Hidraulika. Passzív elemek és szivattyú Összenyomhatatlan áramlás csövekben. Kristóf Gergely BME Áramlástan Tanszék 2014 november.
|
|
- Gizella Orsósné
- 6 évvel ezelőtt
- Látták:
Átírás
1 4..8. Hidrulik Krisó Gergely BM Ármlásn Tnszék 4 noember Összenyomhln ármlás csöekben z Bernoulli: gz gz ' P hidroszikus nyomás P leálszás ' Össznyomás álozás: L i d i i λ q Álgsebesség bármely meszeben: i Ai helyi esz. csősúrlódás hol A i cső kereszmeszei erülee Psszí elemek és sziyú Számolhunk méer dimenzióbn: z z h' g g g g h, h, ' h' g z Sziyúr: z z H g g g g H szállíómgsság: z egységnyi súlyú olydékon égze munk. H (q ).
2 4..8. Hidruliki energimérleg H h, h, A sszí elemek eszeségé sziyú óol: h, h, H i h' i H A munkon grikus meghározás: bből kieezheő sziyú szállíómgsság: H h, h, i h' i h' h, h, q Ado: H (q ). Ado, állndó. Kieezheő min: cons. q q, oering B 4 A. eld ) Mgyrázz el, hogyn kombinálhók elleggörbék! b) Mekkor z. cső eszesége? c) Mekkor szállíómgssággl üzemel z A és B sziyú? h AB A, B 4 q [lier/s] Megoldás Hurkol hálózok lőnyös ngy eloszó hálózok eseében (l. árosi ióíz hálóz). A íz mindig ármlik rendszerben. A ngy helyi ogyszás obbn olerál. A hálóz minimális része esik ki egy cső lezárás eseén.
3 4..8. Kircho örények q q I.) Koninuiás csomóononkén. q II.) A nyomásesések előeles összege hurkokr. 4 Hurkol hálóz ából A oológi mindig álkíhó hurkol hálózá: A külső környezenek megelelő onok együesen kielégíik koninuiás, és zonos nyomásúk, ezér összeonhók. Pl. egy elszíó hálóz szerkezee: A hurkol hálóz állánosbb, min srukúráú hálóz. A hálóz elemei q q q q csomóonok: ágk: hurkok:..n....l q 4 4 q i beálálás, h q i >,és ogyszás, h q i <. q i csk csomóonokbn lehe. q i -nk ki kell elégíeni: N q i i
4 4..8. Csomóoni mári Ismereleneink: ágármok. lőelük: : h z ármlás irány egyezik z ág irányál; - : h ellenéesek. Csomóoni egyenleek: qi i i oológii mári elemei: i : h ág kielé eze i onból; i -: h ág beelé eze i onb; i : h ág elkerüli i csomóono. (i:..n) Az egyenleek szám Csk N- üggelen csomóoni egyenle n, miel q i beálálások előeles összege. Pl: q q q Hány csomóonunk n? N L Összesen ismerelenünk n: N L Függelen csomóoni egyenleek szám A hurokegyenleek elírásál z egyenlerendszer lezárhó. Hurokegyenleek szám. Hurokegyenleek l Össznyomáseszeség ágon: ' λ A d ' k A k-dik hurok hurokegyenlee: bk ' (k:..l) b k hurokmári elemei: b k : h ág irányíás egyezik k hurokél; b k -: h ág és k hurok irányíás ellenées; b k : h ág nincs benn k hurokbn. 4
5 eld ) Ír el hurokmário z lábbi hálózr: q q q q q 4 4 b) Konsns indeekkel ír el z -es hurok hurokegyenleé! Megoldás Cross-módszer Igen egyszerűen imlemenálhó ierí megoldás hurkol hálózokhoz:. Vegyük el z ágármok úgy, hogy kielégülenek csomóoni egyenleek. Pl. h nincsenek beálálások, kkor lehe kezdőérék i.. A k hurokbn minden ág ármánk korrekció egy q k korrekciós hurokármml úgy, hogy hurokegyenle is kielégülön. A csomóoni egyenleek oábbr is kielégülnek.. A hurkok egymás köeően korrigáluk. Közben egyre keésbé ronuk el szomszédos hurkok hurokegyenleei. 4. Sokszor isméelük z egész hurok sorozr, míg korrekciók elenyészően kicsik lesznek. Hurokkorrekció () Hurokegyenleek: bk ' A korrigál ágármok kielégíik hurokegyenlee. k hurokr: bk k k k q k számíáskor közelíésekkel élünk: ( b q ) b q k k. előele nem álozik meg korrekció hásár: bk k sg( ) bkqk bk k sg( ) ( ). H q k már kicsi, másodrendű g elhnygolhó: ( b q ) k k
