» Holt-Pipkin: Hg-ból származó fotonok (Harvard, 1973)» Clauser: Hg-ból származó fotonok (Berkeley, 1976), 412 órás mérés» Aspect-Dalibard-Roger:
|
|
- Albert Orbán
- 5 évvel ezelőtt
- Látták:
Átírás
1 » Holt-Pipkin: Hg-ból származó fotonok (Harvard, 1973)» Clauser: Hg-ból származó fotonok (Berkeley, 1976), 412 órás mérés» Aspect-Dalibard-Roger: Ca-atomból származó fotonok akuszto-optikai kapcsolókkal (Párizs, 1982)» távolhatás?
2 kötött elektron-pozitron pár (pozitrónium) annihilációjából származó nagy energiájú fotonok» Faraci-Gutkowski-Notarrigo-Pennisi (Catania, 1974)» távolságfüggés» Kasday-Ullmann-Wu (Columbia, 1975)» Wilson-Lowe-Butt (London, 1976)» 2,5 m-ig nincs távolságfüggés»még erősebb előfeltevések (pl. maga a kvantummechanika) alacsony energiájú proton-proton szórás (tkp. protonnyaláb H céltárgyra irányítva)» Lamehi-Rachti-Minig (Saclay, 1976) működik a Lakatos féle negatív heurisztika nincsenek döntő kísérletek (és így vesztesek)
3 Ne spint mérjünk! (Franson, 1982-) paraméteres lekonvertálás a két egyforma fotonnal egy M-Z interferométerben az optikai út változtatásával a hullám fázisára és impulzusára vonatkozó Bell-típusú egyenlőtlenséget lehet mérni (1990-)» az eszköz hatékonysága sokkal nagyobb» az elmélészek továbbra is tudnak megfelelő lokális realista rejtett paraméteres modelleket gyártani javaslat három összefonódott részecske korrelációjának mérésére (Zeilinger)
4 Kauzális rejtett paraméteres értelmezések motivációk történeti (pl. ókori és újkori atomizmus); EPR stb. Bohm Vigier 1. A természet törvényei egyetemesek, függetlenek a megfigyelőtől és meghatározzák az anyag objektív viselkedését. 2. Minden anyag a megfigyelésektől függetlenül létezik a térben és fejlődik az időben. 3. Egy adott időpontban jól meghatározott kezdeti feltételekből az előremutató időirányban a Cauchy-probléma megoldható.
5 de Broglie Siegel és Wiener ( ) determinista a rejtett paramétereiknek nincs szemléletes fizikai jelentésük (matematikai konstrukciók) Neumann-kritika nincs additivitás pozitivizmus-ellenesség termodinamika statisztikus fizika analógia nemegyensúlyi, gyorsan lecsengő jelenségek
6 A statisztikus interpretáció a statisztikus sokaságok ötlete de Broglie, Born, Einstein, Neumann (20-as évek) különböző filozófiai alapállásokból lehetséges (Slater,) Kemble a hullámfüggvény jelentése elsődlegesen a hasonlóan preparált rendszerek (végtelen) sokaságai viselkedésének leírása (1935) Gibbs-sokaság, de pl. a határozatlansági reláció egyedi esetekre vonatkozik (1937) indeterminista Popper a határozatlansági reláció szórásokra vonatkozik
7 kísérleti szituációk sokaságának objektív statisztikai értelmezése a determinizmus-indeterminizmus metafizikai kérdés (Mandelstam,) Nyikolszkij (1936) determinista Blohincev viták a Szovjetunióban Zsdanov, Molotov, a Liszenko-ügy ( ) Blohincev tankönyve (1949) az állapotfüggvény a mikrorendszer és a makrokörnyezet együttesének egy (objektív) sokaságához (amilyen a Gibbs-sokaság) tartozik
8 a határozatlansági reláció az anyaghullám-elméletből következik (nem a komplementaritási elvből) a mérés = (objektív) részsokaságokra bontás» a zavarás tetszőlegesen kicsiny lehet» nincs hullámcsomag-redukció» a reális mérési folyamat részleteiről azonban a kvantummechanika nem tud beszámolni (bár ő később kísérletet tesz rá)» rejtett paraméterek lehetnek, de hogy ténylegesen léteznek-e azt még ki kell deríteni Bohrék ideológiai bírálata (mert antimaterialisták, pozitivisták, szubjektivisták) hatása a kvantummechanika megvédése Tyerleckij rejtett paraméteres elmélete Bohm és a többiek
9 Margenau (1954) irányzat szempont (kvázi) mechanikus: Bohm formalista: Bohr statisztikus: Margenau okság Kiterjeszthetőség 2 (esetleg 9-re fejleszthető) 8 (komplementaritás) 8 egyszerűség összesen
