Modul bevezetése. Matematika 5. osztály A negatív számok modul

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Modul bevezetése. Matematika 5. osztály 2009-2010. A negatív számok 0541. modul"

Átírás

1 Modul bevezetése Matematika 5. osztály A negatív számok modul

2 MODULLEÍRÁS A modul célja Időkeret Korosztály Modulkapcsolódási pontok A képességfejlesztés fókuszai Számfogalom bővítése. A valóság és a matematika elemi kapcsolatainak megismerése. 3 tanóra 5. évfolyam Tágabb környezetben: Természetismeret: vízállás, tengerszint alatti és feletti magasság, hőmérséklet Történelem: időskála. Fizika: olvadás, fagyás. Szűkebb környezetben Ismerkedés a nagy és kicsi számokkal, számírás Alapműveletek a természetes számok körében Megelőző tevékenységek: Természetes számok körében való jártasság: Azonos mennyiségek összehasonlítása. Szöveges feladatok megoldása, becslés, az eredmény összevetése a valósággal. Követő tevékenységek: Egész számok ábrázolása számegyenesen, az egész számok abszolút értéke. Számlálás, számolás: számfogalom bővítése, számlálás az egész számok körében. Becslés, mérés, valószínűségi következtetés: biztos, lehetetlen, lehet, de nem biztos kifejezések használata. Szövegesfeladat-megoldás, problémamegoldás: A valóságos viszonyokat tükröző modellek használata a fogalom kialakítására, ezeknek a viszonyoknak az átfogalmazása számokra, műveletekre és fordítva. Egyszerű szöveges feladatok megoldása. Rendszerezés, kombinativitás: negatív számok előállítása többféleképpen.

3 1. óra Negatív számok fogalmának előkészítése Előzetes feladatként a gyerekek több napon keresztül otthoni hőmérséklet-méréseket végeztek, ezt a 1. feladatlap 1. feladatában található táblázat első három sorában rögzítették. Az órán az adatok összehasonlításra kerültek. 1. FELADATLAP 1. Mérd meg a hőmérsékletet a megadott időpontokban, és írd a mérési eredményedet a megfelelő helyre! Figyeld az időjárás-jelentést (rádióban, tv-ben, napilapban vagy Interneten), és ez alapján írd be a táblázatba a napi minimum és maximum hőmérsékleteket! Napok: H K Sz Cs P Sz V Reggel (7 órai hőmérséklet) Délután (14 órai hőmérséklet) Este (20 órai hőmérséklet) Napi minimum hőmérséklet Napi maximum hőmérséklet 2. Hőmérsékleti adatok A táblázatban található adatokat november elején mérték. Mit tudsz leolvasni a táblázatról? Válaszolj a kérdésekre! Önálló munka 12 óra 14 óra 16 óra Hétfő 4 C 2 C 0 C Kedd 2 C 0 C 2 C Szerda 0 C 1 C 4 C Csütörtök 5 C 6 C 5 C Péntek 3 C 0 C 1 C a) Melyik nap volt a leghidegebb? b) Hogyan változott a hőmérséklet az egyes napokon? Jelöld nyilakkal! c) Melyik napokon csökkent a hőmérséklet 4ºC-kal 4 óra alatt?

4 d) Melyik napon változott legkevesebbet a hőmérséklet? Ekkor csökkent vagy nőtt a hőmérséklet? e) 14 órakor melyik napon volt a leghidegebb? Hány fok volt ezen a napon? f) Szerdán hány órakor volt a leghidegebb? Hány fok volt ekkor? 3. Miért van szükség negatív számokra? Frontális, irányított beszélgetés A gyakorlati életben szükség van a negatív számokra, pl. az alábbi területeken: Hőmérséklet Adósság Tengerszinthez viszonyított magasság Épület szintek Évszámok 4. A hőmérő modell A tanulók kartonra hőmérő modellt készítenek, szorgalmi házi feladatként táblai, mozgatható modell is készült. Mennyi lesz a hőmérséklet? A hőmérő leolvasásának gyakorlása. A negatív számok jelölésének bevezetése 5. Az adósság-vagyon modell A tanulók felelevenítik az alsó tagozatban megismert négyzet, kör jelölést. A táblai modell alapján határozzák meg a vagyoni helyzetet. Páros munka: piros-kék korongokkal rakjanak ki adott vagyoni helyzetet többféleképpen. Értékelés Hf: mf 58/9c, 59/10

