Véges matematika 1/III. normál gyakorlat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Véges matematika 1/III. normál gyakorlat"

Átírás

1 Véges matematia 1/III normál gyaorlat Emléeztető (logiai szitaformula a dobju i a rosszat elv általánosításaént: Legyen A 1, A 2,,A n H Eor H \ (A 1 A n = H ( A 1 + A A n + ( A 1 A A n 1 A n ( A 1 A 2 A A n 2 A n 1 A n + + ( 1 ( A 1 A + + A n +1 A n + + ( 1 n A 1 A n, ahol tehát a -adi zárójeles ifejezésen az A 1,,A n halmazo összes lehetséges -as metszete pontosan egyszer szerepel (Ilyen -as metszetből ( n darab van Szummás alaban is fölírhatju (ez egyenértéű az előző imondással; bármelyi teljes értéű: H \ (A 1 A n = H + n ( 1 =1 1 i 1 <i 2 < <i n A i1 A i2 A i (Itt az első szummában a futóindex azt jelenti, hogy hány halmazt metszün össze, a ( 1 az alalmas előjelet biztosítja, a másodi szummában pedig az összegzés az indexe összes lehetséges -asára (i 1,,i megy (Ha a szumma nem a szoásos módon valamettől valameddig megy, aor a szumma alá írju az indexe által bejárandó tartományt; pl ha X = {1, 2, 4, 5, 7}, aor i 3 = i X, i prím Fontos, hogy jól értsü a formulát! Illusztrációéppen fölírju a formulát ettő, három, illetve négy rossz halmaz estére (ez nem része a formula imondásána, csa a megértést elősegítendő áll itt Feltesszü, hogy a szóban forgó A i halmazo mindig részhalmazai a H alaphalmazna H \ (A 1 A 2 = H ( A 1 + A 2 + A 1 A 2 H \ (A 1 A 2 A 3 = H ( A 1 + A 2 + A 3 + +( A 1 A 2 + A 1 A 3 + A 2 A 3 A 1 A 2 A 3 H \ (A 1 A 2 A 3 A 4 = H ( A 1 + A 2 + A 3 + A 4 + +( A 1 A 2 + A 1 A 3 + A 1 A 4 + A 2 A 3 + A 2 A 4 + A 3 A 4 ( A 1 A 2 A 3 + A 1 A 2 A 4 + A 1 A 3 A 4 + A 2 A 3 A 4 + Emléeztető (és illusztráció vége + A 1 A 2 A 3 A 4 1 Hányféleéppen tehetün be 30 szál virágot ülönböző színű vázába, ha a virágo a egyformá; b egyformá, és minden vázába ell jutnia legalább egyne; c ülönböző; d ülönböző, és minden vázába ell jutnia legalább egyne? Megoldás: a Ismétléses ombináció (30 iválasztójel, 9 elválasztójel, tehát ( b Először minden vázába tegyün egy-egy virágot (mivel egyformá, lényegtelen, hogy mely virágot osztju i itt, majd a maradé 20 virágot a a feladat szellemében iosztju Tehát a megoldás ( 29 c Virágonént döntési lehetőségün van, tehát 30 d (Itt nem volna jó, ha első örben minden vázába tennén egy-egy virágot, mert a végeredményben nem tudju megülönböztetni az első örös virágoat a ésőbb iosztottatól, míg a számolt döntési sorozatoban ez doumentálva volna Az összes lehetséges iosztás halmazát jelölje H, és legyen A i azon iosztáso halmaza, amelyenél az i váza üresen marad, 1 i (Tehát pl az A 5 -ben levő iosztáso azért rossza, mert az ötödi váza üresen marad A jó iosztáso halmaza tehát H \ (A 1 A 2 A H = 30 (lásd c A i = 9 30 (függetlenül az i-től, hiszen virágonént 9-féleéppen dönthetün (az i váza üresen ell maradjon A i A j = 8 30, mert jelenleg ét váza tiltott (az i és a j Hasonlóéppen egy -as