6 4..8. Hurokkorrekció () bk k sg( ) ( b q ) k ( b k b k q ) k k q k éréke állndó k hurokbn, ezér: loo k loo k bkk qk bkk loo k bkk Azán korrigáluk z ágármok: qk loo k n n bk k bk qk k k Newon-Rhson módszer direk megoldássl Snos z ierí megoldás nem mindig konergál. Ilyen eseekben célszerű direk megoldás lklmzni hurokkorrekciók számíásár. Ilyenkor -edik ágármo z összes hurok igyelembeéeléel korrigáluk: L n n n bk k bk k bm qm m n L n bm qm m nnek igyelembeéeléel k-dik hurokegyenle: z egy L (k:..l) lineáris egyenleből álló rendszer z ismerelen q m (m:..l) hurokkorrekció érékekre, melyeke direk megoldási módszerrel (l. Guss-Jordn módszerrel megoldhunk). Hullámeredés olydék ezeékekben () A d, nyomásugrás hásár cső kereszmeszee da l nő. A da d d d,, A Koninuiás: ( d)( d )( A da) A da d A d A Imulzuséel: A hol R lr hó iális erő. ( ( d )) ( A da )( d ) wll mi z Aliei-éle lökés lán: d d A 44 wll da R 6
7 4..8. Hullámeredés olydék ezeékekben () da d A d A d da d A d d d d d da d A da d A d d s Hullámeredés olydék ezeékekben () Hook-örény: d s σ wε d w w da A σ ε l d l d da A d w s d d l da d A d d w s l r hol r redukál modulus: r l w I igyázni kell: buborékos gázrlom igen elenősen csökkenhei l éréké. s. eld A) Hsonlís össze égelen ízérre és z lábbi rméerekkel do ízzel el célcsőre ellemző hullámsebessége: Ámérő: mm, Flsgság: mm, íz :. 9 P, cél :. P. B) Milyen s/ rány eseében lesz hngsebesség csökkenése % ízre ellemző hngsebességhez kées? Megoldás 7
8 Inscionárius ármlás olydék ezeékekben ( ) A koninuiási egyenle állndó kereszmeszeű csőre: lsúrlódásból eredő erő elöli, mely hidruliki eszeség lán: ' csősúrlódás okoz eszeség rcy-weisbch ormul lán: λ ' λ, melyből: Mozgásegyenle, komreszibilis ármlásr: Csősúrlódási ényező inscionárius ármlásr Szinuszosn ingdozó sebesség eseén λ kieezheő Re és S / lán. Az inscionárius ármlásr onkozó λ érékek állábn ngyobbn scionárius érékeknél hárréeg eriodikus rissülése mi. Lmináris ármlás eseére nliikus megoldás is n. Amikor nyomásgrdiens előele ál, kkor sebességroil: Turbulens ármlás eseén λ éréké zár csőben égze rezonnci kísérleekkel hározhuk meg. Sá méréseink szerin, λ éréke.-.4 inerllumb ese (Re: 4 - és S:.-. románybn). Alegyenleek (,) és (,) meghározásár cons. s [P/s]
9 Akusziki közelíés ) Felesszük: és ) oábbá: << Miel zonos mliúdóú min. 44 λ Riemnn-inriánsok (C) (M) (CM) ( ) ( ) hol (C-M) ( ) ( ) β β hol β Vízklács egyenleek dβ A krkeriszikák irány β β d d gyik iránybn: d d, d d β Másik iránybn: d d, irány menén deriál és β d
10 4..8. A krkeriszikák módszere β Számoluk ki és, éréké, és, lán! β β β megoldás irány β β Peremeléelek szükségesek. Peremeléelek β Zár ég: β Kiármlás: β β Beármlás: β β lágzás Az össznyomás eszeségek elhnygolás eseén: A A A 6 db. ismerelenünk n, ezér eni lgebri egyenle cslkozó csöekből ismer Riemnn-inriáns összeüggéséel együ lezár z egyenlerendszer. és érékei lán kiszámíhók kielé hldó krkeriszikák Riemnn-inriánssi.
