Bose-Einstein korrelációk mérése és vizsgálata nagyenergiás mag-mag ütközésekben

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bose-Einstein korrelációk mérése és vizsgálata nagyenergiás mag-mag ütközésekben"

Átírás

1 Bose-Einstein korrelációk mérése és vizsgálata nagyenergiás mag-mag ütközésekben K faragó ónika Fizikus Sc Témavezet : Csanád áté ELTE TTK Atomzikai Tanszék 01. május 1.

2 Kivonat Nagyenergiás ütközésekben az azonos bozonok két- és háromrészecske Bose-Einstein korrelációjából a forrás geometriájára, a részecskekeletkezés koherenciájára, illetve az abban jelen lév hosszú élettartamú rezonanciák arányára is lehet következtetni. Ha az ütközésben létrejöv forró és s r anyagban a királis U A 1 szimmetria sérülése megsz nik, az η bozonok tömege lecsökkenhet, keletkezési hatáskeresztmetszete pedig jelent sen megn het. Az így tömegesen keletkez η bozonok lecsökkentik a kétpion korrelációs függvények er sségét. Ezt a csökkenést korábban meggyelték, azonban új módszerek vannak a jelenség okának keresésére. A jelenség vizsgálható a hárompion korrelációk analízisén keresztül is, mivel ezzel a módszerrel vizsgálhatóvá válik a forrás koherenciája, amely ugyancsak a korrelációs függvény csökkenését eredményezheti. Azonban ahhoz, hogy tisztán a Bose-Einstein korreláció hatását lehessen vizsgálni, a korrelációs függvényt korrigálni kell a Coulomb kölcsönhatás okozta változásokra. Dolgozatomban a hárompion korrelációs függvény Coulomb korrekcióját határoztam meg, és különböz p T tartományokon elvégeztem a korrelációs függvény korrekcióját. Az így korrigált függvények alapján meghatároztam, hogy a koherens rész mennyire játszik fontos szerepet a magban. Tapasztalataim szerint a mag parciálisan koherens része egyik vizsgált p T tartományon sem elhanyagolható, így ha az U A 1 szimmetria részleges helyreállását szeretnénk vizsgálni, akkor fontos ezt is gyelembe vennünk.

3 Tartalomjegyzék 1. Bevezetés 1.1. A nagyenergiás nehézion-zika A nagyenergiás nehézion-zika mérföldkövei A PHENIX detektor felépítése Két- és háromrészecske korreláció 6.1. Általános deníció A mag-glória core-halo modell és a parciális koherencia A szimmetriák szerepe Coulomb-korrekció Deníció Számolás A korrelációs függvények elkészítése az adatokból Az események rekonstruálása A korrelációs hisztogramok elkészítése Ellen rzések Kétrészecske Háromrészecske Eredmények 7 7. Összefoglalás 5 8. További célok 5 9. Köszönet nyilvánítás 5 Függelék 6 A. Számítások 6 A.1. A forrásfüggvény számolása A.. A korrelációs függvény számolása B. Hisztogramok és illesztések 56 C. Használt programok 59 D. Rövidítések 59 1

4 1. Bevezetés 1.1. A nagyenergiás nehézion-zika A nehézion-zika az er s kölcsönhatás megértésével foglalkozik. A nagyenergiás nehézion ütköztet kben felvett adatok elemzésével kísérleti bizonyítékot kaphatunk a QCD elméleti jóslatairól. Az ütköztet kben létrejöv kvark-gluon plazmában a kvarkok és a gluonok nincsenek hadronokba zárva [1], így ebben az állapotban, többek között, az er s kölcsönhatás fontos tulajdonságának, a kvarkbezárásnak a megsz nése is vizsgálhatóvá válik. Ez azért is egy fontos kutatási terület, mivel az srobbanás után körülbelül egymilliomod másodpercig a világegyetem ebben az állapotban volt, így a nehézion ütköztet kben az univerzumnak ezt a legkorábbi állapotát lehet el állítani. Nehézion ütközéseket ma a világon több helyen végeznek. Egyik fontos helyszín a Svájc és Franciaország határán m köd LHC Large H adron C ollider []. Itt ugyan többségében proton-proton ütközések folynak, de évente néhány hónapig ólom-ólom ütközések is vannak, illetve 01 elején volt az els aszimmetrikus ütközés, ahol protonokat ólom atommagokkal ütköztettek. ásik fontos helyszíne a nehézion-zikai kísérleteknek a New York államban m köd RHIC Relativistic H eavy I on C ollider []. Itt általában arany-arany ütközéseket végeznek, de itt is voltak már proton-proton ütközések és aszimmetrikus beállítások is, amikor például arany atommagokat deutériummal ütköztettek. Ezek az aszimmetrikus ütközések, illetve a protonproton ütközések fontosak a lejátszódó jelenségek ellen rzésére, hiszen, ha egy jelenséget látunk nehézion-nehézion ütközésben, de nem látjuk proton-proton ütközésben, akkor ennek az egyik lehetséges magyarázata az, hogy a nehézion ütközésben létrejött kvark-gluon plazma okozta a jelenséget. 1.. A nagyenergiás nehézion-zika mérföldkövei Ahhoz, hogy bizonyítottá váljon, hogy a nehézion-zikai ütközésekben valóban létrejön a kvark-gluon plazma, sok kísérletre volt szükség. Ezek közül most röviden bemutatom a legfontosabbakat. Ha a nehézion ütközésben a kvark-gluon plazma létrejön, akkor azt várjuk, hogy az itt keletkez részecskék száma eltér attól, mint ha a proton-proton ütközésben mért részecskeszámot a nehézion ütközésben létrejöv bináris proton, illetve neutron ütközések számával felszoroznánk. Ennek a jellemzésére bevezetjük a mag módosulási faktort: R AA = N AA N bin N pp 1 ahol, N AA a nehézion ütközésben keletkez részecskék száma, N pp a proton-proton ütközésben keletkez részecskék száma és N bin a bináris ütközések száma. A PHENIX kísérletnél megmutatták, hogy centrális ütközésben sokkal kevesebb nagy energiájú hadron keletkezik, mint ha a proton-proton ütközés eredményét megfelel en felskálázzuk, tehát R AA < 1 [4]. Fotonokból azonban éppen annyit látunk, mint amennyit a proton-proton ütközések alapján vártunk volna [5]. Ez azzal magyarázható, hogy az ütközésben egy olyan közeg keletkezik, ami a rajta áthaladó színtöltéssel rendelkez részecskék energiáját elnyeli. A fotonokkal azonban ez a közeg sokkal gyengébben hat kölcsön, mivel a fotonoknak nincs színtöltése, így velük csak a sokkal gyengébb elektromágneses kölcsönhatáson keresztül tud kölcsönhatni. Azt, hogy a jelenség valóban emiatt lép-e fel úgy lehetett leellen rizni, hogy végeztek arany-deuteron ütközéseket is, és itt is megmérték a mag módosulási faktort. A várakozás az volt, hogy, itt a deuteron kis mérete miatt, az elnyel hatás lényegesen kisebb, szinte elhanyagolható, ezért itt a proton-proton ütközésb l származó eredmény érvényes lesz. A mérések valóban ezt mutatták [6], tehát a nehézion