2 metszetne ( 30 eleme van ( váza tiltott Általában -as metszetből ( darab van, eze elemszáma mind ugyanaora A szita-formula szerint tehát H \ (A 1 A 2 A = = 30 =1 ( ( ( 1 2 ( ( 1 ( 30 = =0 ( ( ( 1 ( ( 1 ( 30 Kiegészítő magyarázat ( mese : a szummás alao csa tömörítése, a válasz teljes értéű azo nélül is Vegyü észre, hogy az utolsó tag ( = -re persze nulla, hiszen nincs olyan iosztás, amelynél mind a váza üresen maradna A = 0 pedig anna felel meg, amior nincs tiltott váza, így nem meglepő, hogy ( 1 0( 0 ( 0 30 = 30, pont az összes iosztáso számát apju 2 Hány olyan 20 hosszúságú ocadobás-sorozat van, amelyben a van 1-es? b pontosan három darab 1-es szerepel? c legfeljebb egy darab 2-es szerepel? d 4 ülönböző szám alotja, és mindegyiből 5 szerepel? e van 1-es és 2-es is? f az 1, 2,,6 számo mindegyie szerepel? Megoldás: a ( Dobju i a rosszat: b Kiválasztju a három egyes helyét, többit feltöltjü más dobásoal: c Azaz 0 vagy 1 darab, esetszétválasztással: ( d Kiválasztju a négy számot, majd az innentől fogva adott észletet sorbaraju: ( 6 20! 4 e Dobju i a rosszaat, de ompenzálju (5! 4 a étszer idobottaat (mini szita: f Szitaformulával: legyen A az összes, A i pedig azon dobássorozato halmaza, melyben nem dobtun i-t (1 i 6 Eor A i = 5 20, A i A j = 4 20 stb (bármely -as metszet elemszáma (6 20, így a szitaformula alapján a válasz A \ (A 1 A 6 = ( = 6 =0 ( 1( 6 ( Hány olyan 12 betűs szó észíthető az a, a, b, b, c, c, d, d, e, e, f, f betűből, melyben a szomszédos betű nem lehetne egyformá? Megoldás: Rossz: ha valamelyi betűpár egymás mellett szerepel, ami hatféle szempont Legyen H a fenti eleme összes sorrendjeine halmaza, továbbá legyen A 1 H azon sorrende halmaza, ahol a ét a betű egymás mellett van, A 2 H azon sorrende halmaza, ahol a ét b betű egymás mellett van, stb, A 6 H pedig a ét f- et egymás mellett elhelyező sorrende halmaza Ismétléses permutációval H = 12!/2 6 ; a ragasztós módszerrel pedig A i = 11!/2 5 bármelyi 1 i 6-ra A ettes metszetenél ettőt ragasztva A i A j =!/2 4 bármely 1 i < j 6-ra, és általában bármelyi -as metszet elemszáma (12!/2 6 A szitaformula alapján H \ {A 1 A 6 } = 12! ! ( 6 2! ( ( 1 (12! Ugyanez szummás alaban (nem muszáj felírni; a azt jelenti, hogy hány betűpár szerepel egymás melletti helyen: 6 ( 6 ( 1 (12! 2 6 =0 4 Valai vatában tűet szúr egy 1m oldalhosszúságú rombusz alaú táblába, melyne az egyi belső szöge 120 -os Legevesebb hány tű beszúrása után lesz bizonyosan négy olyan tű a táblában, melye páronénti távolsága a legalább egy méter? b legfeljebb egy méter? Megoldás: a Ezt soha nem garantálhatju, aárhány tűt beszúrhatun egymáshoz nagyon özel b Természetes módon felosztva a táblát ét darab, 1m oldalhosszúságú szabályos háromszögre, a satulyaelv szerint 7 > 3 2 tű esetén valamelyi háromszögben bizonyosan lesz legalább négy tű Eze páronénti távolsága legfeljebb 1m Ezzel még nincs ész a feladat, mert meg ell mutatnun, hogy hat tű azonban nem garantálja ezt: ha 3-3 tű erül a tábla ét távolabbi sarához, aor bármely négy tűt iválasztva biztosan lesz öztü ettő, melye ülönböző sarohoz vanna özel, és így a távolságu több mint egy méter 5 Hány olyan -betűs szó van, melyben 3 a, 5 b és 2 c szerepel, de a ét c nincsen egymás mellett? ( 6 6 6! 0 30