11 eld Hirelen kinyiuk egy deresszió l álló cső égé. Mi lesz nyomás és sebesség cső égén közelenül nyiás uán? Kérem, hsznál krkeriszikák módszeré elír, β ellemzőke! A cső kezdei álloá deiniál, cons. eléelekkel! A lezár cső nyomás: kp, Külső nyomás: kp, Légsűrűség:. kg/m, Hngsebesség: 4 m/s. Megoldás Alklmzási éldák. éld: csnyú zárás okoz ízüés Visszcsó h g Sziyú 9 Φ6 cső Nyio medence br A Nyomás Sebesség Oimális beállíások: -. s - 4. s idő [s] idő [s]
12 éld eilén hierkomresszor Üzemi nyomás ~ 7 br. A nyomáslengés és csőrezgések okoz eszülésgek elemzése ol izsgál cél. Hierkomresszorok Rezgés ádó Nyomás el Rekor β Peremeléelek: komresszor V [m/s] 8 [m/s] 6 4 Comressor Kiúási dischrge sebesség (Velociy nyomócső he eleén ie inle) φ φ rezgés Rezgés imulzus el Idő idő [s] A lineáris ( φ ) és színuszos ( φ ) szkszok ázisszöge geomerii megonolások lán becsülheő. A kezdő ázis rezgés el lán hározuk meg. Peremeléelek: rekor Cső Rekor () β()β A olimerizáció mi inenzí dissziáció lé el. Visszerődés nincs ezér állndó β érék eléelezheő.
13 e8.78e8.76e8.74e8.7e8.7e8.68e8.66e8.64e8.6e8.6e8 Szimulációs eredmények mér nyomássl összeee Nyomásingdozás [P] káziscionárius mérési onbn [P] állobn számío számol.8e idő [s] mérés mér
Egydimenziós instacionárius gázáramlás, nyíltfelszínű csatornabeli folyadékáramlás
Eimenziós inscionárius gázármlás, nyílfelszínű csornbeli folyékármlás Koninuiási eenle e ellenőrzőfelüleel hárol érfogr: () Mozgáseenle (imulzuséel: z imulzus iőbeli álozásánk és felülei imulzusármoknk
Gázdinamika. Ideális gázokban Kis zavarások terjedési sebessége. Dr. Kristóf Gergely 2014 november 18. dv a.
04..4. Gázdinmik Dr. Krisóf Gergely 04 noember 8. Kis zrások erjedési sebessége d d d, d d d, Koninuiás: ( d)( d ) d d ozgáegyenle: I r P r ( ( d) ) d 3443 4 q m d d d lliei-el d d célbn Vízben Leegőben
A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást.
. Ideális olyadék FOLYDÉKOK ÉS GÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan
) (11.17) 11.2 Rácsos tartók párhuzamos övekkel
Rácsos arók párhuzamos övekkel Azér, hog a sabiliási eléelek haásá megvizsgáljuk, eg egszerű síkbeli, saikailag haározo, K- rácsozású aró vizsgálunk párhuzamos övekkel és hézagos csomóponokkal A rúdelemek
ismerd meg! A digitális fényképezgép VII. rész
ismerd meg! A digiális ényképezgép VII. rész 3.5.3. Mélységélesség A képérzékel síkjábn kelekez kép szigorún véve cskis beállío ávolságr ekv árgyknál éles. Az ennél közelebb és ávolbb lev árgyk képe z
[ ] [ ] [ ] [ ] [ ] [ ] [ ] v( t) = k A B. Gyors kinetikai módszerek. Stopped flow. = k. Dr. Kengyel András. v = k A B. ( t) [ ] ( t ) ( t)
Modern iofiziki kuási módszerek 011 Okóer 0. Rekciókineik Gyors kineiki módszerek Dr. Kengyel ndrás PTE ÁOK iofiziki Inéze REKIÓSEESSÉG: rekció jellemzésére szolgáló prméer Rekcióseesség függ: részeı nygok
IDEÁLIS FOLYADÉKOK ÁRAMLÁSA
Áralások leírása: IDEÁLIS FOLYDÉKOK ÁRMLÁS Lagrange-féle leírás: egyedi részecskék ozgásá köejük hely és sebesség szerin: r,, Euler-féle leírás: áralási ere jelleezzük. ér egy onjában: nyoás, sűrűség,
A digitális multiméterek