5 ütközésekben valóban egy er sen szín töltésen keresztül kölcsönható közeg jön létre. Ezt a felismerést szokták az els mérföldk nek nevezni. Ezek után azt vizsgálták, hogy a nem teljesen centrális ütközésben keletkez közeg ellipszoid alakja okoz-e asszimmetriát a keletkez hadronok impulzusában. Ahhoz, hogy ezt megvizsgáljuk, be kell vezetnünk a nyaláb irányra mer leges síkban a részecskék helyére jellemz szöget ϕ, és venni kell a keletkez részecskék impulzus-eloszlásának ϕ szerinti Fourier-sorát: Np T, ϕ = Np T 1 v n cosnϕ ahol Np T a p T transzverz impulzusnál keletkez részecskék száma. A fenti képletben a páratlan v n -hez tartozó tagok szimmetria okokból nullát adnak, illetve a szinuszos tagokat már ki sem írtam, mert azok is nullák szimmetria okokból. Azt szeretnénk megvizsgálni, hogy a keletkez közeg aszimmetrikus alakja miatt megjelenik-e asszimmetria a hadronok impulzusában. Ehhez v értékét kell vizsgálni, ami ha a részecskék szabad úthossza nagy, és köztük nincs kölcsönhatás, akkor kicsi, míg, ha a szabad úthossz rövid, tehát van kölcsönhatás a részecskék között, akkor v nagy. Kísérletekb l az derül ki, hogy v értéke nagy [7], tehát a részecskék szabad úthossza kicsi, ami azt jelenti, hogy a keletkezett közegre egyfajta folyadékként gondolhatunk. egvizsgálták v 4 értékét is, amib l arra lehet következtetni, hogy mekkora ennek a folyadéknak a bels súrlódása. A kísérletekb l az derült ki [8], hogy v 4 értéke sem elhanyagolható, ami azt jelenti, hogy a közeg kinematikai viszkozitása nagyon kicsi. Ezt nevezik a nagyenergiás nehézion-zika második mérföldkövének, hogy a nehézion ütközésekben keletkez közegre mint tökéletes folyadékra tekinthetünk. A harmadik mérföldk annak a bizonyítása volt, hogy a létrejöv közegben valóban a kvarkok hordozzák a szabadsági fokokat. Ezt onnan lehet látni, hogy különböz részecskék esetén megvizsgálták v energiafüggését, és azt tapasztalták, hogy a barionok és a mezonok esetén két különböz görbére esnek a mérési pontok [9]. Ha azonban átskálázzuk mind a két tengelyt a részecskét alkotó kvarkok számával, akkor a barionoktól és a mezonoktól származó mérési pontok is ugyanarra az egyenesre fognak esni. Ez magyarázható azzal, ha a mezonok és a barionok egy kvarkok által alkotott közegb l jöttek létre. Azonban ahhoz, hogy valóban ki lehessen jelenteni, hogy a létrejöv közeget kvarkok alkotják meg kellett vizsgálni, hogy a kezdeti h mérséklet elég magas volt-e ahhoz, hogy a hadronok megolvadjanak, és bel lük létrejöjjön a kvarkok alkotta közeg. A kezdeti h mérsékletr l a direkt fotonok mérésével lehet információt szerezni. Ehhez a keletkez fotonok közül meg kell mondani, hogy melyik keletkezett részecskék bomlástermékenként, és melyik volt direkt foton. Ezt a mérést is elvégezték a PHENIX kísérletnél, és azt találták [10], hogy a kezdeti h mérséklet lényegesen nagyobb az elméleti számítások [11] alapján a hadronok megolvasztásához szükséges h mérsékletnél. Összefoglalva tehát azt mondhatjuk, hogy a nehézion ütközésekben létrejön a kvark-gluon plazma, ami egy olyan tökéletes folyadék, amiben a szabadsági fokokat a kvarkok és a gluonok hordozzák. 1.. A PHENIX detektor felépítése A Brookhaveni Nemzeti Laboratórium nehézion ütköztet je New York államban, Long Islanden található, és 000 óta m ködik []. A RHIC-hez eleinte négy kísérlet tartozott a BRAHS, a PHOBOS, a STAR és a PHENIX, amik közül az els kett már teljesítette a tudományos programját, és leállították, a második kett pedig még mindig m ködik. Diplomamunkám során a PHENIX együttm ködés adataival dolgoztam, ezért ezt a kísérletet röviden ismertetem. A PHENIX Pioneering H igh Energy N uclear I nteraction ex periment [1] kísérlet több, mint 4500 tonna tömeg és körülbelül 0 méter hosszú. A detektorok két középs karban és két

6 1. ábra. A PHENIX kísérlet detektorainak elrendezése 01-ben. müon karban helyezkednek el. A két középs karban lév detektorok követik a részecskezikai kísérletek tipikus hagymahéj elrendezését, belül a nyomkövet detektorokkal, majd kívül a kaloriméterekkel. A középs karokon és a müon karokon kívül, a nyalábcs höz közel található még néhány az események karakterizációjához használt detektor is. A detektorok elhelyezése az 1. ábrán látható. A PHENIX esetében a nyomkövetést több detektor végzi, legbelül egy úgynevezett vertex detektor VTX, majd mindkét középs karban egy-egy többszálas drift kamra DC és végül egy-egy többszálas proporcionális kamra PC található. Ezek után egy Cherenkov sugárzást mér detektor RICH következik, ami az elektronok azonosításában játszik fontos szerepet. Kijjebb haladva a nyugati karban kett, a keleti karban pedig egy PC detektor következik, amik, ahogy a bels társaik is, a nyomkövetéshez fontosak. A nyugati karban a két PC között egy másik Cherenkov sugárzás detektor következik, az úgynevezett Aerogel Cherenkov számláló, ami a nagy transzverz impulzusú részecskék azonosítására szolgál. Itt található egy repülési id t mér TOF detektor is, ami ugyancsak a részecskék azonosításában vesz részt. A keleti karban a PC el tt egy többszálas proporcionális kamra található TEC, ami a töltött részecskék pozícióját és impulzusát méri, valamint a részecske azonosításban is szerepe van. Legkívül találhatóak az elektromágneses kaloriméterek, amikb l a PHENIX esetében két fajta létezik, az ólom szcintillátor PbSc és az ólom üveg kaloriméter Pbl. Az ólom szcintillátor egy mintavev típusú kaloriméter, ami ugyan olcsóbb, de rosszabb a felbontása, mint az ólom üveg kaloriméternek, ami pedig homogén típusú. A PHENIX kísérletben három mágnes van, ezek közül egy a középs részben, kett pedig a müon karokban helyezkedik el. A mágneseket azért használják, mert mágneses térben a töltött részecskék ívelt pályán mozognak, és a pálya sugarából a részecskék impulzusa meghatározható. A müon karokban legbelül kaloriméterek találhatóak PC, amik a nagy rapiditású részecskék 4

7 energialeadását mérik. Ezek után következnek a gáztöltés nyomkövet detektorok utr, amik a müonok pályarekonstrukciójában vesznek részt, majd pedig a müonok azonosítására szolgáló detektorok uid. Az azonosítást úgy oldják meg, hogy felváltva vannak elhelyezve a detektorok és acél lemezek, és az acél lemezeken már csak a müonok képesek áthatolni, tehát amelyik részecske nyomot hagy ezekben a detektorokban, az biztosan müon volt. Ezeken a detektorokon kívül nyaláb irányban, közel a nyalábcs höz vannak elhelyezve az esemény jellemzésére szolgáló detektorok. Az ütközés pontjához legközelebb egy Cherenkov sugárzás mér detektor található BBC, ami az ütközés pontos helyét és centralitását méri. Kifelé a következ detektorok a reakció sík meghatározására szolgálnak RPC, majd az ütközés pontjától távolabb kaloriméterek vannak elhelyezve ZDC, amik szintén az ütközés pontos helyének meghatározására, illetve a centralitás mérésére szolgálnak. A ZDV-vel azonos távolságban található egy-egy RPC is a két oldalon, amiknek a feladata azonos a bels társaik feladatával. A detektorok pontos elhelyezése és szerepe a [1] weboldalon megtalálható. 5

8 . Két- és háromrészecske korreláció.1. Általános deníció A n-részecske korreláció azt mutatja meg, hogy milyen valószín séggel keletkezik egy részecske n-es adott k 1, k...k n impulzussal. A pionok közötti két- és háromrészecske korreláció vizsgálatával fontos információt nyerhetünk mind a részecskéket kibocsátó forrás méretér l, mind annak a koherenciájáról. A két és háromrészecske korreláció pontos deníciója a következ [1]: Két részecske: C k 1, k = N k 1, k N 1 k 1 N 1 k N k 1, k, k Három részecske: C k 1, k, k = 4 N 1 k 1 N 1 k N 1 k ahol N k 1, k, k megmutatja, hogy hány részecskehármas keletkezik k 1, k és k impulzussal, N k 1, k, hogy hány részecskepár keletkezik k 1 és k impulzussal és N 1 k 1, hogy hány részecske keletkezik k 1 impulzussal. Két részecske esetében a korrelációs függvény tehát arról ad információt, hogy mennyivel valószín bb az, hogy egy részecskepár keletkezik k 1 és k impulzussal, mint az, hogy két egymással nem kölcsönható részecske keletkezik ugyanilyen impulzussal. Három részecske esetén is hasonló szemléletes jelentést társíthatunk a korrelációs függvénynek. N 1, N és N pontos deníciója a következ : N 1 k 1 = Sx 1, k 1 Ψ 1 x 1, k 1 d 4 x 1 5 N k 1, k = Sx 1, k 1 Sx, k Ψ x 1, x, k 1, k d 4 x 1 d 4 x 6 N k 1, k, k = Sx 1, k 1 Sx, k Sx, k Ψ x 1, x, x, k 1, k, k d 4 x 1 d 4 x d 4 x 7 ahol Sx 1, k 1 az egyrészecske forrásfüggvény, ami azt mutatja meg, hogy milyen valószín séggel keletkezik x 1 helyen és k 1 impulzussal egy részecske, Ψ 1, Ψ és Ψ pedig az egy-, kett - és háromrészecske hullámfüggvény. ivel sem a hullámfüggvények, sem a forrásfüggvények nem id függ ek, ezért a továbbiakban csak a térre vett integrált fogom vizsgálni, és emiatt x helyett r-et fogok használni jelölésként. A hullámfüggvények síkhullám közelítésben a következ módon írhatók fel [14]: Ψ 1 r 1, k 1 = e ik 1r 1 8 Ψ r 1, r, k 1, k = 1 e ik 1r 1 k r e ik 1r k r 1 9 Ψ r 1, r, r, k 1, k, k = 1 6 e i k 1r 1 e i k r e i k 1r 1 e i k 1r 1 e i k r e i k 1r 1 e i k 1r 1 e i k r 1 e i k 1r e i k 1r e i k r 1 e i k 1r 1 e i k 1r 1 e i k r 1 e i k 1r e i k 1r e i k r 1 e i k 1r 1 10 ahol k ij = k i k j / és r ij = r i r j. Két részecske esetén N -ben a forrásfüggvény Fourier transzformáltja jelenik meg, aminek a segítségével a kétrészecske korrelációs függvény a következ alakba írható: Sq, k 1 C k 1, k = 1 Sq, k Sq = 0, k 1 Sq 11 = 0, k 6