5 2. óra A negatív számok fogalma Házi feladat ellenőrzése, a problémák megbeszélése 1. Motivációs játékok: Ellentétes irányú mozgások. Szervezhetünk kétféle tevékenységet Saját testi mozgással követik a gyerekek az ellentétes irányú mozgásokat, ha párban egymásnak háttal állnak, és követik az utasításokat: 2 lépés előre, 5 lépés hátra, negyed fordulat jobbra, 1 lépés jobbra Rajzolás párban: Négyzetrácsos lapon haladjanak a gyerekek. Induljanak egy pontból, amit az egyik rajzol, azt a társa kövesse ellentétes irányban! 2. A hőmérő modell Mf 2. feladat Olvasd le, mit mutatnak a hőmérők! Figyeld meg, hogy melyik hőmérő mutat pozitív és melyik negatív hőmérsékletet! Jelöljétek a hőmérőkön a szövegben található hőmérsékleteket, aztán jelöljétek nyíllal, hogyan változott egyik napról a másikra a hőmérséklet! 3. Egész számok számegyenesen Jelöld a számok helyét azon a számegyenesen, amelyiken pontosabban tudod jelölni! 2, 5, 10, 0, 7, 3, 8, 35, 20 Mely számok helyét jelölik a betűk? (A: 7; B: 4; D: 4; E: 9) Mely számok helyét jelölik a betűk? (F: 70; G: 40; H: 10; I: 30; J: 40)

6 4. Egész számok ellentettje Keressünk olyan számokat, amelyek egyenlő távol vannak a nullától! Az ellentett fogalmának bevezetése Az ellentett jelölése 5. Egész számok rendezése Jelöld meg az időszalagon a feltüntetett eseményeket! Viszonyítsd az éveket a jelenlegi évhez! 0 most Születésed. Iskolakezdésed. Testvéreid születése. 9. évfolyamos leszel. Felnőtté válsz. Használd az időszalagot! a) Olvass le eseményeket az időszalagról! Ki élt előbb, Hannibál vagy Nagy Sándor? Nagy Sándor több, mint 100 évvel előbb élt. b) Sorold fel az időszalagról az időszámítás előtt élt személyeket! Nagy Sándor, Hannibál. c) Jelöld az időszalagon az alábbi eseményeket: a Spartacus vezette rabszolgafelkelés körülbelül Kr. e. 72-ben. a magyar honfoglalás Pitagorasz kora körülbelül Kr. e d) Körülbelül mennyi idő telt el Pitagorasz kora és a magyarok honfoglalása között? Körülbelül 1400 év. És azóta? A honfoglalás óta körülbelül 1000 év; Pitagorasz korától körülbelül 2500 év.

7 3. óra Az abszolút érték fogalma Házi feladat ellenőrzése, a problémák megbeszélése 1. Motivációs játék: Minden tanuló húz egy történelmi évszámot, majd beállnak időrendbe. Az évszámokat a táblára helyezik fel. 2. Ábrázolás a számegyenesen Jelöld a számok körülbelüli helyét a számegyenesen! a) 15; 20; 5; 8; 25; 13; a 9 ellentettje; a 6 ellentettje; a 10 ellentettjének az ellentettje; a 12 ellentettjének az ellentettje. b) Melyik számokat jelöltük a számegyeneseken?

8 3.Az abszolút érték Keressünk olyan számokat, amelyek egyenlő távol vannak a nullától! Az abszolút érték fogalmának bevezetése Az abszolút érték jelölése 4. Kukás játék Keverd össze az alábbi számkártyákat: 20, 19,, 0,, 20, 21! Húzz 5 számot a kártyák közül! Minden húzás után írd a kihúzott számot valamelyik vonalra! Ha valamelyik kihúzott számnak már nincs jó helye, azt dobd a kukába! A cél, hogy minél kevesebb szám kerüljön a kukába! < < < < 5. Differenciált munka A tanulók önkéntesen helyezik el nevüket a táblán lévő csoportokba. A csoport: a) Írd le számmal a jelölt abszolút értékeket! 5 = 5 10 = 10 0 = 0 5 = = = 200 b) Melyik az a szám, amelynek abszolút értéke 7: 7; 7 12: 12; 12 0: 0 c) Melyik igaz (i), melyik nem igaz (n)? 1. Egy szám abszolút értéke nem lehet negatív szám. i 2. Egy szám abszolút értéke biztosan pozitív. n, a 0 nem pozitív 3. Nincs olyan szám, amelynek negatív lenne az abszolút értéke. i 4. Negatív számnak pozitív az abszolút értéke. i 5. Pozitív számnak negatív az abszolút értéke. n 6. A szám nem lehet negatív, ha az abszolút értéke pozitív. n Töltsd ki a táblázatot! x ; 6 4; 4 3; 3 10 x ; 6 4; 4 3; 3 10 x x x x + x x + x