10 A sztochasztikus interpretáció Schrödinger ( ) a hullámegyenlet és a hővezetési illetve diffúziós egyenlet hasonlósága Fürth (1933) a Schrödinger-egyenlet és a Smoluchowski (Brown-mozgás) illetve a Fokker-Planck egyenlet hasonlósága ha a diffúziós együttható képzetes határozatlansági reláció az egydimenziós diffúzió hely- és sebességpárosára
11 Fényes statisztikus fizika és kvantummechanika kapcsolata (1946) az atom stacionárius állapotának jellemzése» a hely- és impulzuskoordináták valószínűségeloszlásával (a határozatlansági reláció miatt)» nagyszámú rendszer = fiktív ütközés nélküli ideális gáz» a közönséges gázban az ütközések következtében fennáll egy határozatlanságiszerű reláció» a fiktívben ez legyen az analógia alapján a Heisenberg-féle» a fiktív gáz sűrűsége arányos egy részecske valószínűségeloszlásával
12 » a részecske energiasűrűsége + változóhelyettesítés (= vezetési formula)» Schrödinger-egyenlet a kvantummechanika valószínűségi megalapozása (1952) a mélyebb vizsgálat megmutatja, hogy a klasszikus fizika és a hullámmechanika statisztikus apparátusa között nincsen semmilyen különbség. Látni fogjuk, hogy a kvantummechanika minden sajátossága, amely megkülönbözteti a klasszikus fizikától, kizárólag a statisztikus vizsgálati módszer következménye, és erre vezethető vissza minden lényeges különbség a klasszikus és a kvantumfizika között. a Markov-folyamatok valószínűségi elmélete a Fokker-egyenlet általánosított alakja Ψ ih = ΔΨ t 4π m w t = DΔw w t = div wv DΔw
13 ΔyΔc az általánosított koordináták és a sztochasztikus sebességkomponensek diffúziós folyamatok esetében D nem felcserélhetők a kvantummechanika kontinuitási egyenlete és a Heisenberg-reláció speciális esete a Markovfolyamatoknak a rejtett paraméterek lehetetlenségére vonatkozó Neumann-bizonyítás szintén csak a módszerből fakad, nem jelent semmit (a diffúziós folyamatokra is fennáll, holott ott biztosan vannak rejtett paraméterek) a határozatlansági relációk nem a méréssel kapcsolatosak a hullámfüggvény redukciója ellentmond a valószínűség fogalmának (a fej dobásának ½-es valószínűsége nem válik 1-gyé mert az jött ki) feltehetőleg az elektronoknak nagy számú szabadsági fokaik vannak fogadtatása
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény
indeterminizmus a fizikában
indeterminizmus a fizikában Epikuroszt még nem vették komolyan a brit empirizmus (pl. Hume) még nem volt elég határozott a pozitivizmus hatása jelentős a kinetikus gázelmélet Maxwell a gázmolekulák véletlen
A kvantummechanika filozófiai problémái
A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 372-2990 2990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu
A kvantummechanika filozófiai problémái
A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 372-2990 2990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu
A kvantummechanika filozófiai problémái
A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 37-990 990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu
A kvantummechanika filozófiai problémái
A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 37-990 990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu
Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.
Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell
KVANTUMMECHANIKA. a11.b-nek
KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300
I. Fejezetek a klasszikus analízisből 3
Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9
A kvantumelmélet és a tulajdonságok metafizikája
A kvantumelmélet és a tulajdonságok metafizikája Szabó Gábor MTA Bölcsészettudományi Központ email: szabo.gabor@btk.mta.hu p. 1 Kvantumelmélet Kialakulása: 1900, Planck: energiakvantum 1905, Einstein:
A.Einstein, B. Podolsky, N. Rosen (EPR) 1935, bizonyítják(?), hogy a kvantummechanika nem teljes D. Bohm Fotonpár forrás Kalcit.
