szarufákkal

Tető nem állandó hajlású szarufákkal 1 Tető nem állandó hajlású szarufákkal Már korábbi dolgozatainkban is szó volt a címbeli témáról. Most azért vettük újra elő, mert szép és érdekes ábrákat találtunk az interneten, ezzel kapcsolatban, és

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,

Részletesebben

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE Készítette: Ács György RTO FORRÁS: FLUXUS SZONDA ÉS ALKALMAZÁSA KTT MÉRNÖKI IRODA 11SP mérési eredményei A forgórész menetzárlat okozta

Részletesebben

Számítógépes geometria (mester kurzus)

Számítógépes geometria (mester kurzus) 2010 ősz, Debreceni Egyetem A grafikus szállítószalag 1 a geometriai (matematikai) modell megalkotása 2 modelltranszformáció (3D 3D) 3 vetítés (3D 3D) 4 képtranszformáció (2D 2D) 5... 6 raszterizáció A

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-gomtria A szürkíttt háttrű fladatrészk nm tartoznak az érinttt témakörhöz, azonban szolgálhatnak fontos információval az érinttt fladatrészk mgoldásához!

Részletesebben

A szeretet tanúi. 2013. március 31. 18. évfolyam, 1. szám. Az algy i egyházközség kiadványa KRISZTUS FELTÁMADT! ÚJ PÁPÁNK

A szeretet tanúi. 2013. március 31. 18. évfolyam, 1. szám. Az algy i egyházközség kiadványa KRISZTUS FELTÁMADT! ÚJ PÁPÁNK 2013. március 31. 18. évfolyam, 1. szám A szrtt tanúi Az algy i gyházközség kiadványa KRISZTUS FELTÁMADT! A Húsvét a Fltámadás - és nm a nyuszi - ünnp Ádám és Éva az s-b nnl vszíttt l az örök éltt. Az

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 1. Merev test impulzusának

Részletesebben

Korszerű geodéziai adatfeldolgozás Kulcsár Attila

Korszerű geodéziai adatfeldolgozás Kulcsár Attila Korszerű geodéziai adatfeldolgozás Kulcsár Attila Nyugat-Magyarországi Egyetem Geoinformatikai Főiskolai Kar Térinformatika Tanszék 8000 Székesfehérvár, Pirosalma -3 Tel/fax: (22) 348 27 E-mail: a.kulcsar@geo.info.hu.

Részletesebben

JT 379 www.whirlpool.com

JT 379 www.whirlpool.com JT 379.hirlpool.com A HÁLÓZATRA CSATLAKOZTATÁS ELŐTT ÜZEMBE HELYEZÉS ELLENŐRIZZE, HOGY A TÖRZSLAPON jlztt fszültség mggyzik- a lakás fszültségévl. NE TÁVOLÍTSA EL A MIKROLLÁM-BEVEZETÉST VÉDŐ LEMEZEKET,

Részletesebben

http://www.olcsoweboldal.hu ingyenes tanulmány GOOGLE INSIGHTS FOR SEARCH

http://www.olcsoweboldal.hu ingyenes tanulmány GOOGLE INSIGHTS FOR SEARCH 2008. augusztus 5-én elindult a Google Insights for Search, ami betekintést nyújt a keresőt használók tömegeinek lelkivilágába, és időben-térben szemlélteti is, amit tud róluk. Az alapja a Google Trends,

Részletesebben

Cikória szárítástechnikai tulajdonságainak vizsgálata modellkísérlettel

Cikória szárítástechnikai tulajdonságainak vizsgálata modellkísérlettel Cikória szárítástchnikai tulajdonságainak vizsgálata modllkísérlttl Kacz Károly Stépán Zsolt Kovács Attila Józsf Nményi Miklós Nyugat-Magyarországi Egytm Mzőgazdaság- és Éllmiszrtudományi Kar Agrárműszaki,

Részletesebben

MATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések

MATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések MATLAB 4. gyakorlat Lineáris egyenletrendszerek, leképezések Menetrend Kis ZH MATLAB függvények Lineáris egyenletrendszerek Lineáris leképezések Kis ZH pdf MATLAB függvények a szkriptekhez hasonlóan az

Részletesebben

2.4. Kúpkerék- és csigahajtás.

2.4. Kúpkerék- és csigahajtás. .4. Kúpkerék- és csigahajtás. Tevékenység: Olvassa el a jegyet 94-08 oldalain található tananyagát! Tanulányoa át a segédlet 9.5. és 9.6. fejeeteiben lévı kidolgoott feladatait, valaint oldja eg a ott

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV. Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk

Részletesebben

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1 Tstmodllzés 1 1. Tstmodllzés Egy objktum modlljén az objktumot rprzntáló adatrndszrt értjük. Egy tstmodll gy digitális rprzntációja gy létz vagy lképzlt objktumnak. trvzés, a modllzés során mgadjuk a objktum

Részletesebben

Fa rudak forgatása II.

Fa rudak forgatása II. Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve

Részletesebben

Jarabin Kinga LÁBNYOMOK

Jarabin Kinga LÁBNYOMOK Jarabin Kinga LÁBNYOMOK Álmokkal indulunk Már egész kis korban, óvodásként is van arról elképzelésünk, mivel szeretnénk foglalkozni, ha egyszer felnövünk. Álmokkal indulunk az iskolapadba, az iskolapadból

Részletesebben

Vasúti pálya függőleges elmozdulásának vizsgálata

Vasúti pálya függőleges elmozdulásának vizsgálata BUDAPESTI M Ű S Z A K I É S G A Z D A S Á G T U D O M Á N Y I E G Y E T E M É p í t ő m é r n ö k i K a r Á l t a l á n o s - é s F e l s ő g e o d é z i a Ta n s z é k F o t o g r a m m e t r i a é s

Részletesebben

Elektrotechnika. 9. előadás. Összeállította: Dr. Hodossy László

Elektrotechnika. 9. előadás. Összeállította: Dr. Hodossy László 9. lődás Összállított: Dr. Hodossy László .. Egyfázisú 0. 3 fázisú ok... Tkrékkpcsolású ok 3. Fszültségváltók 4. Ármváltók, ~ nrgi átlkítók Forgó villmos gépk: mchniki nrgiát lkítnk át villmos nrgiává

Részletesebben

MŰTRÁGYA ÉRTÉKESÍTÉS 2009. I-III. negyedév

MŰTRÁGYA ÉRTÉKESÍTÉS 2009. I-III. negyedév Agrárgazdasági Kutató Intézet Statisztikai Osztály MŰTRÁGYA ÉRTÉKESÍTÉS 2009. I-III. negyedév A K I BUDAPEST 2009. december Készült: Agrárgazdasági Kutató Intézet Gazdaságelemzési Igazgatóság Statisztikai

Részletesebben

A Hozzárendelési feladat megoldása Magyar-módszerrel

A Hozzárendelési feladat megoldása Magyar-módszerrel A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép és készülékszerelő

Részletesebben