3 ! Megoldás: önnyű megszámolni 5! 3! 2! 9! 5! 3! : az összesből idobju azoat, melyeben a ét c egymás mellé erül, amit ragasztással 6 18 egyforma alaú, még színtelen arácsonyfadíszt szeretnén megfesteni Hányféleéppen tehetjü meg ezt, ha ötféle festéün van? Megoldás: Ismét azt ell megmondani, hogy melyi színűből mennyi díszt aarun festeni, tehát n = 5 ülönböző dologhoz (színe rendelün számoat, összesen = 18 összegűeet Ezt tehát ( ( = féleépp tehetjü meg (Úgy is épzelhetjü, hogy boltban ötféle arácsonyfadíszt árulna, és mi abból aarun veni 18-at; az eredmény teintetében mindegy, hogy festün vagy vásárlun 7 Egy édesipari vállalat ínálatában nyolcféle ülönböző bonbon található, melye özül négy szögletes, négy pedig ere alaú a A vállalat ajándécsomagjaina mindegyiébe 30 szem bonbont válogatna a cég nyolcféle édességéből úgy, hogy minden fajtából legalább ettő erüljön a zacsóba Hányféle csomagot állíthatna össze? b A cég termémintáját egy ör alaú dobozban szervírozza, melyben örben helyezedi el a nyolcféle desszertből egy-egy darab (özépen nincs Hányféleéppen rendezheti el a bonbonoat a dobozban, ha szögletes és ere bonbono felváltva soraozna, és a forgatással egymásba vihető elrendezéseet azonosna teintjü? Megoldás: a Mindegyiből ettőt beraun, marad = 14 szabadon választható további bonbon a nyolc fajtából; ez a gombóc-pálcia módszerrel (ismétléses permutáció 14 gombóc, 7 pálcia sorrendjeine száma, azaz ( b Jelöljün i egy tetszőleges bonbont, pl egy szögleteset A forgathatóság miatt föltehető, hogy ez a legfölső pozícióban (12 óránál van a dobozban Innentől ezdve örben haladva fölváltva ell ere és szögletes bonbont választanun a helyere, ami = 4 (3! 2 lehetőség Más megoldás: Raju a dobozba felváltva a szögletes és a ere bonbonoat mondju a legfölső pozíciónál ezdve Ez = (4! 2 lehetőség Eddig minden elrendezést többször számoltun, ugyanis megaptu az elforgatottjait is Figyelem! Egy elrendezésne nem apju meg mind a 8 elforgatottját, hiszen csa olyanoat számoltun, ahol 12 óránál szögletes bonbon van Emiatt csa 4 elforgatottat apun, így néggyel ell osztanun a tehénszabály értelmében A válasz tehát (4! 2 /4 Más megoldás: Raju a dobozba a bonbonoat mondju a legfölső pozíciónál ezdve Az első helyre 8-féléből választhatun A övetező viszont másmilyen alaú ell legyen, tehát csa négyféle lehet; a továbbiaban is figyelve a váltaozó alaora összesen = 8 4! 3! elrendezést aptun Viszont minden elrendezésne megapju a nyolc elforgatottját is, tehát a válasz 4! 3! 8 Maximum hány pozitív egész számot adhatun meg, ha 2000 nem oszthatja semelyi ettő összegét, sem ülönbségét? Megoldás: A {0}, {1, 1999}, {2, 1998},,{999, 01}, {00} satulyába tegyü azon számoat, amelyne a 2000-rel vett osztási maradéa a megfelelő satulyába esi Ha volna ét szám ugyanabban a satulyában aor azo összege vagy ülönbsége osztható volna 2000-rel Mivel 01 satulya van, max 01 számun lehet Annyi ténylegesen lehet, pl 1, 2,, 00, a Hányféleéppen tudun 6 ülönböző színű vázába szétosztani 9 ülönböző tulipánt és 13 ülönböző rózsát úgy, hogy semelyi váza ne maradjon üresen? b És ha az azonos fajtájú virágoat egyformána teintjü? Megoldás: a Ez ugyanaz, mintha = 22 teljesen ülönböző virágun volna; a megoldása szita-formulával (pont ugyanúgy, mint egy orábbi feladatnál 6 =0 ( 1( 6 (6 22 b Itt étféle virágun van; azt ell megmondani, melyi vázába mennyi erül ezeből, de a ét típusra ülönülön Legyen H azon összes iosztáso halmaza (azaz nem vesszü figyelembe, hogy nem maradhat üres váza, A i pedig azon iosztáso halmaza, ahol az i váza üresen marad (1 i 6 A pálcia-bogyós módszerrel megszámolva a rózsá és a tulipáno lehetséges iosztásait H = ( ( adódi Bármely darab Ai metszetében ( ( iosztás van, hiszen a 6 váza 5 pálciát ad, ami mellé 13, illetve 9 bogyó lesz Tehát összegezve a válasz 5 =0 ( 1( ( ( A hatjegyű számoat csoportosítom aszerint, hogy melyi számjegyből mennyi szerepel bennü (Pl az