9 B csoport: Milyen egész számokat írhatunk a négyszögek helyére, hogy igaz állításokat kapjunk? a) < 5 : 4, 3, 2, 1, 0, 1,... b) 5 < < 5 : 4, 3, 2, 1, 0, 1, 2, 3, 4 c) < 5 : 4, 3, 2, 1, 0, 1, 2, 3, 4 d) 5 < < 5 : 4, 3, 2, 1, 0, 1, 2, 3, 4 5. A számegyenes melyik szakaszán vannak azok az egész számok, amelyek igazzá teszik a nyitott mondatot? Kösd mindegyik nyitott mondathoz a megfelelő ábrát! 1 < 6 6 < < 6 < 6 5 < < 5 6. Lépkedj a számegyenesen, és válaszolj a szövegben megfogalmazott kérdésekre! a) Gabi 3 órával ezelőtt úgy döntött, hogy 5 óra múlva elmegy a barátnőjéhez. Mennyi idő múlva indul Gabi? 2 óra múlva b) Anya már 2 órával ezelőtt azt mondta, hogy 1 óra múlva itthon lesz. Mennyit késett az ígért időponthoz képest Anya? 1 órát c) Ha Tomi még egy óráig bírja az edzést, akkor ma 3 órát edz egyfolytában. Mikor kezdett Tomi edzeni? 2 órával ezelőtt d) Ancsát már 6 évvel ezelőtt felvették a főiskolára. Legfeljebb hány éve dolgozik már Ancsa, ha a főiskola befejezéséig még nem volt munkaviszonya? Úgy tudom, hogy a főiskolán 8 félév után lehet diplomát kapni. 2 éve 6. Ellenőrzés, értékelés, házi feladat

10

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN

2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN Matematika A 9. szakiskolai évfolyam 2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN MATEMATIKA A 9. szakiskolai évfolyam 2. modul: MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN Tanári útmutató 2 A modul célja Időkeret

Részletesebben

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! Matematika A 9. szakiskolai évfolyam 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! MATEMATIKA A 9. szakiskolai évfolyam 1. modul:gondolkodjunk, RENDSZEREZZÜNK! Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

0567. MODUL TÖRTEK. Törtekről tanultak összefoglalása KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN

0567. MODUL TÖRTEK. Törtekről tanultak összefoglalása KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN 07. MODUL TÖRTEK Törtekről tanultak összefoglalása KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN 07. Törtek Törtekről tanultak összefoglalása Tanári útmutató MODULLEÍRÁS A modul célja Időkeret

Részletesebben

17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK

17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK MATEMATIK A 9. évfolyam 17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK KÉSZÍTETTE: DARABOS NOÉMI ÁGNES Készítette: Darabos Noémi Ágnes Matematika A 9. évfolyam. 17. modul: EGYENLETEK,

Részletesebben

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr.

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr. Matematika A 9. szakiskolai évfolyam 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA Készítették: Vidra Gábor és Koller Lászlóné dr. MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 11. modul: EGYENLETEK, EGYENLŐTLENSÉGEK

Részletesebben

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 16. modul EGYBEVÁGÓSÁGOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 16. modul: EGYBEVÁGÓSÁGOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Hány darab? 5. modul

Hány darab? 5. modul Hány darab? 5. modul Készítette: KÖVES GABRIELLA 2 Hány darab? A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Tapasztalati úton ismerkedés az adat fogalmával. Tapasztalatszerzés az

Részletesebben

16. modul: ALGEBRAI AZONOSSÁGOK

16. modul: ALGEBRAI AZONOSSÁGOK MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN

4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN MATEMATIK A 9. évfolyam 4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN KÉSZÍTETTE: DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN Tanári útmutató 2 A modul célja Időkeret

Részletesebben

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Matematika A 9. szakiskolai évfolyam 4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIKA A 9. szakiskolai évfolyam 4. modul: EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

13. modul: MÁSODFOKÚ FÜGGVÉNYEK MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

18. modul: STATISZTIKA

18. modul: STATISZTIKA MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret

Részletesebben

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul: Egyenes arányosság és a lineáris függvények Tanári útmutató 2 A

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 1. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 1. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 1. osztályos tankönyvhöz és munkafüzethez Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9 A kiadó a kiadói jogot fenntartja. Felelõs

Részletesebben

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 13. modul SZÖVEGES FELADATOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 13. modul: SZÖVEGES FELADATOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott

Részletesebben

ÓRAVÁZLAT. Az óra címe: Ismeretek a kis számokról. Osztály. nyújtott 1. évfolyam első év A tanóra célja

ÓRAVÁZLAT. Az óra címe: Ismeretek a kis számokról. Osztály. nyújtott 1. évfolyam első év A tanóra célja ÓRAVÁZLAT Az óra címe: Ismeretek a kis számokról Készítette: Nagy Istvánné Osztály nyújtott 1. évfolyam első év A tanóra célja Tudatos észlelés, megfigyelés és a figyelem fejlesztése, pontosítása. Tapasztalatszerzés

Részletesebben

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

DIAGNOSZTIKUS MÉRÉS. 33. modul

DIAGNOSZTIKUS MÉRÉS. 33. modul Matematika A 3. évfolyam DIAGNOSZTIKUS MÉRÉS 33. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 33. modul DIAGNOSZTIKUS MÉRÉS MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal

Részletesebben

Matematika. 1. évfolyam. I. félév

Matematika. 1. évfolyam. I. félév Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése

Részletesebben

Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat

Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat 4765 Csenger, Ady Endre u. 13-17.Tel.: 44/341-135, Tel./Fax.:341-806 www.csengeriskola.sulinet.hu E-mail:petofi-sandor@csengeriskola.sulinet.hu

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

0541. MODUL EGÉSZ SZÁMOK. Negatív számok fogalma és modelljei. Készítette: Humenyánszkyné Hegedűs Hajnalka, Zsinkó Erzsébet Fotó, ábra: Kámán Balázs

0541. MODUL EGÉSZ SZÁMOK. Negatív számok fogalma és modelljei. Készítette: Humenyánszkyné Hegedűs Hajnalka, Zsinkó Erzsébet Fotó, ábra: Kámán Balázs 0541. MODUL EGÉSZ SZÁMOK Negatív számok fogalma és modelljei Készítette: Humenyánszkyné Hegedűs Hajnalka, Zsinkó Erzsébet Fotó, ábra: Kámán Balázs 0541. Egész számok Negatív számok fogalma és modelljei

Részletesebben

Bevezető Kedves Negyedik Osztályos Tanuló!

Bevezető Kedves Negyedik Osztályos Tanuló! Bevezető Kedves Negyedik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a kezedben, amely hasonlóan az I. kötethez segítségedre lesz a tankönyvben tanultak gyakorlásához. Reméljük, örömödet

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással

Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással Ismeretek, tananyagtartalmak Négyzet, téglalap tulajdonságai A kerület

Részletesebben

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 14. modul GEOMETRIAI ALAPFOGALMAK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 14. modul: GEOMETRIAI ALAPFOGALMAK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret

Részletesebben

Műveletek egész számokkal

Műveletek egész számokkal Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

KOMPETENCIAFEJLESZTŐ PÉLDÁK, FELADATOK

KOMPETENCIAFEJLESZTŐ PÉLDÁK, FELADATOK 5. osztály KOMPETENCIAFEJLESZTŐ PÉLDÁK, FELADATOK A SOKSZÍNŰ MATEMATIKA TANKÖNYVCSALÁD TANKÖNYVEIBEN ÉS MUNKAFÜZETEIBEN A matematikatanítás célja és feladata, hogy a tanulók az őket körülvevő világ mennyiségi

