A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév
|
|
- Léna Szekeres
- 6 évvel ezelőtt
- Látták:
Átírás
1 A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla 8. Előadás ( )
2 Óracsere Itt tartandó rendezvény miatt a 10. előadás (2018. november 29. azaz 2 hét múlva) a III. előadóban (átlósan alattunk) lesz megtartva
3 A kvantumelmélet története (ismétlés) Max Planck ( ) december 14.: az oszcillátorok egy véges nagyságú energiaadag egész számú többszörösével rendelkezhetnek. Az energiaadag arányos a frekvenciával. 34 E n, n egész, h f, h 6,63 10 Js Lénárd Fülöp (Philipp Lenard) ( ) Fotoeffektus során a kilépő elektronok száma a fény intenzitásától függ ugyan, de az energiájuk a fény színétől. Albert Einstein ( ) Magyarázat (1905): a fény is kvantált, elemi részecskéje a foton, amelynek energiája és lendülete is van. Fényelektromos egyenlete: h f =W kilépési + E max
4 A fénykvantum fogalmának kialakulásával kezdetét veszi a kvantumelmélet kiépítése. Az elmélet első sikereit az atom szerkezetének megértésében érte el. Eddig tárgyaltuk: Niels Bohr ( ) 1. Posztulátum: Az atomban az elektronok csak meghatározott energiájú állapotokban tartózkodhatnak stacionáriusan (időben nem változó módon). Ekkor nem sugároznak. 2. Posztulátum: Az elektronok akkor sugároznak, amikor az egyik stacionárius állapotból átugranak a másikra. A sugárzás f frekvenciája kiszámítható: ΔE= h f, ahol h a Planck-állandó. Ez a frekvencia-feltétel. Werner Heisenberg ( ): a nem mérhető dolgokat (pl. az atomi pályák alakja) ki kell szedni az elméletből. Az elméletben csak a mérhető mennyiségek (az ezekből alkotott mátrixok) szerepelhetnek (mátrixmechanika). Határozatlansági reláció: az összetartozó (konjugált) mennyiségek egyszerre nem mérhetők tetszőleges pontossággal. Δx Δp x 2
5 Itt kezdődik az új anyag! -1987
6 Minden részecskéhez rendelhető egy hullámcsomag (véges hosszúságú hullámvonulat), amely a részecskével együtt halad, annak eloszlását írja le. A de Broglie-hullámhossz λ h p
7 Az elektron hullámtermészetének első kísérleti igazolása Clinton Davisson ( ) Davisson és Germer Nobel-díj Davissonnak és G.P. Thomsonnak 1937-ben George Paget Thomson ( )
8 Kétréses interferencia elektronokkal (a kísérletben mindkét természet megmutatkozik: a réseken átjutáskor hullám, detektáláskor részecske)
9 Az alábbiak közül melyik állítás nem igaz a Bohr-elméletre? a) Az atomban az elektronok csak meghatározott állapotokban tartózkodhatnak b) Az elektronok perdülete az atomban kvantált c) Sugárzás kibocsájtásakor az elektron magasabb energiaszintre jut d) Csak a H-atomra alkalmazható Melyik állítás nem igaz Heisenbergre? a) Elméletében csak mérhető mennyiségek szerepelnek b) Kidolgozza a hullámmechanikát c) Felírja a határozatlansági relációt d) A német atombomba programban dolgozik
10 Most itt járunk
11
12 Schrödinger: a részecskéhez rendelt hullám kielégíti a hullámegyenletet. Optikai analógiákkal levezette a megfelelő hullámegyenleteket. 2 2m Δφ Vφ Eφ 2 2m Δψ Vψ i ψ t
13 Schrödinger képe és egyenlete másféle hordozókon.
14 A kevert állapotú kvantummechanikai rendszer valamelyik saját állapotába a mérés folyamán kerül. A Schrödinger macskája (elképzelt) kísérletben a radioaktív atom egy óra alatt 50 % eséllyel bomlik el. Az elbomlás hatása a macska pusztulása. Egy óra múlva a macska az élő és holt állapot %-os kevert állapotában lesz. Az élő vagy a holt állapotba a macska nem a bepillantás (a mérés) pillanatában kerül. Itt valójában a mérés a bomlás (ez ad hírt a mag állapotáról), a többi értelmetlen hókuszpókusz.