9 . ábra. Az ábra a mag és a glória viszonyát szemlélteti. ahol Sq, k 1 a forrásfüggvény Fourier transzformáltja és bevezettem a q = k 1 k jelölést. Az általunk vizsgált részecskék esetében k 1 k, amit ha behelyettesítünk az el z képletbe, és bevezetjük a K = k 1 k / jelölést, akkor a következ t kapjuk: C q, K 1 Sq, K Sq = 0, K 1 C k 1, k, k is hasonló módon számolható, a pontos alakját a következ fejezetben mutatom be... A mag-glória core-halo modell és a parciális koherencia Az ütközésben létrejöv közeget két részre szokták osztani, a magra és a glóriára [15]. A mag az ütközés után közvetlenül kifagyó részecskéket tartalmazza, míg a glória a hosszú élettartamú rezonanciákat és bomlástermékeiket. ábra. A mag és a glória részecskéi más id pontban keletkeznek, így köztük nem lép fel a Bose-Einstein korreláció. Ha tehát sok pion keletkezik a glóriában, akkor lecsökken a korrelációs függvény, mivel ezek a pionok nem korrelálnak a mag pionjaival. Kés bb látni fogjuk, hogy ha a királis U A 1 szimmetria részlegesen helyreáll a kvark-gluon plazmában, akkor ez éppen azt eredményezheti, hogy a glóriában megn a pionok száma. A mag 5 6 fm sugarú, a glória pedig ennél sokkal nagyobb, 60 fm nagyságú. A mag forrásfüggvényér l vannak kísérleti eredményeink, de mivel a glória méretéhez 4 ev/c tartozik, és a detektoraink ilyen kis impulzuskülönbséget nem tudnak felbontani, ezért a glóriáéról nincsenek. Emiatt a korrelációs függvény 1. egyenletbeli alakját úgy szeretnénk átalakítani, hogy csak a mag forrásfüggvényét tartalmazza. A számlálóban a teljes forrásfüggvényt kicserélhetjük a mag forrásfüggvényére, mivel úgy is csak kis q értékeknél ad járulékot a glória hullámfüggvénye, amit kísérletileg úgysem tudunk felbontani. A nevez ben nem ilyen egyszer a helyzet, hiszen ott q = 0-ban szerepel a forrásfüggvény, tehát ott nem tekinthetünk el a glória járulékától. Ahhoz, hogy ott is megtehessük a cserét, bevezetünk egy új paramétert, a λ, -t: C q, K 1 λ, S q, K 7 S q = 0, K 1

10 . ábra. Az ábrán a folytonos vonallal jelzett függvény a valódi korrelációs függvény, a besötétített terület az amit kísérletileg nem látunk és a szaggatott vonal a kísérleti adatokra illesztett korrelációs függvény, aminek a tengelymetszeti paramétere az 1 λ,. Erre a mennyiségre úgy gondolhatunk, mint a korrelációs függvény eektív tengelymetszeti paraméterére, hiszen ha a 1. képletet vizsgáljuk, és q-val tartunk nullához, akkor a korrelációs függvény az 1 λ, értékhez tart. Azért beszélhetünk csak eektív tengelymetszeti paraméterr l, mert ha a 1. egyenletet vizsgáljuk, akkor q = 0-ban a korrelációs függvény értéke kett. Azért van értelme a λ, paraméterre mégis tengelymetszeti paraméterként tekinteni, mivel kis q értékeknél nem tudjuk mérni a korrelációs függvényt. Így a korrelációs függvény tengelymetszetét csak extrapolálással tudjuk meghatározni, ezért tengelymetszetnek nem az egzakt értéket kapjuk meg, hanem az 1 λ, értéket. Ezt szemlélteti a. ábra. Hasonló módon bevezethetünk egy paramétert a háromrészecske korreláció esetén is: C k 1 0, k 0, k 1 0 = 1 λ, 14 Tehát, ha mind a három részecske impulzusainak a különbsége tart nullához, akkor a kísérleti adatokból tengelymetszetként az 1 λ, értéket kapjuk, míg ha a glória járulékát is gyelembe vesszük, akkor a korrelációs függvény a k 1 0, k 0, k 1 0 limeszben hathoz tart. Tehát a kétrészecskés esethez hasonlóan λ, is csak eektív tengelymetszeti paraméter. Ezt szemlélteti a 4. ábra, ahol látható a teljes háromrészecske korrelációs függvény, valamint az az eset, amikor csak a mag járulékát vesszük gyelembe R ind a két eektív tengelymetszeti paraméter felírható a mag aránya és a parciálisan koherens rész aránya segítségével. A mag arányát a következ mennyiséggel szokták jellemezni: f = N N N 15 ahol N és N a mag és a glória részecskéinek a száma. Ha a mag nem termalizált, és emiatt a mag részecskéi nem teljesen kaotikusan keletkeznek, akkor a korrelációs függvény számításakor gyelembe kell venni, hogy vannak koherensen, tehát azonos fázissal keletkez részecskéik is, mivel a koherensen keletkez részecskék nem adnak járulékot a Bose-Einstein korrelációhoz [15]. A mag parciálisan koherens részének jellemzésére a p = N p N 16 mennyiséget szokás használni, ahol N p a magban parciálisan koherensen keletkez részecskék száma. Ha a parciális koherenciát is gyelembe véve kiszámítjuk a λ paraméterek értékét kétés háromrészecske koherenciára, akkor a következ t kapjuk [16]: λ, = f [1 p p 1 p ] 17 8

11 4. ábra. Az ábrán a piros vonal jelzi a teljes korrelációs függvényt, a kék azt, amikor csak a mag járulékát vesszük gyelembe, és a zöld terület a kísérletileg nem felbontható tartományt. A kék vonal tengelymetszete 1 λ,, ami egyértelm en felírható a mag arányával és a mag a koherens részének arányával. λ, = f [1 p p 1 p ] f [1 p p 1 p ] 18 Tehát ha módunkban áll mérni mind λ,, mind λ, értékét, akkor ebb l a kett b l a mag arányát és a mag parciálisan koherens részének arányát is meg tudjuk határozni. Ilyen mérést végeztek is már a PHENIX kísérletnél [17], aminek az eredménye 5. ábrán látható. Ha a magot teljesen kaotikusnak tekinthetjük, tehát p = 0, akkor λ, = f és λ, = f f. Ahhoz, hogy a korrelációs függvényt számolni tudjuk, a forrás alakját meg kell adnunk. A dolgozatomban a forrásfüggvényt két auss-függvény összegével közelítettem, ahol a maghoz tartozó auss-függvény szélessége R, a glóriához tartozóé pedig R volt. A forrásfüggvény pontos alakja a következ [17]: S 1 r 1, k = f πr e / r 1 R 1 f πr e / r 1 R 19 Létezik más lehet ség is a forrásfüggvény alakjára, például a [18] cikk szerint, ha a forrás hosszú élettartalmú rezonancia tartalmát is gyelemebe vesszük, akkor az el z egyenletben a auss-függvény helyett Lévy-függvényt használva pontosabb leírást adhatunk a forrásról. A [19] analízis jegyzetben egy ilyen vizsgálat történt kétrészecske estén. Az eredményeket tehát érdemes több különböz forrásfüggvénnyel megvizsgálni, de ez a vizsgálat túlmutat a jelen dolgozaton. S 1 r, k képletében nem látszik a k függés expliciten, de f, R és R függ az impulzustól. Az egyszer bb jelölés érdekében a továbbiakban nem fogom a k függést kiírni a forrásfüggvény esetében. A két- és háromrészecske korrelációban két, illetve három ilyen forrásfüggvény szor- 9

12 5. ábra. Az ábra a [17] cikkb l származik, és a két- és hárompion korrelációs mérés alapján meghatározott lehetséges tartományt mutatja a mag parciálisan koherens részének és a mag arányának az értékére. zata jelenik meg: S r 1, r =S 1 r 1 S 1 r = = f πr e r 1 r /R 1 f πr e r 1 r /R f 1 f πr R e r 1 /R r /R e r /R r 1 /R 0 S r 1, r, r =S 1 r 1 S 1 r S 1 r = f = πr e r 1 r r /R 1 f 9/ πr e r 1 r r /R 9/ f 1 f e r πr 6/ πr 1 r /R r /R / e r r /R r 1 /R e r 1 r /R r /R f 1 f e r πr 6/ πr 1 r /R r /R / e r r /R r 1 /R e r 1 r /R r /R 1 Ha a 10. és a 1. egyenleteket behelyettesítjük a 7. egyenletbe és kiintegrálunk a térváltozók szerint, akkor a 4. egyenlet alapján a korrelációs függvény pontos alakját meg tudjuk határozni. A függelék A. fejezetében megtalálható a teljes számolás, itt most csak a végeredményt 10