Részletesebben

TANMENETJAVASLAT. Matematika. 1. osztály

TANMENETJAVASLAT. Matematika. 1. osztály TANMENETJAVASLAT Matematika 1. osztály 2 1. Tájékozódás a tanulók készségeirôl, képességeirôl Játék szabadon adott eszközökkel Tk. 5. oldal korongok, pálcikák építôkockák GONDOLKODÁSI MÛVELETEK ALAPOZÁSA

Részletesebben

TANMENETJAVASLAT. Matematika. 2. osztály

TANMENETJAVASLAT. Matematika. 2. osztály TANMENETJAVASLAT Matematika 2. osztály 2 1. Ismerkedés a 2. osztályos matematika tankönyvvel és gyakorlókönyvvel Tankönyv Gyakorlókönyv 2. Tárgyak, személyek a megadott szempont szerint (alak, szín, nagyság).

Részletesebben

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 15. modul SÍKIDOMOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 15. modul: SÍKIDOMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

3. OSZTÁLY A TANANYAG ELRENDEZÉSE Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek

Részletesebben

0564. MODUL TÖRTEK. Törtek egyszerűsítése, bővítése KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN

0564. MODUL TÖRTEK. Törtek egyszerűsítése, bővítése KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN 0. MODUL TÖRTEK Törtek egyszerűsítése, bővítése KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN 0. Törtek Törtek egyszerűsítése, bővítése Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott

Részletesebben

A fejlesztés várt eredményei a 1. évfolyam végén

A fejlesztés várt eredményei a 1. évfolyam végén A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;

Részletesebben

0622. MODUL EGÉSZ SZÁMOK. Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET

0622. MODUL EGÉSZ SZÁMOK. Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET 0622. MODUL EGÉSZ SZÁMOK Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET 0622. Egész számok Szorzás és osztás egész számokkal Tanári útmutató 2 MODULLEÍRÁS

Részletesebben

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul: Az abszolútérték-függvény és más nemlineáris függvények

Részletesebben

TERÜLETMÉRÉS ALKALMI EGYSÉGGEL Mennyit ér a kézfogásod?

TERÜLETMÉRÉS ALKALMI EGYSÉGGEL Mennyit ér a kézfogásod? MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul TERÜLETMÉRÉS ALKALMI EGYSÉGGEL Mennyit ér a kézfogásod? Készítette: Schmittinger Judit MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul: TERÜLETMÉRÉS

Részletesebben

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek. Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN. 10. modul TESTRÉSZEINK! Készítette: Schmittinger Judit

MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN. 10. modul TESTRÉSZEINK! Készítette: Schmittinger Judit MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul TESTRÉSZEINK! Készítette: Schmittinger Judit MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul: TESTRÉSZEINK 2 A modul célja Időkeret Ajánlott

Részletesebben

EGÉSZ SZÁMOK. 36. modul

EGÉSZ SZÁMOK. 36. modul Matematika A 3. évfolyam EGÉSZ SZÁMOK 36. modul Készítette: zsinkó erzsébet matematika A 3. ÉVFOLYAM 36. modul EGÉSZ számok MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből

Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

TÖMEGMÉRÉS ÖSSZEHASONLÍTÁSSAL KOFÁK A PIACON

TÖMEGMÉRÉS ÖSSZEHASONLÍTÁSSAL KOFÁK A PIACON MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 5. modul TÖMEGMÉRÉS ÖSSZEHASONLÍTÁSSAL KOFÁK A PIACON Készítette: Schmittinger Judit MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 5. modul: TÖMEGMÉRÉS KOFÁK

Részletesebben

HOSSZÚSÁGMÉRÉS SZABVÁNY MÉRTÉKEGYSÉGGEL Paradicsom paprika

HOSSZÚSÁGMÉRÉS SZABVÁNY MÉRTÉKEGYSÉGGEL Paradicsom paprika MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 3. modul HOSSZÚSÁGMÉRÉS SZABVÁNY MÉRTÉKEGYSÉGGEL Paradicsom paprika Készítette: Schmittinger Judit MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 3. modul:

Részletesebben

HŐTÉRKÉP AZ OSZTÁLYUNKRÓL

HŐTÉRKÉP AZ OSZTÁLYUNKRÓL HŐTÉRKÉP AZ OSZTÁLYUNKRÓL Cél: Tudatosítsuk a gyerekekben, hogy az osztályterem hőmérséklete hatással van szervezetünkre, koncentrálóképességünkre, komfortérzetünkre. Ismertessünk meg a tanulókkal olyan