4 és az ugyanabban a csoportban vanna, de pl a másiban van a Hány csoport van összesen? b Mennyi számból áll az a csoport, amelyben a szám szerepel? És amiben a 1200? c Hány olyan csoport van, melyeben pontosan négyféle számjegyből álló számo vanna? Megoldás: a Ismétléses ombináció (melyiből mennyi típus: a számjegyből 6-ot választun, tehát 6 gombóc és 9 pálcia van; viszont nincs olyan hatjegyű szám, melyne minden jegye nulla, így a válasz ( ! b Ezeet a számjegyeet ell sorba rani (ismétléses permutáció, tehát 3! 2! A másodi esetben nulla nem állhat az elején; eleinte megülönböztetve az azonos számjegyeet, majd a tehénszabály szerint orrigálva a válasz 3 5! 3! 2! c Ezen csoportoat egyértelműen azonosítja az, hogy melyi négy számot használjá, és melyiet hányszor Kiválasztun négy ülönböző számjegyet, majd azoból választun ismétléssel úgy, hogy mindből legalább egyet vegyün; tehát ét szabad választásun marad (ét gombóc a négy jegyhez (három pálcia Így a megfelelő csoporto száma ( ( Hányféleépp oszthatun szét egy 52-lapos franciaártya-csomagot 4 játéos özött, ha mindeni 13 lapot ap, és a minden játéosna jut ász? b minden figura ét, egymással szemben ülő játéoshoz erül? c minden játéosna jut (min egy őr? d minden játéosna jut minden számból és figurából? ( 39 ( 26 Megoldás: Ha nem lenne semmilyen megötés: ( (a játéosona sorban választun lapot a Négy ász van, mindenine ell egy, ezért az elején iosztju a négy ászt 4!-féleéppen, majd a maradé 48 lapból fejenét 12-t, tehát 4! ( ( ( b Válasszu i, melyi ét játéos apja a figuráat (ez ét lehetőség, majd először osszun i nem figurás lapot (ilyenből 36 darab van, ha az ászt is figurásna vesszü, ami szoás a mási ét játéosna, és a maradéot a figurás játéosona Ezt 2 ( ( ( féleéppen tehetjü meg c Mese egy ROSSZ MEGOLDÁSRÓL: Itt sem övetjü el a típushibát, miszerint minden játéosna adnun egy-egy őrt a biztonság edvéért (így négy itüntetett őrt osztanán i az elején, amit viszont a véegeredményt nézve valójában nem tudun megülönböztetni a ilenc további őrtől, ld virágos-vázás feladat Amior az ellett, hogy mindenine jusson ász, az azért műödött így, mert az összes ászt iosztottu az elején, nem maradta a másodi osztási örbe; itt viszont több mint négy őr van JÓ MEGOLDÁS: szitálun Az alaphalmaz, H, legyen az összes iosztáso halmaza; ezen belül négy rossz halmazun van: A i H legyen azon iosztáso halmaza, ahol az i játéos nem ap őrt (1 i 4 (Nagyon fontos! Az A 1 halmazban nem azo a leosztáso vanna, amior egy játéos nem ap őrt! És az A 2 -ben sem azo, amelyeben ét játéos nem ap őrt Hanem az A 1 -ben azo, melyeben az 1-es játéosna (személy szerint nem jut őr, az A 2 -ben azo, ahol a 2-es játéosna nem jut őr Ha valai ilyesmit ír, az nulla pont, mert pont a lényeget veszti el Ai nem definiálja rendesen a rossz halmazoat, szintén nulla pont Így pl A 3 = ( ( ( , mert a harmadi játéosna a 39 nem őr lapból adun 13-at, a többiene a maradéot tetszőlegesen iosztju Bármelyi ettes metszet elemszáma hasonló ooból ( ( ( stb A szita-formulát alalmazva H \ (A 1 A 4 = H ( A 1 + A 2 + A 3 + A 4 + ( A 1 A A 3 A 4 ( A 1 A 2 A A 2 A 3 A 4 + A 1 A 2 A 3 A 4 = ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( = d Mindegyi számos vagy figurás lapból négy darab van; egy számos vagy figurás lapnégyest 4!-féleéppen oszthatun szét; ezt mind a 13 típussal megismételve (független döntése az eredmény (4! Hányféleéppen vásárolhatun hatféle gyümölcsből összesen tizenöt darabot, ha legfeljebb egyféle gyümölcs lehet, amiből nem veszün? Megoldás: Ismétléses ombináció (pálcia-gombóc esetszétválasztással Ha mindből veszün legalább egyet, aor 9 gombóc marad és 6 1 = 5 pálcia, azaz ebben az esetben ( ( = féleéppen vásárolhatun Ha van olyan gyümölcs, amiből nem viszün: először azt iválasztju, majd a maradé ötféle mindegyiéből viszün egyet, amit 6 (5+ 1 ( -féleéppen tehetün meg Tehát a válasz 14 (