13 ismertetem. Ψ r 1, r, r S 1 r 1, r, r d r 1 d r d r C k 1, k, k 1 = = Sr1, k 1 Ψ 1 r 1 d r 1 Sr, k Ψ 1 r d r Sr, k Ψ 1 r d r ] =1 f [e 4R k e 4R k 1 e 4R k 1 e R k 1 k k 1 [ 1 f e 4R k e 4R k 1 e 4R k 1 e R k 1 k k 1 ] [ f1 f e 4R k 1 e 4R k e 4R k 1 e R R k 1 e R R k e R R k 1 e k 1 R k R k 1 R e k 1 R k R k 1 R e k 1 R k R k 1 R ] f 1 f [e 4R k 1 e 4R k e 4R k 1 e R R k 1 e R R k e R R k 1 e k 1 R k R k 1 R e k 1 R k R k 1 R e k 1 R k R k 1 R ] ivel a korrelációs függvénynek csak azt a tartományát tudjuk mérni, ami R értékére nem érzékeny, ezért az el z képletben elvégezhetjük az R limeszt. ] C k 1, k, k 1 R 1 f [e 4R k e 4R k 1 e 4R k 1 e R k 1 k k 1 [ ] f1 f e 4R k 1 e 4R k e 4R k 1 A forrásfüggvényben is érdekes lehet megvizsgálni az R limeszt, de mivel a korrelációs függvény számításakor az integrálás és a limesz nem felcserélhet, ezért a korrelációs függvényt mindenképpen a teljes forrásfüggvény segítségével kell kiszámolni, majd utána lehet R -vel végtelenhez tartani. Kés bb S r 1, r -nek egy olyan alakját fogom használni, ahol bevezetem a r 1 = r 1 r és a R = r 1 r / változókat, majd R szerint integrálok, ezt fogom S 1 r 1 -nek nevezni. A számolás megtalálható a függelék A.1 fejezetében, és a végeredményt a következ módon lehet felírni: 1 S 1 r 1 =f 4πR f 1 f / e r 1 4R 1 f 1 1 πr R 4πR / e r 1 R R / e r 1 4R 4 S r 1, r, r -nak is egy hasonlóan átalakított alakját fogom használni, ahol el ször bevezetem az r 1 = r 1 r, r = r r és ρ = r 1 r r / változókat, majd ρ szerint kiintegrálom a függvényt, ezt nevezem S 1 r 1, r -nak. A számolás ebben az esetben is megtalálható a 11

14 függelék A.1 fejezetében. f 1 S 1 r 1, r = πr exp 1 R r1 r r 1 r / f1 1 f 4π R R R4 { [ ] R exp r1 R 4R R r 1 R4 r 1 r R R [ ] exp r1 1 R r 1 r R r R R 4R R R4 [ ] } R exp r1 r R R 4R R r 1 r R4 R R R4 / f 1 f 1 4π R R R4 { [ ] R exp r1 R 4R R r 1 R4 r 1 r R R [ ] exp r1 1 R r 1 r R r R R 4R R R4 [ ] } R exp r1 r R R 4R R r 1 r R4 R R R4 1 f 1 1 exp 1 r πr R 1 r r 1 r 5 Tehát a háromrészecske korrelációs függvényben a forrásfüggvényen keresztül megjelenik az f paraméter valamint a forrást jellemz két méret, R és R. Ha tehát tudjuk mérni a teljes korrelációs függvényt, akkor abból ezt a három paramétert illesztéssel meg tudjuk határozni. ivel valójában azt az impulzus régiót, ami a glóriához tartozik nem tudjuk felbontani, ezért az adatokból illesztéssel csak az f és R paraméterek kaphatók meg... A szimmetriák szerepe Ha az u, d és s kvarkokat tömegtelennek tekintjük, akkor a QCD Lagrange-függvénye invariáns a következ csoportra: SU L SU R U A 1 U V 1, ahol L és R a balkezes, illetve a jobbkezes részecskékre utal, A és V pedig az axiál- és vektoráramra. A szimmetria SU L SU R része az úgynevezett királis szimmetria, amit a spektrumon nem látunk, tehát spontán sérül a természetben. A sértést a kvark kondenzátum okozza, és az SU V izospin szimmetria marad a sértés után. A spontán sérülés miatt a oldstone mechanizmus szerint nyolc darab nulla tömeg részecske jelenik meg, ezek a három pion, a négy kaon és az η. A természetben ezek nem nulla, hanem kis tömeg ek 14 ev/c -548 ev/c, hiszen az SU L SU R szimmetria a természetben eleve csak közelít leg áll fent. A szimmetria U V 1 része nem sérül, ez felel s a barionszám megmaradásért. A szimmetria U A 1 része expliciten sérül, ami azt eredményezi, hogy az η bozon sokkal nagyobb tömeg lesz, mint a oldstone-bozonok. A szimmetria sérülése az instantonok miatt történik, amik a QCD topológiai vákuumai közötti alagút-eektusért felel sek. 1

15 Elméleti számolások szerint [0] a királis szimmetria az ütközésekben létrejöv kvark-gluon plazmában részlegesen helyreállhat. Ha ez megtörténik, akkor a kvark-gluon plazmából kifagyó részecskék, többek között az η is, kisebb tömeggel keletkezik. A Hagedorn formula szerint a részecske tömege befolyásolja a keletkezési hatáskeresztmetszetét, még hozzá úgy, hogy ha kisebb tömeggel keletkezik a részecske, akkor több keletkezik bel le. Ez látszik a következ képletb l, ami két Hagedorn formula hányadosa [1]: N η N η m η = m η α m η m η e T cond 6 Itt a csillaggal jelölt mennyiségek a közegbeli értékekre utalnak, a csillag nélküliek pedig a vákuumbelire. A képletben m η az η tömege, N η a létrejöv részecskék száma, T cond az a h mérséklet, ahol az η kifagy és α = 1 d/ a tágulás eektív dimenziója. Ha tehát meg tudnánk mutatni, hogy több η keletkezett, akkor ezzel bizonyítani lehetne a királis szimmetria helyreállását. Az η bozonok 1%-a egy η-n keresztül négy töltött pionra és egy semleges pionra vagy fotonra bomlik el []. Az η a közeg elhagyásakor visszanyeri az eredeti tömegét, emiatt alacsony lesz a transzerz impulzusa, így a bomlásból keletkez pionok transzverz impulzusa is alacsony, átlagosan 18 ev/c lesz. ivel az η egy hosszú élettartamú rezonancia, ezért a bomlásából származó pionok a glóriához tartoznak, emiatt nem korrelálnak a mag pionjaival, így a korrelációs függvény értékét kis transzverz impulzusnál lecsökkentik. Ez azt eredményezi, hogy a korrelációs függvény eektív tengelymetszeti paramétere λ, is lecsökken. A λ, paraméter esetében ezt a lecsökkenést látták is az adatokon 6. ábra, de még nincs bizonyítva, hogy a csökkenést valóban az η bozon lecsökkent tömege okozza. Ha a magnak van koherensen keletkez része az is ilyen csökkenést okoz, tehát a bizonyításhoz el ször meg kell határozni a mag parciálisan koherens részének arányát. Az el z eket a következ módon lehetne összefoglalni: U A 1 szimmetria részeleges helyreállása η lecsökkent tömeggel keletkezik η -k száma megn η η π π π π π 0 π π bomlás Pionok száma megn a glóriában Korrelációs függvény értéke lecsökken A BSc szakdolgozatomban egy olyan módszert dolgoztam ki, aminek a segítségével az η - b l keletkez pionokat ki lehet sz rni a mintából, így az η hatása a korrelációs függvényre vizsgálhatóvá válik []. Ha az η -b l jöv pionok kizárásával elt nik a korrelációs függvény lecsökkenése, akkor a királis szimmetria részleges helyreállását lehetne bizonyítani. A királis szimmetria helyreállása tulajdonképpen az f paraméter értékét változtatja meg, és ezen keresztül befolyásolja a λ, és a λ, paramétereket. Jelen dolgozat célja az, hogy a megvizsgáljam, hogy a kétrészecske korrelációs függvényekb l korábban meghatározott λ, és az általam a háromrészecske korrelációs függvényekb l meghatározott f értékei azonosak-e. Ha azonosak, akkor nincs szükség a mag parciálisan koherens részének vizsgálatára, viszont ha nem azonosak, akkor a parciális koherencia további vizsgálata szükséges ahhoz, hogy a λ, paraméter lecsökkenésének okát meg tudjuk határozni. A STAR kísérlet által készített hárompion korrelációs 1