15
16 A koppenhágai értelmezés Paradoxon: a kísérleteket a klasszikus fizika fogalmaival kell leírnunk, de ezek nem illenek pontosan a természetre (a mikrovilágra). A természet előbb van, mint az ember, de az ember előbb van, mint a természettudomány. A mérőberendezés az ahol a megfigyelő (a makroszkópikus világ) és a részecske (a mikrovilág) találkozik. A részecske a megfigyelt állapotába a mérőberendezéssel történő kölcsönhatása során kerül. A részecske két mérés közötti viselkedésére csak valószínűségi megállapításokat tehetünk. Ennél többre elvileg sincs lehetőségünk. Nagy számú részecske megfigyelésekor a mért relatív gyakoriság és a számított valószínűség igen nagy pontossággal egyezik. Összefoglalva: a kvantummechanikai rendszerek jövőbeli viselkedésére csak valószínűségi megállapításokat tehetünk, azt viszont igen nagy pontossággal.
17 Pauli eredményei: A 4. kvantumszám (spinkvantumszám) bevezetése. A kizárási elv: egy atomban nem lehet két olyan elektron, amelyiknek mind a 4 kvantumszáma megegyezne. A kizárási elv minden feles spinű részecskére igaz, és a szimmetria elvekből levezethető.
18 -1984 A mátrixmechanika és a hullámmechanika egyesítése Az elektron relativisztikus egyenlete A pozitron létének elméleti levezetése (Wigner Jenő sógora)
19 Sokak szerint ő a valaha élt legokosabb magyar!
20 Melyik állítás nem igaz Diracra? a) Egyesíti a mátrixmechanikát és a hullámmechanikát b) Felírja a relativisztikus hullámegyenletet. c) Megjósolja a pozitron létezését. d) Bevezeti a hatáskvantumot Melyik állítás nem igaz Neumann Jánosra? a) Kidolgozza a kvantummechanika matematikai alapjait. b) Részt vesz az amerikai atombomba programban. c) Foglalkozik a számítógépek elméletével. d) Kidolgozza a kizárási elvet.
21 Párosítsuk össze a fizikusokat és a felfedezésüket! 1. Határozatlansági reláció 2. Az anyag hullámtermészete 3. Hullámmechanika 4. A kvantummechanika matematikai alapjai a) Neumann János b) Heisenberg c) Schrödinger d) de Broglie a b c d 1 X 2 X 3 X 4 X
22 A kauzalitás problémája Kauzalitás: azonos okok azonos tárgyakon azonos hatást hoznak létre. A kauzalitásban sok filozófia hisz, például a Newton-i is. Tömegpontra ez teljesül is, de a tömegpont egy absztrakció. A valóságos tárgyakra a kauzalitás nem teljesül: A makroszkopikus világban nincsenek azonos tárgyak (a testeket alkotó igen-igen sok atom ( ) valamelyike csak különbözik). A nagy számok törvénye miatt azonban látszólag mégis van kauzalitás. A makroszkopikusan azonosnak tűnő tárgyak azonos okok hatására azonosnak tűnő módon viselkednek. A mikrovilágban vannak pontosan egyforma tárgyak, de ezek azonos okok hatására nem azonos módon viselkednek. A kvantummechanikát rejtett paraméterek bevezetésével sem lehet kauzálissá tenni! (Neumann)