EPR paradoxon, Bell egyenlőtlenség Teljesnek tekinthető-e a fizikai valóság kvantummechanikai leírása, teszik föl a kérdést híres cikkükben A. Einstein, B. Podolsky és N. Rosen 1935-ben. Egzakt definíciót
A kvantummechanika filozófiai problémái
A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 37-990 990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj
KVANTUMJELENSÉGEK ÚJ FIZIKA
KVANTUMJELENSÉGEK ÚJ FIZIKA 196 Erwin Scrödinger HULLÁMMECHANIKA 197 Werner Heisenberg MÁTRIXMECHANIKA A két különböző fizikai megközelítésről később Paul Dirac bebizonyította, ogy EGYENÉRTÉKŰEK. Erwin
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK
Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
A kvantummechanika filozófiai problémái
A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 372-2990 2990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu
A kvantummechanika filozófiai problémái
A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 37-990 990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu
A spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A
Kifejtendő kérdések június 13. Gyakorló feladatok
Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
Klasszikus és kvantum fizika
Klasszikus és kvantum fizika valamint a Wigner függvény T.S. Biró MTA Fizikai Kutatóközpont, Budapest 2017. november 13. T.S.Biró Wigner 115, Budapest, 2017. Nov. 15. Biró Klassz kvantum 1 / 22 Abstract
Molekulák világa 1. kémiai szeminárium
GoBack Molekulák világa 1. kémiai szeminárium Szilágyi András 2008. október 6. Molekulák világa 1. kémiai szeminárium Molekuláris bionika szak I. év 1 Kvantummechanika Klasszikus fizika eszközei tömegpont
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925)
a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli (1900-1958) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers (1894-1952) a mátrixmechanika
Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.
Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege
Az atom felépítése, fénykibocsátás (tankönyv 90.o o.)
Az atom felépítése, fénykibocsátás (tankönyv 90.o.- 128.o.) Atomok, atommodellek (tankönyv 116.o.-120.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,
A kvantummechanikai atommodell
A kvantummechanikai atommodell A kvantummechanika alapjai A Heinsenberg-féle határozatlansági reláció A kvantummechanikai atommodell A kvantumszámok értelmezése A Stern-Gerlach kísérlet Az Einstein-de
Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján
Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla 8. Előadás (2018.11.15.) Óracsere Itt tartandó rendezvény miatt a 10. előadás (2018. november 29. azaz
Összefonódottság detektálása tanúoperátorokkal
Összefonódottság detektálása tanúoperátorokkal Tóth Géza Max-Plank-Intitute für Quantenoptik, Garching, Németország Budapest, 2005. október 4. Motiváció Miért érdekes a kvantum-informatika? Alapvető problémák
Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty
Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Dr. Berta Miklós bertam@sze.hu 2017. október 26. 1 / 11 Tekintsünk egy olyan kristályrácsot, amelynek minden mérete sokkal
A kvantumos összefonódás
A kvantumos összefonódás Asbóth János MTA Wigner Fizikai Kutatóközpont, Kvantumoptikai és Kvantuminformatikai Osztály Supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences Budapest,
összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI
Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,
Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek
Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati
Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?
Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
Kvantummechanikai alapok I.
Kvantummechanikai alapok I. Dr. Berta Miklós bertam@sze.hu 2017. szeptember 21. 1 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) 2 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely
January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61
Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok 10-1 Elektromágneses sugárzás 10- Atomi Spektrum 10-3 Kvantumelmélet 10-4 A Bohr Atom 10-5 Az új Kvantummechanika 10-6 Hullámmechanika 10-7 Kvantumszámok Slide 1 of 60 Tartalom 10-8
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
MSC ELMÉLETI FIZIKA SZIGORLAT TÉTELEK. A-01. Tétel A KLASSZIKUS FIZIKA ÉS A NEMRELATIVISZTIKUS KVANTUMMECHANIKA ALAPEGYENLETEI.
MSC ELMÉLETI FIZIKA SZIGORLAT TÉTELEK A-01. Tétel A KLASSZIKUS FIZIKA ÉS A NEMRELATIVISZTIKUS KVANTUMMECHANIKA ALAPEGYENLETEI. A klasszikus mechanika elvei. A Newton axiómák. A Lagrange és a Hamilton formalizmus
Thomson-modell (puding-modell)
Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja
Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61
, elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok -1 Elektromágneses sugárzás - Atomi Spektrum -3 Kvantumelmélet -4 A Bohr Atom -5 Az új Kvantummechanika -6 Hullámmechanika -7 A hidrogénatom hullámfüggvényei Slide 1 of 60 Tartalom -8
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Biofizika tesztkérdések
Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!
1 A kvantummechanika posztulátumai
A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra
Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3.
Dekoherencia Markovi Dinamika Diósi Lajos Elméleti Fizikai Iskola Tihany, 2010. augusztus 30. - szeptember 3. Tartalomjegyzék 1 Projektív dekoherencia 2 Nyitott rendszer - Lindblad egy. 3 Dekoherencia
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
A kvantummechanika alapegyenletei és egyes filozófiai vonatkozásai
A kvantummechanika alapegyenletei és egyes filozófiai vonatkozásai Tartalom Bevezetés Fogalmak és jelölések 3 A fény kvantumos természete 8 A Bohr féle atommodell 10 A részecskék hullámtermészete 11 A
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz
Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz 2005. Fizika C3 KÖZÖS MINIMUM KÉRDÉSEK Kvantummechanika 1. Rajzolja fel a fekete test sugárzását jellemző kísérleti görbéket T 1 < T 2 hőmérsékletek
Egy kvantumradír-kísérlet
Egy kvantumradír-kísérlet "Részecske vagyok, vagy hullám, Élek-e vagy ez a hullám? Megmondanám, hogyha tudnám, De mindent én sem tudhatok." Részlet a Fizikus Indulóból Tartalmi kivonat Bevezetés Feynman
Kézirat a Bevezetés a modern fizika fejezeteibe c. tárgyhoz írta: Márkus Ferenc (BME Fizika Tanszék) (utolsó módosítás: november 9.) 4.