16 a b 6. ábra. A két ábra a [8] cikkb l származik. Az ábrákon a relatív λ, paraméter látható a transzverz tömeg m T = p T m függvényében négy különböz mérésb l. A relatív λ, paraméter azt jelenti, hogy az értéke normálva van a nagy transzverz tömegnél felvett értékkel. Kis m T értékeknél a λ, értékeke lecsökken, ami az η közegbeli tömegének megváltozásával magyarázható lenne. A vonalak a két ábrán két különböz rezonancia modellel számolt λ, paramétereket mutatják különböz η tömegek mellett. A két különböz rezonancia modell esetében a mag és a glória aránya más, így más eredményt kapunk a λ, paraméterre is. vizsgálatok azt mutatják [4], hogy nem teljesen centrális 1% % ütközések esetén a forrás nem teljesen kaotikus, így további vizsgálatokra szükség van. Az ALICE kísérlet esetén is folyamatban vannak hárompion korrelációs mérések [5, 6], amik a [7] cikkben bemutatott analízissel összehasonlítva magasabb energián is meg fogják tudni adni, hogy szükség van-e a parciális koherencia vizsgálatára. 14

17 . Coulomb-korrekció.1. Deníció Ahhoz, hogy az el z fejezetben részletezett módon a korrelációs függvény mérésével a mag arányáról, illetve a mag parciálisan koherens részének arányáról ismereteket szerezhessünk, tisztán a Bose-Einstein statisztikából származó korrelációt kell vizsgálnunk. Azonban, ha az adatokból elkészítjük a korrelációs függvényt az azonos töltés pionokra, akkor az tartalmazni fogja az azonos töltés miatt fellép Coulomb-eektust is. A célunk az, hogy ezt az eektust eltávolítsuk az adatokból, amit egy iterációs módszer segítségével tehetünk meg. A [1] és a [9] cikkek szerint a Coulomb eektus alakja a következ : Π n i=1 d r i S n r i Ψ 0 k K Coulomb Q n = 1...k i r 1,..., r n 7 Π n i=1 d r i S n r i Ψ C k 1...k i r 1,..., r n ahol Q n = n i<j=1 q i q j. Az el z képlet három részecske esetére felírva: d r 1 d r d r S 1 r 1, r, r Ψ 0 k K Coulomb k 1, k, k 1 = r 1,k,k 1 1, r, r d r 1 d r d r S 1 r 1, r, r Ψ C k r 8 1,k,k 1 1, r, r ahol Ψ C k 1,k,k 1 r 1, r, r a háromrészecske Coulomb hullámfüggvény, Ψ 0 k 1,k,k 1 r 1, r, r pedig a töltés nélküli háromrészecske hullámfüggvény, aminek a szimmetrizált alakját láttuk a 10. egyenletnél. A Coulomb korrekció alakja úgy érthet meg könnyen, ha észrevesszük azt, hogy a teljes korrelációs függvényt a következ alakban lehet felírni: C k 1,k, k 1 = d r 1 d r d r S 1 r 1, r, r Ψ C k = r 1,k,k 1 1, r, r 9 S1 r 1, k 1 Ψ k1 r 1 d r 1 S1 r, k Ψ k r d r S1 r, k Ψ k r d r A csak a Bose-Einstein eektust tartalmazó korrelációs függvényt pedig a következ módon lehet felírni: C k 1,k, k 1 BE = d r 1 d r d r S 1 r 1, r, r Ψ 0 k = r 1,k,k 1 1, r, r 0 S1 r 1, k 1 Ψ k1 r 1 d r 1 S1 r, k Ψ k r d r S1 r, k Ψ k r d r Ennek a kett nek a hányadosa a Coulomb korrekciót adja meg, és a 8. egyenletben éppen ez szerepel. A [14] cikk szerint eljárva a háromrészecske Coulomb hullámfüggvényt nem relativisztikus közelítésben, a három töltött részecskére vonatkozó Schrödinger egyenlet megoldásaként kaphatjuk. Ezt a következ módon írhatjuk fel: H 0 i<j=1 V C ij r ij i=1 k i m i Ψ C k 1,k,k 1 r 1, r, r = 0 1 Itt H 0 a három szabad részecske Hamilton operátora, Vij C r ij a Coulomb potenciál és m i az i-edik részecske tömege. Bár ennek az egyenletnek az aszimptotikus régióban létezik egzakt megoldása, de én egy olyan közelít függvényt használtam, ami a Coulomb-potenciált tartalmazó kétrészecske Schrödinger egyenletet megoldó hullámfüggvényekkel írható fel. Ennek a 15

18 szimmetrizált alakja a következ [14]: Ψ C k 1,k,k 1 r 1, r, r = 1 6 [Ψ C k 1 r 1 Ψ C k r Ψ C k 1 r 1 Ψ C k 1 r 1 Ψ C k r Ψ C k 1 r 1 Ψ C k 1 r 1 Ψ C k r 1 Ψ C k 1 r Ψ C k 1 r Ψ C k r 1 Ψ C k 1 r 1 Ψ C k 1 r 1 Ψ C k r 1 Ψ C k 1 r ] Ψ C k 1 r Ψ C k r 1 Ψ C k 1 r 1 Ebben az egyenletben Ψ C k ij r ij a kétrészecske Schrödinger egyenlet megoldása: r ij Vij C r ij k ij Ψ C k µ ij µ ij r ij = 0 ij ahol µ ij = m i m j /m i m j a redukált tömeg. Ennek az egyenletnek ismerjük az egzakt megoldását, ez a következ : Ψ C k ij r ij = N ij e ik ijr ij F [ iη ij, 1, ik ij r ij k ij r ij ] 4 ahol N ij = e πη ij/ Γ1 iη ij, η ij = e i e j µ ij /k ij, Γx a amma-függvény és F[a,b,x] a konuens hipergeometrikus függvény. Amikor ezt az egyenletet a háromrészecske Coulomb hullámfüggvényéhez használjuk, akkor a következ módosítást kell tennünk [0, 1]: Ψ C k ij r ij = N ij e i/k ijr ij F [ iη ij, 1, ik ij r ij k ij r ij ] 5 A Coulomb hullámfüggvénynek a. egyenletbeli alakjának aszimptotikus viselkedése megegyezik az egzakt megoldás aszimptotikus viselkedésével, de nem veszi gyelembe a korrelációt a három részecske mozgása között, hiszen úgy írtuk fel, mint három nem kölcsönható kétrészecske rendszer összegét... Számolás Ahhoz tehát, hogy tudjuk vizsgálni a Bose-Einstein korrelációt, az adatokból kinyert korrelációs függvényt módosítanunk kell az el z ekben megismert Coulomb korrekcióval. Ezt a következ módon tesszük meg: C k 1, k, k BE = C k 1, k, k K Coulomb k 1, k, k 1 6 ahol a BE index arra utal, hogy a korrelációs függvény csak a Bose-Einstein eektust tartalmazza. A problémát az jelenti, hogy a Coulomb korrekcióban megjelen háromrészecske forrásfüggvény tartalmazza a f, R és R paramétereket, ezért ahhoz, hogy a Coulomb korrekció 8. egyenletbeli alakját ki tudjuk számolni ismerni kell ezek pontos értékét. A paramétereket viszont a tisztán Bose-Einstein eektusokat tartalmazó korrelációs függvény illesztéséb l lehet kinyerni, aminek elkészítéséhez ismerni kell már a Coulomb korrekció mértékét. A három paraméter értékét tehát egy iterációs módszer segítségével kaphatjuk meg. Ezt úgy csináltam, hogy R -t xen tartva f = 0.5 és R = 6 fm értékkel kiszámoltam a Coulomb korrekciót, majd az ezzel módosított korrelációs függvényt illesztettem a. képlettel. Az illesztésb l kapott új f és R értékekkel újból kiszámoltam a Coulomb korrekciót, és ezzel újból módosítottam az 16

19 7. ábra. Az ábra az illesztéshez alkalmazott iteráció lépéseit szemlélteti. adatokat, majd megint illesztettem a korrelációs függvényt. Ezt addig folytattam, amíg a f és R paraméterek új értéke már csak kevesebb, mint 1%-kal tért el az el z értékt l, és ekkor tekintettem úgy, hogy megtaláltam a két paraméter valódi értékét. Ehhez általában két-három iterációs lépés elég volt. R -t azért nem illesztettem, mert a.. fejezetben ismertetett okokból a kísérleti adatok nem érzékenyek az értékére. Az illesztés menetét a 7. ábra szemlélteti. Természetesen illeszthetnénk az adatokat egyb l 6. egyenletben megadott alakkal is, és akkor nem lenne szükség az iterációra, de ez tartalmazza a Coulomb korrekciót, aminek olyan olyan sokáig tart a kiszámolása, hogy emiatt az illesztés túl hosszú ideig tartana. 17