5 13 Legfeljebb hány egész számot választhatun 1 és 00 özött úgy, hogy semelyi ettő ne legyen relatív prím egymáshoz? 14 Hány ötjegyű szám van, melyben a számjegye a szigorú monoton nőne; b monoton nőne?

1. Kombinatorikai bevezetés példákkal, (színes golyók):

1. Kombinatorikai bevezetés példákkal, (színes golyók): 1. Kombinatoriai bevezetés példáal, (színes golyó: (a ismétlés nélüli permutáció (sorba rendezés: n ülönböz szín golyót hányféleépp állíthatun sorba? 10-et? n! 10! (b ismétléses permutáció: n 1 piros,

Részletesebben

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása Diszrét matematia I. özépszint Alapfogalmahoz tartozó feladato idolgozása A doumentum a övetező címen elérhető alapfogalmahoz tartozó példafeladato lehetséges megoldásait tartalmazza: http://compalg.inf.elte.hu/~merai/edu/dm1/alapfogalma.pdf

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

6. Bizonyítási módszerek

6. Bizonyítási módszerek 6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Kombinatorika. I. típus: Hányféleképpen lehet sorba rendezni n különböző elemet úgy, hogy a sorrend számít? (Ismétlés nélküli permutáció)

Kombinatorika. I. típus: Hányféleképpen lehet sorba rendezni n különböző elemet úgy, hogy a sorrend számít? (Ismétlés nélküli permutáció) Kombinatorika Az első n pozitív egész szám szorzatát n faktoriálisnak nevezzük és n! jellel jelöljük: n! := 1 2 3 4... (n 1) n 0! := 1 1! := 1 I. típus: Hányféleképpen lehet sorba rendezni n különböző

Részletesebben

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12 XL. Felvidéi Magyar Matematiaverseny Oláh György Emléverseny Galánta 016 Megoldáso 1. évfolyam 1. Oldju meg az egész számo halmazán az egyenletet. x 005 11 + x 004 1 = x 11 005 + x 1 004 Az egyenlet mindét

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

k n k, k n 2 C n k k=[ n+1 2 ] 1.1. ábra. Pascal háromszög

k n k, k n 2 C n k k=[ n+1 2 ] 1.1. ábra. Pascal háromszög Alapfeladato Megoldás A ombináció értelmezése alapján felírhatju, hogy n, n Ha n páros, aor n és n özött veszi fel értéeit Ha n páratlan, aor n, vagyis > n n+, ami azt jelenti, hogy és n özött veszi fel

Részletesebben

LÁNG CSABÁNÉ KOMBINATORIKA. Példák és megoldások

LÁNG CSABÁNÉ KOMBINATORIKA. Példák és megoldások LÁNG CSABÁNÉ KOMBINATORIKA Példá és megoldáso Letorálta: Burcsi Péter c Láng Csabáné, 006 ELTE IK Budapest 008-11-10 3. javított iadás Tartalomjegyzé 1. El szó................................. 3. Elméleti

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Otatási Hivatal A 015/016 tanévi Országos Középisolai Tanulmányi Verseny másodi forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értéelési útmutató 1 Egy adott földterület felásását három munás

Részletesebben

Kombinatorika - kidolgozott típuspéldák

Kombinatorika - kidolgozott típuspéldák Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:

Részletesebben

A gyors Fourier-transzformáció (FFT)

A gyors Fourier-transzformáció (FFT) A gyors Fourier-transzformáció (FFT) Egy analóg jel spetrumát az esete döntő többségében számítástechniai eszözöel határozzu meg. A jelet mintavételezzü és elvégezzü a mintasorozat diszrét Fouriertranszformációját.

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

Bevezetés a matematikába (2009. ősz) 1. röpdolgozat

Bevezetés a matematikába (2009. ősz) 1. röpdolgozat Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be

Részletesebben

Valószínőségszámítás feladatok A FELADATOK MEGOLDÁSAI A 21. FELADAT UTÁN TALÁLHATÓK.

Valószínőségszámítás feladatok A FELADATOK MEGOLDÁSAI A 21. FELADAT UTÁN TALÁLHATÓK. Valószínőségszámítás feladato A FELADATOK MEGOLDÁSAI A 2. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínősége, hogy mindegyine ugyanaz az oldala erül felülre? 2. Két teljesen

Részletesebben

Logikai szita (tartalmazás és kizárás elve)

Logikai szita (tartalmazás és kizárás elve) Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát

Részletesebben

23. Kombinatorika, gráfok

23. Kombinatorika, gráfok I Elméleti összefoglaló Leszámlálási alapfeladatok 23 Kombinatorika, gráfok A kombinatorikai alapfeladatok esetek, lehetőségek összeszámlálásával foglalkoznak Általában n jelöli a rendelkezésre álló különbözőfajta

Részletesebben

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. 9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika

Részletesebben

1. Permutációk MATEMATIKA

1. Permutációk MATEMATIKA 7_Matematia 5... 9:47 Page 7 I. Kombinatoria Az előző éveben már találoztun olyan összeszámlálási feladatoal, ahol az összes esete számát ellett meghatároznun. Foglaloztun a halmazo elemeine sorba rendezésével,

Részletesebben

æ A GYAKORLAT (* feladatok nem kötelezőek)

æ A GYAKORLAT (* feladatok nem kötelezőek) æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával

Részletesebben

Kombinatorika (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Kombinatorika (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla Kombiatoria (017 február 8 Bogya Norbert, Kátai-Urbá Kamilla 1 Kombiatoriai alapfeladato A ombiatoriai alapfeladato léyege az, hogy bizoyos elemeet sorba redezü, vagy éháyat iválasztu belőlü, és esetleg

Részletesebben

47. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

47. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 7. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Hány különböző módon lehet felírni az 102-et két pozitív négyzetszám összegeként? (Az összeadás sorrendje

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

semelyik kivett golyót nem tesszük vissza később az urnába. Hányféle színsorrendben tehetjük ezt meg?

semelyik kivett golyót nem tesszük vissza később az urnába. Hányféle színsorrendben tehetjük ezt meg? VIII. KOMBINATORIKA VIII.1. Kombinatorikai alapfeladatok 1. Példa. Egy urnában egy piros golyó P, egy fehér golyó F és egy zöld golyó Z van. Egymás után kihúzzuk a három golyót, semelyik kivett golyót

Részletesebben

8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?

8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es? 8. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Az 1, 2,,,, 6 számjegyekből hány hatjegyű számot alkothatunk, (a) amelyiknek mindegyik számjegye különböző? (b) amelyiknek mindegyik számjegye különböző, valamint a

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. Bayes tétele. Példák. Események függetlensége. Példák.

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. Bayes tétele. Példák. Események függetlensége. Példák. Valószínűségszámítás és statisztia előadás Info. BSC B-C szaosona 20018/2019 1. félév Zempléni András 2.előadás Bayes tétele Legyen B 1, B 2,..., pozitív valószínűségű eseményeből álló teljes eseményrendszer

Részletesebben

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb. 1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Kombinatorika gyakorló feladatok

Kombinatorika gyakorló feladatok Kombinatorika gyakorló feladatok Egyszerűbb gyakorló feladatok 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás:

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás: beütésszám. előadás TARTALOMJEGYZÉK Az alfa-bomlás Az exponenciális bomlástörvény Felezési idő és ativitás Poisson-eloszlás Bomlási sémá értelmezése Bomlási soro, radioatív egyensúly Az a bomlás: A Z X

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt?

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? skombinatorika 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot írhatunk föl 2 db 1-es, 1 db 2-es és 1 db 3-as

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

13. Előadás. 1. Aritmetikai Ramsey-elmélet (folytatás)

13. Előadás. 1. Aritmetikai Ramsey-elmélet (folytatás) Diszrét Matematia MSc hallgató számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Virágh Zita 010. december 13. 1. Aritmetiai Ramsey-elmélet (folytatás) Eddig megemlített Ramsey-tételeet a övetező táblázatban

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Kombinatorika avagy hányféleképp? Piros, fehér zöld színekből hány ország számára tudunk különböző zászlókat készíteni?

Kombinatorika avagy hányféleképp? Piros, fehér zöld színekből hány ország számára tudunk különböző zászlókat készíteni? Kombinatorika avagy hányféleképp? Piros, fehér zöld színekből hány ország számára tudunk különböző zászlókat készíteni? Kombinatorika avagy hányféleképp? Zsuzsi babájának négyféle színes blúza és kétféle

Részletesebben

TELJES VALÓSZÍNŰSÉG TÉTELE ÉS BAYES-TÉTEL

TELJES VALÓSZÍNŰSÉG TÉTELE ÉS BAYES-TÉTEL TELJES VALÓSZÍNŰSÉG TÉTELE ÉS AYES-TÉTEL A TELJES VALÓSZÍNŰSÉG TÉTELE Egy irály úgy szeretné izgalmasabbá tenni az elítéltjeine ivégzését, hogy három ládiába elhelyez 5 arany és 5 ezüst érmét. Ha a ivégzésre

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2013. NOVEMBER 23.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2013. NOVEMBER 23.) 3. osztály 3. osztály Egy asztal körül 24-en ülnek, mindannyian mindig igazat mondanak. Minden lány azt mondja, hogy a közvetlen szomszédjaim közül pontosan az egyik fiú, és minden fiú azt mondja, hogy mindkét közvetlen

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

Megyei matematikaverseny évfolyam 2. forduló

Megyei matematikaverseny évfolyam 2. forduló Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I jún. 11.

Matematika szigorlat, Mérnök informatikus szak I jún. 11. Matematia szigorlat, Mérnö informatius sza I. 007. jún. 11. Megoldóulcs 1. Adott az f(x) = (x ) függvény. (a) Végezzen teljes függvényvizsgálatot! D f = R \ {} 13 zérushely: x = y-tengelyen a metszet:

Részletesebben

A feladatok megoldása

A feladatok megoldása A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. 1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

EGY ÖTLET. A Venn-diagram és a logikai szita alkalmazásai

EGY ÖTLET. A Venn-diagram és a logikai szita alkalmazásai XXII/1 2. szám, 2014. máj. EGY ÖTLET A Venn-diagram és a logikai szita alkalmazásai Tuzson Zoltán Az ábráknak nemcsak a geometriában van fontos szerepük, hanem a legkülönbözőbb feladatok megoldásában is

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0801 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q

Részletesebben

5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200

5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200 2014. november 28. 7. osztály Pontozási útmutató 1. Egy iskola kosárlabda csapata egy tornán sportszervásárlási utalványt nyert. A csapat edzője szeretne néhány kosárlabdát vásárolni az iskola számára.

Részletesebben

Kombinatorika. Permutáció

Kombinatorika. Permutáció Kombinatorika Permutáció 1. Adva van az 1, 2, 3, 4, 5, 6, 7, 8, 9 számjegy. Hány különböző 9-jegyű szám állítható elő ezekkel a számjegyekkel, ha a számjegyek nem ismétlődhetnek? Mi van akkor, ha a szám

Részletesebben

Próbaérettségi feladatsor_b NÉV: osztály Elért pont:

Próbaérettségi feladatsor_b NÉV: osztály Elért pont: Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék

Részletesebben

Adatszerkezetek II. 10. előadás

Adatszerkezetek II. 10. előadás Adatszerkezetek II. 10. előadás Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával, kiválasztásával, sorrendbe rakásával foglalkozik

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:

7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával: Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem

Részletesebben

MATEMATIKA 11. osztály I. KOMBINATORIKA

MATEMATIKA 11. osztály I. KOMBINATORIKA MATEMATIKA 11. osztály I. KOMBINATORIKA Kombinatorika I s m é t l é s n é l k ü l i p e r m u t á c i ó 1. Öt diák (A, B, C, D, E) elmegy moziba, és egymás mellé kapnak jegyeket. a) Hányféle sorrendben

Részletesebben

æ A GYAKORLAT (* feladatok nem kötelezőek)

æ A GYAKORLAT (* feladatok nem kötelezőek) æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával

Részletesebben

Permutációegyenletekről

Permutációegyenletekről Permutációegyenleteről Tuzson Zoltán tanár, Széelyudvarhely Az elemi ombinatoriában n elem egy ermutációján az n darab elem egy meghatározott sorrendjét (sorbarendezését) értjü. Legyen az n darab elem

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

A CSOPORT 4 PONTOS: 1. A

A CSOPORT 4 PONTOS: 1. A A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Balogh Zsuzsanna Hana László BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Ebben a dolgozatban a Bayes-féle módszer alalmazási lehetőségét mutatju be a ocázatelemzés

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

Gyakorló feladatsor matematika javítóvizsgára évfolyam.docx

Gyakorló feladatsor matematika javítóvizsgára évfolyam.docx 1) Öt barát, András, Bea, Cili, Dani, Endre versenyt fut egymással. Hányféle beérkezési sorrend lehetséges, ha nincs holtverseny? 2) Hat barát, András, Bea, Cili, Dani, Endre, Fruzsina versenyt úsznak

Részletesebben

Furfangos fejtörők fizikából

Furfangos fejtörők fizikából Furfangos fejtörő fiziából Vigh Máté ELTE Komple Rendszere Fiziája Tanszé Az atomotól a csillagoig 03. április 5. . Fejtörő. A,,SLINKY-rugó'' egy olyan rugó, melyne nyújtatlan hossza elhanyagolhatóan icsi,

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik 1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van

Részletesebben

FOLYTATÁS A TÚLOLDALON!

FOLYTATÁS A TÚLOLDALON! ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;

Részletesebben

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly 5. osztály 1. A MATEK szó minden betűjének megfeleltetünk egy-egy számjegyet a következők szerint: M + A

Részletesebben

1. tétel. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata.

1. tétel. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. . tétel. Halmazo, halmazművelete, halmazo számossága, halmazművelete és logiai művelete apcsolata. Vázlat:.Halmazoal apcsolatos elevezése, alapfogalma pl.: halmaz, elem, adott egy halmaz, megadása, jelölése

Részletesebben

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van. HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x

Részletesebben

1. Feladatsor. I. rész

1. Feladatsor. I. rész . feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható

Részletesebben

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2016/ osztály

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2016/ osztály 1. Az erdészet dolgozói pályázaton nyert facsemetékkel ültetnek be egy adott területet. Ha 450-et ültetnének hektáronként, akkor 380 facsemete kimaradna. Ha 640 facsemetével többet nyertek volna, akkor

Részletesebben

Műveletek egész számokkal

Műveletek egész számokkal Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.

Részletesebben