Kézirat a Bevezetés a modern fizika fejezeteibe c. tárgyhoz írta: Márkus Ferenc (BME Fizika Tanszék) (utolsó módosítás: 2013. november 9.) 4. szakasz Kísérleti előzmények: Az atomok színképe Kvantummechanika
A határozatlansági reláció
az elméleti fogalmak szintje» jelentésváltozás nincs a priori megoldás A határozatlansági reláció a helyzet 1926 őszén (Schrödinger után) Heisenberg A kvantumelméleti kinematika és mechanika szemléletes
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény BABEŞ-BOLYAI TUDOMÁNYEGYETEM 1.2 Kar FIZIKA 1.3 Intézet A MAGYAR TAGOZAT FIZIKA INTÉZETE 1.4 Szakterület FIZIKA / ALKALMAZOTT
A lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
2. (d) Hővezetési problémák II. főtétel - termoelektromosság
2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.
Kémiai reakciók mechanizmusa számítógépes szimulációval
Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
XX. századi forradalom a fizikában
XX. századi forradalom a fizikában magfizika részecskefizika 1925 1913 1900 1896 radioaktivitás lumineszcencia kvantummechanika Bohr-modell! színk nkép hőmérsékleti sugárz rzás!?? 1873 elektrodinamika
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369
arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz
A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév
A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév Dr. Paripás Béla 8. Előadás (2010.11.10.) Tudnivalók a zárthelyikkel kapcsolatban A 2. zárthelyi időpontja 2010. november 24. az
Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.
Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból
[1] (http://hu.wikipedia.org/wiki/braket-jelölés)
1 / 9 A TételWiki wikiből A XIX. és XX. század fordulóján felhalmozódott kísérleti tapasztalatok abba az irányba mutattak, hogy az atomi szinteken mérhető fizikai mennyiségek a klasszikus szemlélettel
Modern fejlemények a kvantumelméletben. Elméleti Fizikai Iskola Tihany, 2010. augusztus 30. - szeptember 3.
Modern fejlemények a kvantumelméletben Bevezetés Ádám Péter, Diósi Lajos Elméleti Fizikai Iskola Tihany, 2010. augusztus 30. - szeptember 3. Iskola témája, bevezetés célja Iskola témája kvantumoptika és
Mágneses monopólusok?
1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK
- 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,
David Bohm életműve AZ IGAZSÁG FOLYAMA. Will Keepin
David Bohm életműve AZ IGAZSÁG FOLYAMA Will Keepin A 1992 őszén elhunyt a világ egyik legnagyobb kortárs fizikusa David Bohm, akinek a munkája sokakat ihletett a világ minden tájáról, Londonban halt meg.
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 9. el adás Bevezetés az ökonozikába El adó: London András 2015. november 2. Motiváció Komplex rendszerek modellezése statisztikus mechanika és elméleti zika
12. előadás - Markov-láncok I.
12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R
Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10.
2. rész 2012. december 10. Határeloszlás tételek a bolyongás funkcionáljaira 1 A bolygó pont helyzete: EX i = 0, D 2 X i = EX 2 = 1 miatt i ES n = 0, D 2 S n = n, és a centrális határeloszlás tétel (CHT)
Radioaktivitás. 9.2 fejezet
Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
Egy nem létező könyv. Fényes Imre: A termodinamika alapjai Akadémiai Kiadó, Budapest, Köszönet: Szőkefalvi-Nagy Zoltán, Lukács Árpád
Egy nem létező könyv Fényes Imre: A termodinamika alapjai Akadémiai Kiadó, Budapest, 1952. Köszönet: Szőkefalvi-Nagy Zoltán, Lukács Árpád Fényes Imre (1917 Kötegyán 1977 Budapest) 1945-ig Kolozsvári Bolyai
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
Kvantum összefonódás és erősen korrelált rendszerek
Kvantum összefonódás és erősen korrelált rendszerek MaFiHe TDK és Szakdolgozat Hét Szalay Szilárd MTA Wigner Fizikai Kutatóközpont, Szilárdtest Fizikai és Optikai Intézet, Erősen Korrelált Rendszerek Lendület
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,