20 4. A korrelációs függvények elkészítése az adatokból 4.1. Az események rekonstruálása A nyers háromrészecske korrelációs függvényeket Nagy árton készítette el a PHENIX kísérletnél 004-ben felvett adatokból, amit Run4-nek szokás nevezni. Ebben az évben arany-arany ütközéseket folytattak s NN = 00 ev-en és 1, 1 milliárd eseményt rögzítettek. Ezek közül millió volt korrelációs mérésekre használható, ezeket dolgoztuk fel a jelen elemzéshez. Az általunk használt események felvételéhez úgynevezett minimum bias triggert használtak, ez az jelenti, hogy akkor rögzítettek egy eseményt, ha a BBC-ben egy küszöbértéknél több beütés volt. Ebben az évben egyedülállóan mind a BBC, mind a ZDC detektorokat használták a centralitás meghatározására. Ugyancsak a BBC detektort használták a nyaláb irányban z irány az ütközés pontos helyének meghatározására is, és egy ütközést akkor tekintünk használhatónak, ha a detektorrendszer középpontjától maximum ±0 cm-re volt az ütközés z irányban. A részecskék impulzusát és az ütközésre mer leges síkban a helyét a DC segítségével, míg a z irányban a helyét a PC1 detektorral lehet rekonstruálni. A részecskék helyén és impulzusán kívül a pionok korrelációjának vizsgálatához szükségünk van részecskeazonosításra is. Ehhez két detektort használtunk a keleti karban lév TOF detektort és a elektromágneses kaloriméterek közül a szcintillátor típusúakat PbSc. A TOF id felbontása 10 ps, amivel ev/c impulzusig tudja a pionokat és a kaonokat szétválasztani. Az elektromágneses kaloriméternek az id felbontása rosszabb ps, így ez a detektor már kisebb impulzusnál sem tudja megkülönböztetni a pionokat és a kaonokat [1]. Azonban azért érdemes mind a kett t használni, mert mint ahogy az 1.. fejezetben láttuk a két detektor úgy van elhelyezve, hogy a térnek különböz részeit fedik le 1. ábra. A részecskék pályájának rekonstruálása úgy megy, hogy a bels detektorokban PC és DC az algoritmus megkeresi az egy pályára illeszthet pontokat, majd ennek a lehetséges pályának a folytatásaként a küls detektorokban PC, TOF és elektromágneses kaloriméter megnézni, hogy hova kéne esnie a beütésnek. A várt beütéshely és a beütés valódi helye közötti z és ϕ távolságokat ϕ a nyaláb irányra mer leges síkban mért szög kiszámítjuk, majd ezekb l hisztogramot készítünk. A mostani analízis esetében azokat fogadtuk el valós pályának, ahol a z és ϕ értékek σ-n belül estek a várható értékt l. Természetesen a szisztematikus hiba pontos feltérképezéséhez meg kell vizsgálni, hogy hogyan változnak az eredmények, ha σ helyett más vágást alkalmazunk, de ez a vizsgálat túlmutat ezen a dolgozaton. Az így kapott pályák közül sem lehetett mindet használni a korrelációs hisztogram elkészítéséhez, mivel fellép két olyan eektus, ami az egymáshoz nagyon közel es pályákat rosszul azonosíthatóvá teszi. Az egyik, amikor két közeli pályát a rekonstruáló algoritmus egynek lát track merging, a másik pedig, amikor egy pályát két közeli pályaként rekonstruál track splitting. Emiatt a két eektus miatt a különböz detektorokban megköveteljük, hogy a pályák egy bizonyos távolságnál jobban elkülönüljenek. A DC detektorban külön z és ϕ irányban alkalmazunk vágást, ez látható a 8. ábrán, ahol a piros területre es pálya párokat nem használjuk a további analízishez ϕ a két pálya ϕ irányú eltérése és z a két pálya z irányú eltérése. A PC1 detektorban azt követeltük meg, hogy a két pálya legalább 8 cm-re térjen el, a TOF-ban azt, hogy legalább 14 cm-re és az elektromágneses kaloriméterben azt, hogy legalább 16 cm-re. Ezeknek az értékeknek a változtatásának a hatását is meg kéne vizsgálni az eredményekre a szisztematikus hiba meghatározásához, de ez is túlmutat az jelen dolgozat keretén. Ezeken kívül még egy vágást kell alkalmazni az adatokra, hiszen van olyan, hogy két valós pályának a TOF detektorban vagy az elektromágneses kaloriméterben egy toronyba tartozik a beütése. Ilyenkor err l nem tudjuk megállapítani, hogy melyik részecske milyen arányban hagyott ott energiát, ezért a két pályát nem használjuk a kés bbiekben. 18

21 8. ábra. A DC detektorban az ábrán pirossal jelzett területre es párokat nem fogadjuk el. 4.. A korrelációs hisztogramok elkészítése Ha az el z ek alapján meghatároztuk az ütközésben keletkezett részecskék összes tulajdonságát, akkor elkészíthetjük a korrelációs hisztogramot. Ehhez minden részecskehármas esetében kiszámoljuk a részecskék impulzus különbségeit és ezekkel egy három dimenziós hisztogramot töltünk fel. A részecskék impulzusának meghatározásához egy olyan koordináta rendszert használtunk, ahol a három részecske teljes impulzusának z komponense nulla, ezt szokás LCS Longitudinal C enter-of- ass S ystem koordináta rendszernek nevezni. Az így elkészített korrelációs hisztogram még tartalmaz különböz detektor eektusokat, illetve a részecskepályákon alkalmazott vágások hatását is, amit l az úgynevezett háttérpár módszerrel lehet megszabadulni. Ez azt jelenti, hogy elkészítünk egy olyan korrelációs hisztogramot, amihez a három részecskét három különböz eseményb l vesszük, így minden minden zikai korrelációt kizárunk, viszont a detektor eektusok és a vágásokból jöv eektusok itt is megjelennek. Természetesen ehhez itt is alkalmazni kell az összes vágást, amit az el z ekben ismertettem. Ez azért nem magától értet d hiszen ha két különböz eseményb l veszünk két részecskét, akkor a rekonstruáló algoritmus azt soha nem fogja egy pályaként rekonstruálni. Azonban ahhoz, hogy ugyanolyan körülményeket tudjunk el állítani a háttér hisztogram készítésekor, mint a valódi hisztogram készítésekor, el kell dobnunk azokat a párokat, ahol nagyon közel esett a két részecske pályája hiába voltak két különböz eseményben. Az általam használt korrelációs hisztogramoknál úgy készült a háttér hisztogram, hogy két részecske két különböz eseményb l lett véve, a harmadik pedig három, az el z kett t l különböz, esemény kombinációjából. Ez azért jobb, mint egyszer en három eseményt venni, mert így nagyobb statisztikával tudunk dolgozni. A háttér hisztogramok elkészítésénél még az is fontos, hogy a felhasznált események centralitása és az eseményekben az ütközés z irányú helye hasonló legyen. Ez azért lényeges, mivel a pályák rekonstrukciója, az impulzus meghatározása és a részecskeazonosítás is er sen függ ezekt l a mennyiségekt l. Az általam használt hisztogramok esetén a háttér hisztogramok úgy készültek, hogy 5%-on belüli centralitás osztályokból származtak az események, és z = ± cm-en belül volt az ütközések helye. Az analízishez a háttér hisztogramokkal leosztjuk a valódi korrelációs hisztogramokat, így a kapott hisztogramok már nem tartalmazzák a detektoreektusokat és a vágásokból jöv eektusokat. 19

22 5. Ellen rzések 5.1. Kétrészecske Els lépésként a kétrészecske korrelációval foglalkoztam. Ez részben arra volt jó, hogy a numerikus számolások programkódját el ször egy egyszer bb esetre tudtam kidolgozni, amivel sok hibalehet séget ki lehetett sz rni, valamint arra, hogy több, kés bb a háromrészecske számolásokkor el kerül, mennyiség numerikus pontosságát már itt könnyebben kontrollálható körülmények között le lehetett ellen rizni. A kétrészecske hullámfüggvény analitikusan is számolható, ezért el ször ennek a numerikusan, az általam írt programmal, számolt értékét hasonlítottam össze az analitikusan a athematica által számolt eredménnyel. A 9a ábrán látható eredmény a 4. képlet alapján numerikusan készült, míg a athematica által számolt eredmény a 9b ábrán látható. A kett között nagyon jó az egyezés, tehát a numerikus számolás jól m - ködik. Ez azért is egy fontos ellen rzés, mert a háromrészecske hullámfüggvény is kétrészecske hullámfüggvényekb l épül fel a. egyenletnek megfelel en. a b 9. ábra. A kétrészecske Coulomb hullámfüggvény abszolút érték négyzete. 9a a numerikusan, programkódból számolt értékeket tartalmazza, 9b pedig a athematicával számolt értékeket k z = 50 ev/c-nél k x = k y = 0. 0