23 Akik megalkották a kvantummechanikát (összefoglalás) 1900: Planck a hatáskvantum bevezetése 1905: Einstein a foton fogalmának megalkotása 1913: Bohr a H-atom leírása; koppenhágai értelmezés (1926) Franck és Hertz a Bohr-elmélet kísérleti igazolása 1926 (±1év): Heisenberg mátrixmechanika; határozatlansági reláció de Broglie az anyag hullámtermészete Davisson és G.P. Thomson 1927: kísérleti igazolás Schrödinger hullámmechanika Pauli kizárási elv Dirac mátrixmechanika és hullámmechanika egyesítése, relativisztikus hullámegyenlet; a pozitron elméleti levezetése Born - koppenhágai értelmezés Neumann a kvantummechanika matematikai alapjai, kauzalitás
24 Ki nem fogadta el a kvantummechanika koppenhágai értelmezését? a) Einstein b) Bohr c) Heisenberg d) Born Ki dolgozta ki az anyag hullámtermészetének az elméletét? a) Einstein b) Bohr c) de Broglie d) Heisenberg
25 Az atommagfizika története A radioaktivitás felfedezése, 1896 A Becquerel-sztori: A röntgen sugárzás az anód egy fluoreszkáló pontjáról indul ki. Van-e ilyen kapcsolat az uránsók esetén is? Az uránsók valóban megfeketítik a fényképezőlemezt, de nem a fluoreszcencia miatt. Minden urántartalmú anyagból nagy áthatolóképességű sugárzás indul ki, minden külső behatástól függetlenül. Becquerel még nem tudhatta, hogy ez a sugárzás az atommagból jön. Antoine Henri Becquerel Nobel-díj: 1903 (megosztva a Curie-házaspárral)
26 A Curie-család
27 Marie Sklodowska-Curie Pierre Curie Nobel-díj: 1903, 1911 (kémiai) 1903
28 Marie Curie valószínűleg a legismertebb tudós nő a világon: képük lengyel és francia pénzeken A kémia világéve M. Curie kémiai Nobel-díjának 100. évf. Sírjuk 1995-ben a Pantheonba került
29 A gyerekek : Irene Joliot-Curie Frederic Joliot-Curie Nobel díj: 1935 (kémiai)
30 A radioaktivitás kutatásának eszközei a hőskorban: fényképezőlemez, ionizációs kamra, GM-cső, ködkamra
31 A vastag egyenes vonalak alfa részecskék nyomai, a vékony cikkcakkos vonalak elektronok nyomai A Fizikai Intézet nagyfelületű diffúziós ködkamrája
32 Az alábbiak közül ki kapott fizikai és kémiai Nobel-díjat is? a) Marie Curie b) Pierre Curie c) Frederic Joliot-Curie d) Irene Joliot-Curie Melyik felfedezés nem a Curie család tagjaitól származik? a) a polónium felfedezése b) a rádium felfedezése c) az alfa sugárzás felfedezése d) a mesterséges radioaktivitás felfedezése
33
34 1902-ben Soddy és Rutherford igazolták, hogy a sugárzás atomátalakulással jár együtt. Megfogalmazták a radioaktív bomlás exponenciális törvényét, bevezették a felezési idő fogalmát ban Soddy igazolta spektrumanalízis segítségével, hogy a radon bomlásának végterméke hélium (de még nem hozta összefüggésbe az alfa-részecskével). Rutherforddal közösen kimondták, hogy a radioaktivitás nem más, mint az elem atomjainak önmaguktól való átalakulása, (ami csak és kizárólag statisztikusan értelmezhető, de nagyszámú atomok megfigyelése estén már egyértelmű törvénybe rögzíthető). Frederic Soddy Nobel-díj: 1921 (kémiai)
35
36 A kvantummechanika a magjelenségekre is alkalmazható: Az alfa-bomlás magyarázata alagúteffektussal (Gamow, 1928)