A digiális muliméere A digiális muliméere - z nlóg muliméerehez hsonlón - egyen- és válozó feszülség, egyen- és válozó árm, vlmin ohmos-ellenállás mérésére llms. Szolgálásu zonbn - digiális jelfeldolgozás
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)
Forgó tengely ellenőrzése kifáradásra
orgó engely ellenőrzése kifárdásr Adok: Teljesíény: P = 00 kw ordulszá: n = 10 1/s Szíjárcs öege: k = 10 kg Tengely öege: = 1 kg Tengely nyg: E95 (e 490-) A csró nyoék: cs x = 1,5 cs nél (lükeő jellegű)
MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből
Mérnöki alapok 7. előadás
Mérnöki alaok 7. előadás Készítette: dr. Váradi Sándor Budaesti Műszaki és Gazdaságtudományi Egyetem Géészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budaest, Műegyetem rk. 3. D é. 334. Tel: 463-6-80
Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:
Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi
FOLYADÉKOK ÉS GÁZOK SZTATIKÁJA F Ideális folyadék
1. Ideális olyadék FOLYDÉKOK ÉS ÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan
4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.
4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel
A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer
Kinemaikai egyensúly éele: Téel: zár kinemaikai lánc relaív szögsebesség-vekorrendszere egyensúlyi. Mechanizmusok sebességállapoa a kinemaikai egyensúly éelével is meghaározhaó. sebességállapo ismer, ha
0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q
1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus
Legfontosabb farmakokinetikai paraméterek definíciói és számításuk. Farmakokinetikai paraméterek Számítási mód
Legfonosabb farmakokineikai paraméerek definíciói és számíásuk Paraméer armakokineikai paraméerek Név Számíási mód max maximális plazma koncenráció ideje mér érékek alapján; a max () érékhez arozó érék
F1301 Bevezetés az elektronikába Műveleti erősítők
F3 Beezeés az elekronikába Műelei erősíők F3 Be. az elekronikába MŰVELET EŐSÍTŐK Műelei erősíők: Kiáló minőségű differenciálerősíő inegrál áramkör, amely egyenfeszülség erősíésére is alkalmas. nalóg számíás
OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor
OPTIK STTISZTIKUS OPTIK IDŐELI KOHERENCI udpesi Műszki és Gzdságudományi Egyeem omfizik Tnszék, dr. Erdei Gáor Ágzi felkészíés hzi ELI projekel összefüggő képzési és K+F feldokr TÁMOP-4...C-//KONV-0-0005
Milyen erőtörvénnyel vehető figyelembe a folyadék belsejében a súrlódás?
VALÓDI FOLYADÉKOK A alódi folyadékokban a belső súrlódás ne hanyagolható el. Kísérleti tapasztalat: állandó áralási keresztetszet esetén is áltozik a nyoás p csökken Az áralási sebesség az anyagegaradás
Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék
Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
2N-4, 2N-4E 2N-00, 2N-0E 2N-AE0, 2N- AG0
Húzza alá az Ön képzési kódjá! 2N-4, 2N-4E 2N-00, 2N-0E 2N-AE0, 2N- AG0 Név: Azonosíó: Helyszám: Jelölje meg (aláhúzással) Gyakorlavezeőjé! Bihari Péer Czél Balázs Gróf Gyula Kovács Vikória Könczöl Sándor
Ikerház téglafalainak ellenőrző erőtani számítása
BME Hidak és Szerkezeek Tanszék Fa-, falazo és kőszerkezeek (BMEEOHSAT19) Ikerház églafalainak ellenőrző erőani számíása segédle a falaza ervezési feladahoz v3. Dr. Varga László, Dr. Koris Kálmán, Dr.