23 10. ábra. A Schrödinger egyenlet teljesülése k = 50 ev/c mellett két részecske esetén. Az ábrán a Laplace operátort tartalmazó tag különbsége látható a másik két tagtól, lenormálva a tagok összegével. Ezek után azt ellen riztem le, hogy az így kiszámolt két részecske Coulomb hullámfüggvény mennyire pontosan teljesíti a. egyenlettel megadott Schrödinger egyenletet. Az eredmény k = 50 ev/c mellett a 10. ábrán látható. A képen a Laplace operátort tartalmazó tag különbsége látható a másik két tagtól, lenormálva a tagok összegével. Látható, hogy a tagok néhány százalékkal térnek csak el egymástól. Ha f = 1-t veszünk, ami azt jelenti, hogy csak a mag járulékát vesszük gyelembe, és R -mel tartunk nullához, akkor a kétrészecske Coulomb korrekció tart az úgynevezett amowfaktorhoz, hiszen ilyenkor a forrásfüggvény a normáláshoz tart, de ez megjelenik a nevez ben és a számlálóban is, tehát a Coulomb korrekció éppen a Coulomb hullámfüggvény normálásnak inverzéhez tart 1/ N, ami pedig éppen a amow-faktor 11. ábra. 5.. Háromrészecske A háromrészecske korrelációk vizsgálatának esetében is a programkód kisebb részeinek ellen rzésével kezdtem. Els lépésként azt akartam leellen rizni, hogy a numerikus integrálás m ködik-e, ezért kiszámoltam a forrásfüggvény integrálját, amir l a normálás miatt tudjuk, hogy egy. Az ellen rzést különböz f és R értékeknél végeztem el. A 1. ábráról látható, hogy az eltérés az egzakt eredményt l néhány százalékon belül van a paraméterek bármilyen értékére. Ez a vizsgálat arra is jó gyakorlat volt, hogy beállítsam, hogy a numerikus integrálás esetében hány lépés kell a megfelel konvergenciához. iután meg voltam elégedve a forrásfüggvény integráljának pontosságával kiszámoltam a Coulomb korrekciót különböz impulzusértékeknél, f = 0.5, R = 4. fm és R = 4.4 fm értékekkel. Ahhoz, hogy leellen rizzem, hogy mekkora a Coulomb korrekció szórása tízszer kiszámoltam minden pontban az értéket 1. ábra. Az els pont kivételével alig van uktuáció, az els pontnak megfelel k = k1 k k1 értéknél viszont még nincsenek kísérleti adataink, tehát nem számít, hogy itt kicsivel nagyobb a uktuáció. A kés bbi számításokhoz szükségem volt a kiszámolt Coulomb korrekció hibájára is. Erre egy fels becslést adtam olyan módon, hogy két pontban k 1 = k = k 1 = 0 ev/c-nél és 100 ev/c-nél kiszámoltam ezer-ezer esetben a Coulomb korrekciót, majd ezekb l hisztogramokat készítettem 14. ábra, és illesztettem mind a kett t egy-egy auss-függvénnyel. Az illesztésb l kapott szórást tekintettem a Coulomb-korrekció hibájának, ez a 100 ev/c-s esetben volt 1

24 11. ábra. A két részecske Coulomb korrekció R függése. Az ábrán szürkével a amowfüggvény látható, és azt várjuk, hogy R 0 fm esetén a Coulomb korrekció ehhez tartson. nagyobb, ezért ezt használtam fels becslésként. Az értéke volt, így ezt tekintettem a Coulomb korrekció hibájának mindenhol. Ezek után megvizsgáltam, hogy a Coulomb korrekció hogyan módosul, ha f értékét változtatom x R = 4. fm és R = 4.4 fm mellett, valamint, ha R értékét változtatom x f = 1 és R = 4.4 fm mellett 15. ábra. A második esetben azt várjuk, hogy R 0 fm esetén a Coulomb korrekció a Riverside-függvényhez tart, ami három amow-függvény szorzataként írható fel. A 15b ábrán a Riverside-függvényt is ábrázoltam, és az eektus valóban jól látható. Fontos feladat volt a Coulomb korrekciót számoló kód gyorsítása is, mivel a teljes korrelációs hisztogram módosításához ezt több ezerszer ki kéne számolni. Egyik gyorsítási módszer az volt, hogy a konuens hipergeometrikus függvényt nem számoltam ki minden esetben, hanem egy bináris fájlból olvastam ki az értékét a számításhoz. ásik gyorsítási módszer az volt, hogy nagy k = k1 k k1 értékeknél az integrál gyorsabban konvergált, ezért k függ vé tettem azt, hogy hány lépést használok a numerikus integrálás elvégzésére. Így végül egy ponton 0 másodpercig tart kiszámolni a Coulomb korrekciót. A gyorsításra az is egy jó módszer lehet, ha három kétrészecske Coulomb korrekció szorzatával tudjuk közelíteni a háromrészecske Coulomb korrekciót. Emiatt megvizsgáltam, hogy a kett mennyire tér el egymástól az átlóban lév binek esetén 16. ábra. ivel itt a különbség csak kis impulzus értékeknél jelent s 10 0 ev/c, ezért ez alapján nagy impulzusoknál lehetne három kétrészecske Coulomb korrekció szorzatával közelíteni a háromrészecske esetet. Ahhoz, hogy ezt valóban megtehessük megvizsgáltam azt az esetet is, amikor k 1, k és k 1 nem azonos nagyságú. Ezt úgy csináltam, hogy k 1 -t és k -t változtattam, és a köztük lév szöget xen tartottam. Öt különböz szög esetén végeztem el a vizsgálatot és három különböz f értéknél. A 17. ábrán a három f érték mellett kétkét szög esetén látható az eltérés. A többi szöget nem ábrázoltam, mivel ezeknél is hasonló eredményeket kaptam. Az ábrákról az látszik, hogy f = 1 esetén az impulzuskülönbségek bármilyen értékénél lehet használni a közelítést, kisebb f esetén azonban csak elég nagy k 1 és k értékeknél ad a három kétrészecske Coulomb korrekció szorzata megfelel en jó közelítést a háromrészecske Coulomb korrekcióra.

25 a b 1. ábra. A forrásfüggvény integráljának eltérése egyt l százalékban f és R függvényében. 1a esetében R = 4. fm, 1b esetében pedig f = 0.5 volt.

26 1. ábra. A Coulomb korrekció uktuációja. inden impulzus értéknél tíz esetben számoltam ki a Coulomb korrekciót, ezek láthatóak azonos színnel az ábrán. Az azonos szín pontok esetén tehát minden paraméter beállítása megegyezik, így a uktuáció csak a numerikus pontatlanságból adódik. A korrekciót úgy számoltam ki, hogy a három részecske impulzuskülönbsége megegyezik, tehát k 1 = k = k ábra. A Coulomb korrekció hibájának meghatározásához készített hisztogram k 1 = k = k 1 = 100 ev/c esetén. 4

27 a b 15. ábra. A Coulomb korrekció f 15a és R 15b függése. Az R függés esetében azt várjuk, hogy R 0 fm esetén a Coulomb korrekció a Riverside-függvényhez tart, ami a 15b ábrán jól meggyelhet. 16. ábra. A háromrészecske Coulomb korrekció és három kétrészecske Coulomb korrekció szorzatának összehasonlítása. Az ábra k 1 = k = k 1 esetben készült. 5

28 a b c d e f 17. ábra. Az ábrán három kétrészecske Coulomb korrekció szorzatának eltérése látható a háromrészecske Coulomb korrekciótól különböz f és α értékeknél α a k 1 és k vektorok által bezárt szöget jelöli. 6

Két- és háromrészecske Bose-Einstein korrelációk mérése a PHENIX detektornál

Két- és háromrészecske Bose-Einstein korrelációk mérése a PHENIX detektornál Eötvös Loránd Tudományegyetem Természettudományi Kar Szakdolgozat Két- és háromrészecske Bose-Einstein korrelációk mérése a PHENIX detektornál Kincses Dániel Fizika BSc III. Témavezet : Csanád Máté ELTE

Részletesebben

Z bozonok az LHC nehézion programjában

Z bozonok az LHC nehézion programjában Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések

Részletesebben

A v n harmonikusok nehézion-ütközésekben

A v n harmonikusok nehézion-ütközésekben A v n harmonikusok nehézion-ütközésekben Bagoly Attila ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014. november 27. Bagoly Attila (ELTE TTK) A v n harmonikusok nehézion-ütközésekben 2014.