37 Válasszuk ki a hamis állítást! a) a polóniumot Lengyelországban fedezték fel b) a rádiumot a Curie házaspár fedezte fel c) az alfa és béta sugárzást Rutherford fedezte fel d) az alfa bomlás elméletét Gamow alkotta meg Válasszuk ki az igaz állítást! Az alfa bomlás során a) az atommagból elektron távozik b) a rendszám kettővel nő c) hélium keletkezik d) nincs elemátalakulás
38 Rutherford sejtése, Chadwick mérése: a neutron (1932) 2He Be 9 = 6 C 12 + n A laboratóriumi neutronforrások ma is ezzel a reakcióval működnek
39 Az anyag építőkövei 1932-től: Protonok (Z db) és neutronok (N=A-Z) az atommagban Elektronok (Z db) körülötte És persze ne feledkezzünk meg a fotonról sem, de az nem építőkő
40 A tömegdefektus és a kötési energia között szoros kapcsolat van ΔE= Δm c 2
41 Válasszuk ki a hamis állítást! a) a proton és a neutron tömege csak 1-2 ezrelékkel tér el b) a proton és az elektron töltésének nagysága pontosan megegyezik c) az atommagok tömege kisebb, mint a benne lévő nukleonok össztömege d) az egy nukleonra jutó kötési energia arányos a rendszámmal
42 Párosítsuk össze a fizikusokat és a felfedezésüket! 1) Radioaktivitás felfedezése 2) Az atommag felfedezése 3) Az elektron felfedezése 4) A neutron felfedezése a) Rutherford b) J. J. Thomson c) Becquerel d) Chadwick a b c d 1 X 2 X 3 X 4 X
43 Mi történt a neutron felfedezése után? Szilárd Leó: a láncreakció gondolata. Ha létezik olyan atommag reakció, amelyben egy neutron hatására több mint egy neutron keletkezik, akkor láncreakció mehet végbe, mert a neutron akadálytalanul bejut az atommagba (ebben alapvetően különbözik a protontól). Szilárd Leó ben elhagyta Magyarországot decemberében Einsteinnel közösen megtette mozgóalkatrész nélküli hűtőszekrényre szabadalmi bejelentését ben kigondolta a nukleáris láncreakció elvét és bevezette a kritikus tömeg fogalmát ban Angliából az USA-ba költözött. Részt vett az amerikai atombomba-kutatásban ben leírta az inhomogén elrendezésű urángrafit rendszerű reaktort ban amerikai állampolgárságot kapott ben javasolja az atomenergia nemzetközi ellenőrzését.
44 Több típust is szabadalmaztattak, de egyik sem terjedt el. Ma az tűnik a legígéretesebbnek, amelyik mozgó alkatrészt nem tartalmaz, elektromosságot nem feltétlenül igényel, energiaforrása a napsugárzás, vagy egy gázégő.
45 Itt járunk
46 1939: Hahn, Strassmann és Lise Meitner Az atommaghasadás felfedezése egy hasadásnál átlag 2,47 neutron keletkezik. A hasadványok erősen radioaktívak!!!
47 Lise Meitner Elméletileg helyesen értelmezi a kollégái kísérleteit (már Stockholmban) A fizikus társadalom igazságtalannak érzi, hogy csak Hahn kapott Nobel-díjat (1944) Otto Hahn , Fritz Strassmann A neutronnal bombázott uránban kimutatják a báriumot
48 A hasadás során felszabaduló energia ( 200 MeV) közel százmillió szorosan múlja felül a közönséges égés energiáját ( 10 ev). A tömegkülönbséget is figyelembe véve 1 kg 235 U legalább egymillió kg olajjal egyenértékű. A hasadásnál felszabaduló energia eloszlása.