4. előadás: kontinuitás, Bernoulli. A diák alsó 45%-a általában üres, mert vetítéskor ki van takarva, hogy a táblát ne zavarja
4. előaás: koninuiás, Bernoulli iák alsó 45%-a álalában üres, mer eíéskor ki an akara, hogy a áblá ne aarja Térfogaáram V m 3 I V s I V V Háarási áfolyó ímelegíő érfogaárama ( l/, ½ col): 4 π,5 0 3,4 4
Az egyenes vonalú egyenletesen változó mozgás
Az egyene onlú egyenleeen álozó ozgá 80 k/h ebeéggel bulib együnk. Uolérünk egy IFA-. Szerenénk egelőzni, ezér gyoríjuk z uó. Úgy nyojuk jobb zélő pedál (gázpedál!), hogy koci ebeége inden áodpercben 1
F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,
F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási
Elektronika 2. TFBE1302
Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.
Túlgerjesztés elleni védelmi funkció
Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan
! Védelmek és automatikák!
! Védelmek és auomaikák! 4. eloadás. Védelme ápláló áramváló méreezése. 2002-2003 év, I. félév " Előadó: Póka Gyula PÓKA GYULA Védelme ápláló áramváló méreezése sacioner és ranziens viszonyokra. PÓKA GYULA
Tervezési segédlet. Fûtõtestek alkalmazásának elméleti alapjai
. Fûtõtestek kiválsztás Fûtõtestek lklmzásánk elméleti lpji Az energitkrékos, üzembiztos, esztétikus és kellemes hõérzetet biztosító fûtés legfontosbb eleme fûtõtest. A fûtött helyiségben trtózkodó ember
Tartalom Fogalmak Törvények Képletek Lexikon
Fizikköny ifj. Záonyi Sándor, 6. Trlo Foglk Törények Képleek Lexikon Az egyene onlú, egyenleeen álozó ozgá Az olyn ozgá, elyeknél ponzerű e ozgáánk pályáj egyene é gyorulá állndó ngyágú, egyene onlú, egyenleeen
Elektrotechnika 4. előadás
Óbuda Egyeem ánk Doná Gépész és zonságechnka Kar Mecharonka és uóechnka néze Elekroechnka 4. előadás Összeállíoa: Langer ngrd adjunkus Háromázsú hálózaok gyakorlaban a llamos energa ermelésében, eloszásában
3. Gyakorlat Áramlástani feladatok és megoldásuk
3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T
Gépészeti rendszerek. RUGÓK (Vázlat) Dr. Kerényi György. Gépészeti rendszerek. Rugók. Dr. Kerényi György
0.04.. RUGÓK (Vázla) Rugók 0.04.. Rugók A rugók nagy rugalmasságú elemek, amelyek erő haására jelenős rugalmas alakválozás szenvednek. Rugalmassági jellemzőikől üggően a rugók a legkülönbözőbb eladaok
Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév
Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],
Aerációs csatorna. Keverékek áramlása. 10. előadás
Keerée ármlás. 10. előás Készítette: r. Vári Sánor Buesti Műszi és Gzságtuományi Egyetem Géészmérnöi Kr Hiroinmii Renszere Tnszé 1111, Buest, Műegyetem r. 3. D é. 334. Tel: 463-16-80 Fx: 463-30-91 tt://www.izge.bme.u
Zoknikötı keret használata M méret (32-38 méret)
Zoknikötı keret használata M méret (32-38 méret) A doboz tartalma: 1 db (32 szemes) zoknikötı-keret 1 db zoknikötı tő. A zoknikötıvel 32-38 mérető zoknit lehet kötni 2-5 mm átmérıjő kötıtőhöz készülı fonalakból.
1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
7. KÜLÖNLEGES ÁRAMLÁSMÉRİK
7. KÜLÖNLEGES ÁRAMLÁSMÉRİK 7.1. Ulrahangos áramlásmérık 7.1.1. Alkalmazási példa 7.1.2. Mőködési elvek f1 f2 = 2 v f1 cosθ a f1 f2
mateking.hu -beli vektorokat, de egyáltalán nem biztos, hogy így az egész V
LINEÁRIS LEKÉPEZÉSEK ÉS TRANSZFORMÁCIÓK A leképezés lineáris leképezésnek neezzük, h ármely elesül, hogy ; ekorokr és R számr Minden lineáris leképezés lhogy így néz ki: Kerφ Imφ meking.hu H kkor lineáris
Mérnöki alapok 9. előadás
érnök alapk 9. előadá Kézíee: dr. Várad Sándr Budape űzak é Gazdaágudmány Egyeem Gépézmérnök Kar Hdrdnamka Rendzerek Tanzék, Budape, űegyeem rkp. 3. D ép. 334. Tel: 463-6-80 Fax: 463-30-9 hp://www.zgep.bme.hu
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
Az inga mozgásának matematikai modellezése
Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.
Előadásvázlat Kertészmérnök BSc szak, levelező tagozat, 2015. okt. 3.
Előadásvázla Kerészmérnök BSc szak, levelező agoza, 05. ok. 3. Bevezeés SI mérékegységrendszer 7 alapmennyisége (a öbbi származao): alapmennyiség jele mérékegysége ömeg m kg osszúság l m idő s őmérsékle
Ancon feszítõrúd rendszer
Ancon feszíõrúd rendszer Ancon 500 feszíőrúd rendszer Az összeköő, feszíő rudazaoka egyre gyakrabban használják épíészei, lászó szerkezei elemkén is. Nagy erhelheősége melle az Ancon rendszer eljesíi a
É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í
ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő
Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö
ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö
ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő
ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó
Definíciók 3 rész. Fogalom Képlet, definíció Jelölések Jelmagyarázat, mértékegység A cellareakció szabadentalpiaváltozása és az elektromotoros erő
Defníó 3 rész oglom Kéle, defníó Jelölése Jelmgyráz, méréegység A ellreó szbdenlválozás és z eleromooros erő M z reó ölésszám () r reó szbdenl-válozás (J/mol) r -z özö sol dffúzós oenál elnygoló rdy-állndó
Vegyipari és áramlástechnikai gépek. 4. előadás
Vegyipri és ármlásechniki gépek. 4. elődás Készíee: dr. Várdi Sándor Budpesi Műszki és Gzdságudományi Egyeem Gépészmérnöki Kr Hidrodinmiki Rendszerek Tnszék, Budpes, Műegyeem rkp. 3. D ép. 334. Tel: 463-6-80
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Járműelemek I. (KOJHA 7) Tengelyköés kisfelada (A ípus) Szilárd illeszés Járműelemek és Hajások Tanszék Ssz.: A/... Név:...................................
MATEMATIKA 9. osztály I. HALMAZOK. Számegyenesek, intervallumok
MATEMATIKA 9. osztály I. HALMAZOK Számegyenesek, intervllumok. Töltsd ki tábláztot! Minden sorbn egy-egy intervllum háromféle megdás szerepeljen!. Add meg fenti módon háromféleképpen következő intervllumokt!
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora
2. gyakorlat: Z épület ferdeségmérésének mérése
. gyakorla: Z épüle ferdeségének mérése. gyakorla: Z épüle ferdeségmérésének mérése Felada: Épíésellenőrzési feladakén egy 1 szines épüle függőleges élének érbeli helyzeé kell meghaározni, majd az 1986-ban
Hidraulika. 5. előadás
Hidraulika 5. előadás Automatizálás technika alapjai Hidraulika I. előadás Farkas Zsolt BME GT3 2014 1 Hidraulikus energiaátvitel 1. Előnyök kisméretű elemek alkalmazásával nagy erők átvitele, azaz a teljesítménysűrűség
( E) ( E) de. 4πε. Két példa: 1. példa: Rutherford-szórás. 2. példa: : Kemény gömbön történı szórás szögfüggése. szögfüggése (elméletileg(
Mg- és neuronfizik 7. elıás Emlékezeı: ommgrekió: élárgy + + Jelölés: (, ) Rekióenergi: Q = (M + M M M ) Rekióseesség: R = φ N σ Fluxus: φ Célárgy omok R szám: N Mikroszkopikus háskereszmesze: σ = N φ
26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése.
26. HÁLÓZATI TÁPEGYSÉGEK Célkiűzés: A hálózi egyenirányíó és silizáló lpkpcsolások és jellemzőinek megismerése, illeőleg mérése. I. Elmélei áekinés Az elekronikus készülékek működeéséhez legöször egyenfeszülségre
Matematika 4 gyakorlat Földtudomány és Környezettan BSc II/2
Mtemtik 4 gykorlt Földtudomány és Környezettn BSc II/2 1. gykorlt Integrálszámítás R n -ben: vonlintegrál, primitív függvény, Newton Leibniz-szbály. Legyen Ω R n egy trtomány, f : Ω R n folytonos függvény
12. KÜLÖNLEGES ÁRAMLÁSMÉRİK
12. KÜLÖNLEGES ÁRAMLÁSMÉRİK 12.1. Ulrahangos áramlásmérık 12.1.1. Alkalmazási példa 12.1.2. Mőködési elvek f1 f2 2 v f1 cosθ a f1 f2
Biológiai molekulák számítógépes szimulációja Balog Erika
Bológa molekulák számíógépes szmulácóa Balog Eka Semmelwes Egyeem, Bofzka és Sugábológa Inéze SZEKVENCIA ALA THR SER THR LYS LYS LEU HSD LYS GLU PRO ALA ILE LEU LYS ALA ILE ASP ASP THR TYR VAL LYS PRO
ÁRAMLÁSTAN MFKGT600443
ÁRAMLÁSTAN MFKGT600443 Környezetmérnöki alapszak nappali munkarend TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR KŐOLAJ ÉS FÖLDGÁZ INTÉZET Miskolc, 2018/2019. II. félév TARTALOMJEGYZÉK
HÁZI FELADAT megoldási segédlet Relatív kinematika. Két autó. 2. rész
HÁZI FELDT megoldási segédlet Reltí kinemtik Két utó.. rész. Htározzuk meg, hogy milyennek észleli utóbn ülő megfigyelő z utó sebességét és gyorsulását bbn pillntbn, mikor z ábrán ázolt helyzetbe érnek..
Fizika A2E, 7. feladatsor megoldások
Fizika A2E, 7. feladasor ida György József vidagyorgy@gmail.com Uolsó módosíás: 25. március 3., 5:45. felada: A = 3 6 m 2 kereszmesze rézvezeékben = A áram folyik. Mekkora az elekronok drifsebessége? Téelezzük
ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü
Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö
Ű Í ó Ü Ö Á Á Ó Ö Ü Ü Ü Ü Á Í Ü Á Á Ü Ü Ü Ü Ü Ü Ö Ü Í Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Í Ü Í Í Á Í Í Ü Í Í Ü Á Ü Ü Ü Ü Ü Ü Ü Ü Ő Ö Á ÁÍ Á Ü Ü Á Í Ü Í Á Ü Á Í ó Í Í Ü Ü ő Í Ü Ű Ü Ü Ü Ü Í Ü Ü Ü Ü Ü Ü Ü Í Ü Á Ü Ö Á
ű í ú ü Á ü ü ü ü ü É É É Ü í ü Á í í ű í ú É É É Ü Í í í í Á í í Á í Á Í É Ő Ú ú Ú í í í íí í ú í í Í í Í Í É í í Í Í í ú í ü Ó í Í ú Í Í ű í ű í í í Í É Ü ű í ü ű í ú É É É Ü ű í í í í ü í Í í Ú Í í
Differenciálegyenletek a mindennapokban
Differenciálegyenletek a mindennapokban Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 15 Pénz, pénz,
6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK
6. Lbortóriumi gykorlt KAPAITÍV SZINTÉRZÉKELŐK. A gykorlt célj A kpcitív szintmérés elvének bemuttás. A (x) jelleggörbe ábrázolás szigetelő és vezető olyékok esetén. Egy stbil multivibrátor elhsználás
5. Szerkezetek méretezése
. Serkeeek méreeése Hajlío, ömör gerinű gerendaarók és oso selvénű nomo rúd méreeési példái..1. Tömör gerinű gerendaarók méreeése.1.1. elegen hengerel gerendaarók Sükséges ismereek: - Keresmesei ellenállások
8. Optikai áramlás és követés
8. Opikai áramlás és köeés Kaó Zolán Képfeldolgozás és Számíógépes Grafika anszék SZT (hp://www.inf.u-szeged.hu/~kao/eaching/) Mozgókép (ideo) = diszkré képsoroza Y T X 3 OPTIKAI ÁRAMLÁS 4 Opikai áramlás
TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok
Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése
A diszkrimináns, paraméteres feladatok a gyökök számával kapcsolatosan
MÁSODFOKÚ MINDEN A egoldókéle alkalazása Oldd eg a kövekező egyenleeke!... 9 A diszkriináns, araéeres feladaok a gyökök száával kacsolaosan. Az valós araéer ely érékei eseén van a 0 egyenlenek ké egyenlő
A vasbeton vázszerkezet, mint a villámvédelmi rendszer része
Vsbeton pillér vázs épületek villámvédelme I. Írt: Krupp Attil Az épületek jelentős rze vsbeton pillérvázs épület formájábn létesül, melyeknél vázszerkezetet rzben vgy egzben villámvédelmi célr is fel
FEGYVERES KÜZDELEM A DIGITÁLIS HADSZÍNTÉREN
DSc. Seres György FEGYVERES KÜZDELEM A DIGITÁLIS HADSZÍNTÉREN (A ZRÍNYI MIKLÓS Nemzeédelmi Egyeemen, 2002. noember 27-én, a ROBOT HADVISELÉS 2 című nemzeközi konferencián aro angol nyelű előadás magyar
BME HDS CFD Tanszéki beszámoló
BME HDS CFD Tanszéki beszámoló Hős Csaba csaba.hos@hds.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem CFD Workshop, 2007. június 20. p.1/16 Áttekintés Nyíltfelszínű áramlások Csatornaáramlások,
Örvényszivattyú A feladat
Örvényszivattyú A feladat 1. Adott n fordulatszám mellett határozza meg a gép jellemző fordulatszámát az optimális üzemi pont mérésből becsült értéke alapján: a) n = 1700/min b) n = 1800/min c) n = 1900/min
Tartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.
GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK
BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Áramlástan Tanszék Méréselőkészítő óra I. Horváth Csaba & Nagy László
Áramlástan Tanszék www.ara.bme.hu óra I. Horáth Csaba horath@ara.bme.hu & Nagy László nagy@ara.bme.hu M1 M Várhegyi Zsolt arhegyi@ara.bme.hu M3 Horáth Csaba horath@ara.bme.hu M4 M10 Bebekár Éa berbekar@ara.bme.hu
Fizikai tulajdonságok mérések
Épíőanyagok II - Laborgyakorla Fizikai ulajdonságok, érések A fizikai ulajdonságok csoporjai Töegeloszlással kapcsolaos ulajdonságok és vizsgálauk Fajlagos felüle egaározása Szecseére-eloszlás egaározása
SZERKEZETÉPÍTÉS I. FESZÜLTSÉGVESZTESÉGEK SZÁMÍTÁSA NYOMATÉKI TEHERBÍRÁS ELLENŐRZÉSE NYÍRÁSI VASALÁS TERVEZÉSE TARTÓVÉG ELLENŐRZÉSE
01.0.7. SZERKEZETÉPÍTÉS I. NYOATÉKI TEHERBÍRÁS ELLENŐRZÉSE TARTÓVÉG ELLENŐRZÉSE GYAKORLAT KÉSZÍTETTE: FEHÉR ZOLTÁN A ervezé orán meg kell haározni, hogy a időonban mekkora a haáo fezíéi fezülég a ázmákban
1, Folyadékok jellemzői,newtoni, barotróp folyadékok, gázok tulajdonságai, kavitáció
1, Folyadékok jellemzői,newtoni, barotró folyadékok, gázok tulajdonságai, kavitáció Folyadékok Csefolyós, Légnemű Tetszőleges mértékben deformálható anyagszerkezet változás nélkül Newtoni folyadék Newton-féle
Numerikus módszerek 2.
Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 5 ÉETTSÉGI VIZSG 06. május 8. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ EMEI EŐFOÁSOK MINISZTÉIM Egyszerű, rövid feladaok Maximális
II. A számtani és mértani közép közötti összefüggés
4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!
Egy idõállandós rendszer modell
Egy idõállandós rendszer modell Egyszerű, gyaran használ (öbb öölszabályban is eenérheő) özelíés; az áviel RC (aluláeresző) - szűrő [ τ = RC időállandó] modellezi.. ALAPÖSSZEFÜGGÉSEK A. Szinuszos, ω =
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai
Aktuális CFD projektek a BME NTI-ben
Aktuális CFD projektek a BME NTI-ben Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet CFD Workshop, 2005. szeptember 27. CFD Workshop, 2005. szeptember 27. Dr. Aszódi Attila,