Részletesebben

Óravázlat Matematika. 1. osztály

Óravázlat Matematika. 1. osztály Óravázlat Matematika 1. osztály Készítette: Dr. Jandóné Bapka Katalin Az óra anyaga: Számok kapcsolatai, számpárok válogatása kapcsolataik szerint Osztály: 1. osztály Készség-és képességfejlesztés: - Megfigyelőképesség

Részletesebben

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám 71358932434 71457472261 71605522862 71650660111 71660992975 71665377048 71679875605 71768484518 71768486497 71769281879 71833697122 71872475320 71943429914 71959440135 71959443861 2015-01-17 10:00 9. évfolyam

Részletesebben

Matematika. 1. osztály. 2. osztály

Matematika. 1. osztály. 2. osztály Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Elsõ félév Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 0 ÖSSZEHASONLÍTÁS Húzd át azokat, amelyek nincsenek a fenti képen! Karikázz be annyit,

Részletesebben

Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk.

Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk. Óravázlat 2. osztályos matematika Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk. Oktatási cél: Pénzhasználat, pénzváltás. Játék a játékpénzzel párokban. Megismerési képességek

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

TEMATIKUSTERV MATEMATIKA 2. évfolyam Készítette: Kőkúti Ágnes

TEMATIKUSTERV MATEMATIKA 2. évfolyam Készítette: Kőkúti Ágnes JEWISH COMMUNITY KINDERGARTEN, SCHOOL AND MUSIC SCHOOL ZSIDÓ KÖZÖSSÉGI ÓVODA, ÁLTALÁNOS ISKOLA, KÖZÉP- ISKOLA ÉS Tantárgy: Matematika Évfolyam: 2. A csoport megnevezése: Kulcs osztály Készítette: Kőkúti

Részletesebben

AZ IDŐ MÚLÁSÁNAK ÉRZÉKELTETÉSE 1 perc

AZ IDŐ MÚLÁSÁNAK ÉRZÉKELTETÉSE 1 perc MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 8. modul AZ IDŐ MÚLÁSÁNAK ÉRZÉKELTETÉSE 1 perc Készítette: Schmittinger Judit MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 8. modul: AZ IDŐ MÚLÁSÁNAK ÉRZÉKELTETÉSE

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál. Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi

Részletesebben

0545. MODUL EGÉSZ SZÁMOK. A műveletek tulajdonságai az egész számok körében. Készítette: Zsinkó Erzsébet

0545. MODUL EGÉSZ SZÁMOK. A műveletek tulajdonságai az egész számok körében. Készítette: Zsinkó Erzsébet 0545. MODUL EGÉSZ SZÁMOK A műveletek tulajdonságai az egész számok körében Készítette: Zsinkó Erzsébet 0545. Egész számok A műveletek tulajdonságai az egész számok körében Tanári útmutató 2 MODULLEÍRÁS

Részletesebben

HOSSZÚSÁGMÉRÉS ÖSSZEHASONLÍTÁSSAL ÁLLATI LEGEK

HOSSZÚSÁGMÉRÉS ÖSSZEHASONLÍTÁSSAL ÁLLATI LEGEK MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 3. modul HOSSZÚSÁGMÉRÉS ÖSSZEHASONLÍTÁSSAL ÁLLATI LEGEK Készítette: Schmittinger Judit MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 3. modul: HOSSZÚSÁGMÉRÉS

Részletesebben

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes

Részletesebben

0621. MODUL EGÉSZ SZÁMOK. Mit tudunk az egész számokról? KÉSZÍTETTE: ZSINKÓ ERZSÉBET

0621. MODUL EGÉSZ SZÁMOK. Mit tudunk az egész számokról? KÉSZÍTETTE: ZSINKÓ ERZSÉBET 621. MODUL EGÉSZ SZÁMOK Mit tudunk az egész számokról? KÉSZÍTETTE: ZSINKÓ ERZSÉBET 621. Egész számok Mit tudunk az egész számokról? Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

0563. MODUL TÖRTEK. Törtek összehasonlítása KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN

0563. MODUL TÖRTEK. Törtek összehasonlítása KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN 0. MODUL TÖRTEK Törtek összehasonlítása KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA MALMOS KATALIN 0. Törtek Törtek összehasonlítása Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet

Részletesebben

Óravázlat. Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel. A természetes szám fogalmának mélyítése a számtulajdonságok megfigyelésével.

Óravázlat. Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel. A természetes szám fogalmának mélyítése a számtulajdonságok megfigyelésével. Óravázlat Tantárgy: Matematika Osztály: BONI Széchenyi István Általános Iskola 1. e Tanít: Dr. Szudi Lászlóné Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel Kiemelt kompetenciák: Matematika

Részletesebben

Követelmény a 6. évfolyamon félévkor matematikából

Követelmény a 6. évfolyamon félévkor matematikából Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Elsõ félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 03 ÉV ELEJI ISMÉTLÉS Figyeld meg a fenti képet! Döntsd el, hogy igaz vagy hamis az

Részletesebben

Egész számok értelmezése, összehasonlítása

Egész számok értelmezése, összehasonlítása Egész számok értelmezése, összehasonlítása Mindennapi életünkben jelenlevő ellentétes mennyiségek kifejezésére a természetes számok halmazát (0; 1; 2; 3; 4; 5 ) ki kellett egészítenünk. 0 +1, +2, +3 +

Részletesebben

Szegő Gábor Matematikaverseny 6. évfolyam

Szegő Gábor Matematikaverseny 6. évfolyam Szegő Gábor Matematikaverseny 6. évfolyam A verseny időpontja: 2017. november 16. Kedves Versenyző! Szeretettel köszöntünk versenyünkön! Kérlek, figyelmesen olvasd el a feladatokat, majd kövesd az utasításokat!

Részletesebben

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY MATEMATIK A 9. évfolyam 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ. Rendszerezés, kombinativitás. Induktív gondolkodás általánosítás. megtalálása különböző szövegekben.

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ. Rendszerezés, kombinativitás. Induktív gondolkodás általánosítás. megtalálása különböző szövegekben. Társadalmi Megújulás Operatív Program Kompetencia alapú oktatás, egyenlő hozzáférés - Innovatív intézményekben TÁMOP 3.1.4-08/2. - 2009-0094 " Oktatásfejlesztés Baja Város Önkormányzata által fenntartott

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

Matematikai kompetencia fejlesztése. Összeállította: Székelyhidiné Ecsedi Ibolya

Matematikai kompetencia fejlesztése. Összeállította: Székelyhidiné Ecsedi Ibolya Matematikai kompetencia fejlesztése Összeállította: Székelyhidiné Ecsedi Ibolya Matematikai kompetencia Készségek Gondolkodási képességek Kommunikációs képességek Tudásszerző képességek Tanulási képességek

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN. 4. modul. TÖMEGMÉRÉS Sherpa. Készítette: Schmittinger Judit

MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN. 4. modul. TÖMEGMÉRÉS Sherpa. Készítette: Schmittinger Judit MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 4. modul TÖMEGMÉRÉS Sherpa Készítette: Schmittinger Judit MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 4. modul: TÖMEGMÉRÉS SHERPA 2 MODULLEÍRÁS A modul célja

Részletesebben

Hasonlítsd össze! Melyik nagyobb, mennyivel? Tedd ki a jelet!

Hasonlítsd össze! Melyik nagyobb, mennyivel? Tedd ki a jelet! 49. modul 1. melléklet 2. évfolyam tanítói fólia és tanuló Hasonlítsd össze! Melyik nagyobb, mennyivel? Tedd ki a jelet! 26 + 33 25 + 33 12 + 35 12 + 31 62 + 15 63 + 14 43 26 53 26 35 13 35 15 62 18 72

Részletesebben

Idôpontok és idôtartamok ÁPRILIS. április 3 Csütörtök. 2 Szerda. 4 Péntek. 1 év = 12 hónap 1 hét = 7 nap. Ismerkedés a naptárral. hónapok.

Idôpontok és idôtartamok ÁPRILIS. április 3 Csütörtök. 2 Szerda. 4 Péntek. 1 év = 12 hónap 1 hét = 7 nap. Ismerkedés a naptárral. hónapok. Idôpontok és idôtartamok étfő Ismerkedés a naptárral 1 edd 2 rda 3 ütörtök 4 éntek 5 6 Szombat Vasárnap ÁRILIS étfô edd rda ütörtök éntek Szombat Vasárnap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Részletesebben

IDŐMÉRÉS AZ IDŐ MÚLÁSA

IDŐMÉRÉS AZ IDŐ MÚLÁSA MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 11. modul IDŐMÉRÉS AZ IDŐ MÚLÁSA Készítette: Schmittinger Judit MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 11. modul: IDŐMÉRÉS AZ IDŐ MÚLÁSA 2 A modul célja

Részletesebben

MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN

MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 1. MODUL: IDŐBEN A TÉRBEN TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.

Részletesebben

TÁMOP-3.1.4. C-14-2015-0086 Élmények és tevékenységek kincsestára az Ászári Jászai Mari Általános Iskolában

TÁMOP-3.1.4. C-14-2015-0086 Élmények és tevékenységek kincsestára az Ászári Jászai Mari Általános Iskolában 1. nap 2015. augusztus 24. (hétfő) Téma: Kapcsolatok(család, barátok, munkahely..) 7.30 Gyülekező, aktuális téma, napi programok megbeszélése, előkészítése, csoportfelosztás 8.00 Reggeli 8.30 Nyelvi foglalkozás

Részletesebben

Kompetencia alapú matematika óra: tanulásban akadályozott tanulók számára

Kompetencia alapú matematika óra: tanulásban akadályozott tanulók számára Kompetencia alapú matematika óra: tanulásban akadályozott tanulók számára Idő 4 perc 5 perc Tantárgy: matematika Évfolyam 5. évfolyam Tananyag: 7-es szorzó bennfoglaló tábla felépítése Tanóra jellege:

Részletesebben

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást? 1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?

Részletesebben

ISKOLÁD NEVE:... Az első három feladat feleletválasztós. Egyenként 5-5 pontot érnek. Egy feladatnak több jó megoldása is lehet. A) 6 B) 8 C) 10 D) 12

ISKOLÁD NEVE:... Az első három feladat feleletválasztós. Egyenként 5-5 pontot érnek. Egy feladatnak több jó megoldása is lehet. A) 6 B) 8 C) 10 D) 12 2. OSZTÁLY 1. Mennyi az alábbi kifejezés értéke: 0 2 + 4 6 + 8 10 + 12 14 + 16 18 + 20 A) 6 B) 8 C) 10 D) 12 2. Egy szabályos dobókockával kétszer dobok. Mennyi nem lehet a dobott számok összege? A) 1

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

HŐMÉRSÉKLET MÉRÉSE Hőmérő a testem

HŐMÉRSÉKLET MÉRÉSE Hőmérő a testem MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 11. modul HŐMÉRSÉKLET MÉRÉSE Hőmérő a testem Készítette: Schmittinger Judit MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 11. modul: HŐMÉRSÉKLET MÉRÉSE HŐMÉRŐ

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.

Részletesebben

Matematika 6. osztály Osztályozó vizsga

Matematika 6. osztály Osztályozó vizsga Matematika 6. osztály Osztályozó vizsga 1. Számok és műveletek 1. A tízes számrendszer Számok írása, olvasása, ábrázolása Az egymilliónál nagyobb természetes számok írása, olvasása. Számok tizedestört

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

MATEMATIKA C 8. évfolyam 9. modul HOL A VÉGE?

MATEMATIKA C 8. évfolyam 9. modul HOL A VÉGE? MATEMATIKA C 8. évfolyam 9. modul HOL A VÉGE? Készítette: Surányi Szabolcs MATEMATIKA C 8. ÉVFOLYAM 9. HOL A VÉGE? TANÁRI ÚTMUTATÓ A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A

Részletesebben

1. Halmazok, számhalmazok, alapműveletek

1. Halmazok, számhalmazok, alapműveletek 1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza

Részletesebben

HOSSZÚSÁGMÉRÉS Mennyit nőttem?

HOSSZÚSÁGMÉRÉS Mennyit nőttem? MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 1. modul HOSSZÚSÁGMÉRÉS Mennyit nőttem? Készítette: Schmittinger Judit MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 1. modul: HOSSZÚSÁGMÉRÉS MENNYIT NŐTTEM?

Részletesebben