49 Tipikus neutron sorsok: kiszökés (kritikus tömeg szükséges), befogódás (reaktorban moderátor szükséges), hasítás
50 A fizikusok az egész világon rájönnek arra, hogy a maghasadás láncreakcióval is létrehozható és az atommag energiája makroszkopikus léptékben is kinyerhető és az addig ismerteknél fajlagosan milliószor nagyobb energiaforrások hozhatók létre. Az Egyesült államokban a magyar fizikusok (Szilárd, Wigner, Teller) kapcsoltak először és Einstein segítségével tájékoztatták erről Roosevelt elnököt (1939. aug. 2.)
51
52 Az első atomreaktor: grafit moderátoros vízhűtésű reaktor Szilárd tervei alapján. (A németek a nehézvíz moderátort preferálták.)
53 Enrico Fermi (Róma, 1901 Chicago, 1954) olasz fizikus, aki a béta-bomlással kapcsolatos munkája, az első nukleáris reaktor kifejlesztése, és a kvantumelmélet fejlesztése kapcsán ismert. Fermi 1938-ban fizikai Nobeldíjat kapott az indukált radioaktivitással kapcsolatos munkájáért. Szilárd, Compton, Fermi, Wigner
54 A Chicago-i Egyetem tornacsarnoka nézőtere alatt létrehozott első atommáglya, a második tűzgyújtás (1942. december 2.) 'Az olasz hajós partot ért A bennszülöttek nagyon barátságosak voltak' SCRAM: atomreaktorok vészleállása A szó eredete: Safety Control Rod Axe Man
A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév
A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév Dr. Paripás Béla 8. Előadás (2010.11.10.) Tudnivalók a zárthelyikkel kapcsolatban A 2. zárthelyi időpontja 2010. november 24. az
A nukleáris fizika története, a nukleáris energetika születése
Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja
Az atombomba története
Az atombomba története Szegedi Péter TTK Tudománytörténet és Tudományfilozófia Tanszék Déli Tömb 1-111-es szoba 372-2990 vagy 6670-es mellék pszegedi@caesar.elte.hu és http://hps.elte.hu Tematika 1. A
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
KVANTUMMECHANIKA. a11.b-nek
KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?
I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.
MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,
Radioaktivitás. 9.2 fejezet
Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla. 7. Előadás ( )
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla 7. Előadás (2018.11.08.) Óracsere Itt tartandó rendezvény miatt a 10. előadás (2018. november 29. azaz
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Melyik egyenlet nem hullámot ír le? a) y = A sin 2π(ft x/λ) b) y = A
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61
Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség
Atomenergia. Láncreakció, atomreaktorok, atombomba és ezek rövid története
Atomenergia Láncreakció, atomreaktorok, atombomba és ezek rövid története Előzmények Az energia - amiből korábban sosem volt elég - bőségesen itt van körülöttünk, csak meg kell találnunk hozzá a kulcsot.
MAGFIZIKA. a 11.B-nek
MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Az atommagtól a konnektorig
Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.
8. AZ ATOMMAG FIZIKÁJA
8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának
Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61
, elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8
Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár
Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított
Az ionizáló sugárzások fajtái, forrásai
Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?
Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok -1 Elektromágneses sugárzás - Atomi Spektrum -3 Kvantumelmélet -4 A Bohr Atom -5 Az új Kvantummechanika -6 Hullámmechanika -7 A hidrogénatom hullámfüggvényei Slide 1 of 60 Tartalom -8
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 12. Biofizika, Nyitrai Miklós Miért hiszi mindenki azt, hogy az atomfizika egyszerű, szép és szerethető? A korábbiakban tárgyaltuk Az atom szerkezete
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
Az atommag szerkezete
Az atommag szerkezete Biofizika előadások 2013 november Orbán József PTE ÁOK Biofzikai Intézet Filozófusok / tudósok Történelem Aristoteles Dalton J.J.Thomson Bohr Schrödinger Pauli Curie házaspár Teller
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok 10-1 Elektromágneses sugárzás 10- Atomi Spektrum 10-3 Kvantumelmélet 10-4 A Bohr Atom 10-5 Az új Kvantummechanika 10-6 Hullámmechanika 10-7 Kvantumszámok Slide 1 of 60 Tartalom 10-8
Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete
Magfizika (Vázlat) 1. Az atommaggal kapcsolatos ismeretek kialakulásának történeti áttekintése a) A természetes radioaktivitás felfedezése b) Mesterséges atommag-átalakítás Proton felfedezése Neutron felfedezése
Radioaktivitás és mikrorészecskék felfedezése
Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
Kémia I. Műszaki menedzser hallgatók számára
Kémia I, Műszaki menedzser hallgatók számára Novák Csaba BME, Általános és Analitikai Kémia Tanszék, 2005. Kémia I. Műszaki menedzser hallgatók számára Kémia I. Műszaki menedzser hallgatók számára Novák
Az atommag története
Az atommag története Polcz Péter PPKE Információs Technológiai Kar 1083 Budapest, Práter utca 50/a 2010. december 6. Az atommag felfedezése Az első atommag szerkezetének első kutatói, Ernest Rutherford,
ELEMI RÉSZECSKÉK ATOMMODELLEK
ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló
Thomson-modell (puding-modell)
Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja
Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.
Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding
ATOMFIZIKA, RADIOAKTIVITÁS
ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt
Az atommagot felépítő részecskék
MAGFIZIKA Az atommagot felépítő részecskék Proton: A hidrogénatom magja. töltése: Q p = e = 1,6 10 19 C, tömege: m p = 1,672 10-27 kg. Neutron: a protonnal közel megegyező tömegű semleges részecske. tömege:
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2018/2019. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek
Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév Dr. Paripás Béla 9. Előadás (2016.11.10.) Tudnivalók a zárthelyikkel kapcsolatban A 2. zárthelyi időpontja: 2016. november
Maghasadás (fisszió)
http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták
Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba
Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Felfedezése 1934 Fermi: transzurán izotóp előállítása neutron belövellésével 1938 Fermi: fizikai Nobel-díj 1938 Hahn:
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
Elektronok, atomok. Tartalom
Elektronok, atomok 8-1 Elektromágneses sugárzás 8-2 Atomi Spektrum 8-3 Kvantumelmélet 8-4 ABohr Atom 8-5 Az új Kvantummechanika 8-6 Hullámmechanika 8-7 Kvantumszámok, elektronpályák Slide 1 of 60 Tartalom
Sugárzások kölcsönhatása az anyaggal
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján
Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Atomfizika tesztek. 2. Az elektrolízis jelenségére vonatkozóan melyik összefüggés helytelen?
Atomfizika tesztek 1. Melyik állítás nem helyes? a) Azonos tömegű ideális gázok azonos számú részecskét tartalmaznak. b) Normál állapotú, 22,41 liter térfogatú ideális gázok 6. 10 23 db részecskét tartalmaznak.
Mit értünk a termikus neutronok fogalma alatt? Becsüljük meg a sebességüket 27 o C hőmérsékleten!
Országos Szilárd Leó fizikaverseny Elődöntő 04. Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrenen lehet megoldani. A megoldáshoz bármilyen segédeszköz használható. Rendelkezésre
Félnünk kell-e a nukleáris energiától?
BENCZE GYULA Félnünk kell-e a nukleáris energiától? Bencze Gyula fizikus egyetemi tanár Bevezetés az energia Mi az energia? A hétköznapi beszéd fordulataiban gyakran szerepel az energia szó valamilyen
KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.
KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag
Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása
Biofizika Csik Gabriella Eötvös Loránd kora diákjait tréfásan jellemzi : határozott céllal jön az egyetemre, ügyvéd, politikus vagy orvos akar lenni. Amint az egyetembe lép, kritizálja tanárait, s az egész
Atommodellek. Készítette: Sellei László
Atommodellek Készítette: Sellei László Démokritosz Kr. e. V. sz. Az egyik legnehezebb kérdés, amire már az ókori görög tudomány is megpróbált választ adni: miből áll a világ? A világot homogén szubsztanciájú
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
4. Atomfizika, magfizika, nukleáris kölcsönhatás
Az optikai kép fogalma (valódi, látszólagos) Síktükör Lapos gömbtükrök (homorú, domború) Vékony lencsék (gyűjtő, szóró) Fókusztávolság, dioptria Leképezési törvény Nagyítás Egyszerű nagyító Fényképezőgép,
A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK
- 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Mag- és neutronfizika
Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag
Hőmérsékleti sugárzás és színképelemzés
Hőmérsékleti sugárzás és színképelemzés az anomáliák szerepe a tudományban Wollaston, Ritter et al. fekete vonalak a színképben (1802) Joseph Fraunhofer (1787-1826) a sötét vonalak hullámhossza (1814-1815)
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Tudománytörténet 5. 5. Előadás A globális változások kezdete
Tudománytörténet 5. 5. Előadás A globális változások kezdete XIX. század közepe Kialakul a modern gyáripar (szén, gőzgép) Társadalomban, jogrendben, politikai felépítésben lényeges változások Fokozódó
FIZIKA. Atommag fizika
Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2
Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása
Biofizika Csik Gabriella Eötvös Loránd kora diákjait tréfásan jellemzi : határozott céllal jön az egyetemre, ügyvéd, politikus vagy orvos akar lenni. Amint az egyetembe lép, kritizálja tanárait, s az egész
ATOMFIZIKA. óravázlatok
ATOMFIZIKA óravázlatok A fizika felosztása 1. Klasszikus fizika Olyan jelenségekkel és törvényekkel foglalkozik, amelyekről a mindennapi életben is szerezhetünk tapasztalatokat. 2. Modern fizika A fizikának
Hőmérsékleti sugárzás és színképelemzés
Hőmérsékleti sugárzás és színképelemzés az anomáliák szerepe a tudományban fekete vonalak a színképben (1802) Wollaston, Ritter et al. a sötét vonalak hullámhossza (1814-1815) Joseph Fraunhofer (1787-1826)
Az anyagok kettős (részecske és hullám) természete
Az anyagok kettős (részecske és hullám) természete de Broglie hipotézise (1924-25): Bármilyen fénysebességgel mozgó részecskére: mc = p E = mc 2 = hn p = hn/c = h/ = h/p - de Broglie-féle hullámhossz Nem
Biofizika tesztkérdések
Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!
Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)
Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,
A modern fizika születése
A modern fizika születése Lord Kelvin a 19. század végén azt mondta, hogy a fizika egy befejezett tudomány: Nincsen olyan probléma amit a tudomány ne tudna megoldani. A fizika egy befejezett tudomány,
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév Dr. Paripás Béla 10. Előadás (2016.11.17.) Tudnivalók a zárthelyikkel kapcsolatban A 2. zárthelyi időpontja: 2016. november
FIZIKA. Radioaktív sugárzás
Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos
XX. századi forradalom a fizikában
XX. századi forradalom a fizikában magfizika részecskefizika 1925 1913 1900 1896 radioaktivitás lumineszcencia kvantummechanika Bohr-modell! színk nkép hőmérsékleti sugárz rzás!?? 1873 elektrodinamika
(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján)
Országos Szilárd Leó Fizikaverseny Döntő 2014. I. kategória Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrendben, feladatonként külön lapon kell megoldani. A megoldáshoz bármilyen
Stern Gerlach kísérlet. Készítette: Kiss Éva
Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet
Atommag, atommag átalakulások, radioaktivitás
Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla 10. Előadás (2018.11.29.) Tudnivalók a zárthelyikkel kapcsolatban A 2. zárthelyi időpontja: 2018. december
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 22.
Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2011. február 22. A radioaktivitásról Tévedések, téves következtetések is voltak : Curie házaspár: felfedezi, hogy a rádiumsók állandóan