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Bose-Einstein korrelációk a nagyenergiás nehézion-zikában

Bose-Einstein korrelációk a nagyenergiás nehézion-zikában Bose-Einstein korrelációk a nagyenergiás nehézion-zikában Kísérleti mag- és részecskezikai szeminárium el adás Kincses Dániel Fizika BSc III. ELTE TTK 2014.10.16. Kincses Dániel (ELTE TTK) Bose-Einstein

Részletesebben

Abszolút és relatív aktivitás mérése

Abszolút és relatív aktivitás mérése Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Részecske azonosítás kísérleti módszerei

Részecske azonosítás kísérleti módszerei Részecske azonosítás kísérleti módszerei Galgóczi Gábor Előadás vázlata A részecske azonosítás létjogosultsága Részecske azonosítás: Módszerek Detektorok ALICE-ból példa A részecskeazonosítás létjogosultsága

Részletesebben

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

A tau lepton felfedezése

A tau lepton felfedezése A tau lepton felfedezése Szabó Attila András ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014.12.04. Tartalom 1 Előzmények(-1973) e-μ probléma e+e- annihiláció kísérletekhez vezető út 2 Felfedezés(1973-1976)

Részletesebben

Háromdimenziós BoseEinstein-korrelációk nehézion-ütközésekben

Háromdimenziós BoseEinstein-korrelációk nehézion-ütközésekben Háromdimenziós BoseEinstein-korrelációk nehézion-ütközésekben Kurgyis Bálint Fizika BSc. III. Témavezet : Csanád Máté ELTE TTK Atomzikai Tanszék 2018. november 12. TUDOMÁNYOS DIÁKKÖRI DOLGOZAT Absztrakt

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. február 23. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2009. március 2. A mérést végezte: Zsigmond Anna Márton Krisztina

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A

Részletesebben

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Kurgyis Bálint. Eötvös Loránd Tudományegyetem, Budapest ELTE,

Kurgyis Bálint. Eötvös Loránd Tudományegyetem, Budapest ELTE, Háromdimenziós Bose Einsteinkorrelációk mérése a PHENIX kísérletnél Kurgyis Bálint Eötvös Loránd Tudományegyetem, Budapest Kísérleti mag és részecskefizika szeminárium ELTE, 018.1.17. A korai Univerzum

Részletesebben

Töltött részecske multiplicitás analízise 14 TeV-es p+p ütközésekben

Töltött részecske multiplicitás analízise 14 TeV-es p+p ütközésekben Töltött részecske multiplicitás analízise 14 TeV-es p+p ütközésekben Veres Gábor, Krajczár Krisztián Tanszéki értekezlet, 2008.03.04 LHC, CMS LHC - Nagy Hadron Ütköztető, gyorsító a CERN-ben 5 nagy kísérlet:

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Részecskefizika kérdések

Részecskefizika kérdések Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-

Részletesebben

A kvarkanyag nyomában nagyenergiás nehézion-fizikai kutatások a PHENIX kísérletben

A kvarkanyag nyomában nagyenergiás nehézion-fizikai kutatások a PHENIX kísérletben A kvarkanyag nyomában nagyenergiás nehézion-fizikai kutatások a PHENIX kísérletben Nagy Márton, Vértesi Róbert MTA KFKI Részecske- és Magfizikai Kutatóintézet, 1121 Budapest, Konkoly Thege Miklós út 29-33.

Részletesebben

Magspektroszkópiai gyakorlatok

Magspektroszkópiai gyakorlatok Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai

Részletesebben

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2. Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ

Részletesebben

Lévy-típusú kétrészecske HBT-korrelációs függvények mérése a PHENIX kísérletben

Lévy-típusú kétrészecske HBT-korrelációs függvények mérése a PHENIX kísérletben Eötvös Loránd Tudományegyetem Természettudományi Kar Diplomamunka Lévy-típusú kétrészecske HBT-korrelációs függvények mérése a PHENIX kísérletben Kincses Dániel Fizikus MSc Témavezet : Csanád Máté ELTE

Részletesebben

Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény

Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény Csanád Máté, Nagy Márton, Lőkös Sándor ELTE Atomfizikai Tanszék Magfizikus Találkozó Jávorkút 2012. szeptember

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

JÁTSSZUNK RÉSZECSKEFIZIKÁT!

JÁTSSZUNK RÉSZECSKEFIZIKÁT! JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Kétrészecske Bose Einstein-korrelációs függvények vizsgálata a STAR kísérletben

Kétrészecske Bose Einstein-korrelációs függvények vizsgálata a STAR kísérletben Kétrészecske Bose Einstein-korrelációs függvények vizsgálata a STAR kísérletben Pintér Roland László Fizika BSc III. Témavezetők: Csanád Máté, Kincses Dániel ELTE TTK Atomfizikai Tanszék 2018 Tudományos

Részletesebben

Két- és háromrészecske kvantumstatisztikus korrelációk a nagyenergiás fizikában Szakdolgozat

Két- és háromrészecske kvantumstatisztikus korrelációk a nagyenergiás fizikában Szakdolgozat Eötvös Loránd Tudományegyetem Természettudományi kar Két- és háromrészecske kvantumstatisztikus korrelációk a nagyenergiás fizikában Szakdolgozat Báskay János Fizika Bsc III Témavezető: Csanád Máté ELTE

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet Modern zikai ks erletek szemin arium Kincses D aniel E otv os Lor and Tudom anyegyetem 2017. február 21. Kincses Dániel (ELTE) A két neutrínó

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31 Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Részecske korrelációk kísérleti mérése Englert Dávid

Részecske korrelációk kísérleti mérése Englert Dávid Részecske korrelációk kísérleti mérése Englert Dávid ELTE szeminárium 2014. december 11. Motiváció nehézion ütközések, vn anizotrópia paraméter Koordináta térben lévő anizotrópia az azimuthális szögben

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Nehézségi gyorsulás mérése megfordítható ingával

Nehézségi gyorsulás mérése megfordítható ingával Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

3. jegyz könyv: Bolygómozgás

3. jegyz könyv: Bolygómozgás 3. jegyz könyv: Bolygómozgás Harangozó Szilveszter Miklós, HASPABT.ELTE 21. április 6. 1. Bevezetés Mostani feladatunk a bolygók mozgásának modellezése. Mint mindig a program forráskódját a honlapon [1]

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

Rádl Attila december 11. Rádl Attila Spalláció december / 21

Rádl Attila december 11. Rádl Attila Spalláció december / 21 Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016. Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell

Részletesebben

Részecskegyorsítókkal az Ősrobbanás nyomában

Részecskegyorsítókkal az Ősrobbanás nyomában Csanád Máté Részecskegyorsítókkal az Ősrobbanás nyomában Zrínyi Ilona Gimnázium Nyíregyháza, 2010. december 10. www.meetthescientist.hu 1 26 Az anyag szerkezete Atomok proton, neutrok, elektronok Elektron

Részletesebben

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

9. Fényhullámhossz és diszperzió mérése jegyzőkönyv

9. Fényhullámhossz és diszperzió mérése jegyzőkönyv 9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

Bevezetés a nehézion-fizikába (Introduction to heavy ion physics)

Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Veres Gábor (CERN-PH és ELTE) Hungarian Teachers Programme CERN, 2015. augusztus 20. vg@ludens.elte.hu Hungarian Teachers Programme, CERN,

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 017. Február 4. V-részecskék 1. A15 felfedezés 1946, Rochester, Butler ezen a képen egy semleges részecske bomlásakor két töltött részecske (pionok) nyoma villa

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

A CERN, az LHC és a vadászat a Higgs bozon után. Genf

A CERN, az LHC és a vadászat a Higgs bozon után. Genf A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása)

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása) Két /-es spinből álló rendszer teljes spinje spinek összeadása Két darab / spinű részecskéből álló rendszert írunk le. Ezek lehetnek elektronok, vagy protonok, vagy akármilyen elemi vagy nem elemi részecskék.

Részletesebben

Atomi er mikroszkópia jegyz könyv

Atomi er mikroszkópia jegyz könyv Atomi er mikroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc III. Mérés vezet je: Szabó Bálint Mérés dátuma: 2010. október 7. Leadás dátuma: 2010. október 20. 1. Mérés leírása A laboratóriumi mérés

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz

Részletesebben

Prímszámok statisztikai analízise

Prímszámok statisztikai analízise Prímszámok statisztikai analízise Puszta Adrián 28. április 18. Kivonat Munkám során a prímszámok és a páros prímek eloszlását, illetve különbségét vizsgáltam, majd ebből következtettem a véletlenszerű

Részletesebben

Fizikai mennyiségek, állapotok

Fizikai mennyiségek, állapotok Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez

Részletesebben

11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek.

11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek. 11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek. Ionizáció Bevezetés Ionizációra minden töltött részecske képes, de az elektront

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses

Részletesebben

Detektorok. Siklér Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest

Detektorok. Siklér Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest Detektorok Siklér Ferenc sikler@rmki.kfki.hu MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest Hungarian Teachers Programme 2008 Genf, 2008. augusztus 19. Detektorok 1970 16 GeV π nyaláb, folyékony

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

NAGY Elemér Centre de Physique des Particules de Marseille

NAGY Elemér Centre de Physique des Particules de Marseille Korai CERN együtműködéseink a kísérleti részecskefizika terén Az EMC és L3 kísérletek NAGY Elemér Centre de Physique des Particules de Marseille Előzmények A 70-es évektől kezdve a CERN meghatározó szerephez

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Határtalan neutrínók

Határtalan neutrínók Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

Nagyenergiás atommag-ütközések térid beli lefolyása. Habilitációs dolgozat

Nagyenergiás atommag-ütközések térid beli lefolyása. Habilitációs dolgozat Nagyenergiás atommag-ütközések térid beli lefolyása Habilitációs dolgozat Csanád Máté Eötvös Loránd Tudományegyetem Atomzikai Tanszék Budapest, 2013 Tartalomjegyzék 1. A nagyenergiás magzika 3 1.1. A nagyenergiás

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben