Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor"

Átírás

1 Bináris keresőfa Felépítés, alapvető műveletek előadás Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar

2 Bináris keresőfa Rekurzív típusok, fa adatszerkezet Bejárás és keresés Beszúrás művelete Törlés művelete

3 3 Fa definíciója Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek: létezik egy kitüntetett csomópont: a gyökér (root) a gyökértől különböző minden más c csomópont egy éllel van összekötve a szülőjéhez a fa összefüggő: bármely nem-gyökér csomóponttól kiindulva a szülőkön keresztül a gyökérhez eljutunk Gráfelmélet alapján fa definíciója: olyan gráf, amelyik összefüggő, nem tartalmaz kört

4 4 Alapfogalmak Ha (v, w) E, akkor v-t a w szülőjének, w-t pedig a v gyerekének nevezzük u F=(V,E) Ha u-ból vezet út w-be, akkor u a w őse, w az u leszármazottja Ha u w, akkor valódi ős illetve leszármazott v w x s y z Valódi leszármazottal nem rendelkező csomópont a fa levele Egy s csomópont az összes leszármazottjával együtt F részfáját alkotja. Ennek gyökere s Erdő: Fák együtteséből álló irányított gráf

5 5 Fa további jellemzői Csomópont mélysége: a gyökértől a hozzá elvezető út hossza Csomópont magassága: annak az innen kiinduló útnak a hossza, amelyik a leghosszabb a levelekig vezető utak közül Fa magassága: a gyökér magassága Csomópont szintje: a fa magassága a csomópont mélysége

6 6 Rekurzív típusok Az adatszerkezetek egy része jól leírható egy rekurzív szerkezettel is, ami fizikailag hasonló tárolást, de egészen más algoritmusokat eredményezhet TLista = Struktúra(tartalom, következő) A lista rekurzív értelmezése szerint minden eleme felfogható egy tartalom résszel, és egy másik (a következő mutató által mutatott elemmel kezdődő) listával rendelkező szerkezetként TFa = Struktúra(tartalom, fák) Egy fa egy eleme leírható egy tartalom résszel, és további részfákkal rendelkező struktúrával TBinárisFa = Struktúra(tartalom, balfa, jobbfa) A bináris fa egy olyan fa, amely legfeljebb két másik fát tartalmazhat

7 7 Bináris fa eleme Bináris fa egy elemének a definíciója: TBinFaElem = Struktúra(tartalom, balgyerek, jobbgyerek) Tartalom mező mező neve: tart típusa: T ez a típus lehet a láncolt listához hasonlóan egyszerű típus összetett típus objektum referencia Gyerek hivatkozások mezők nevei: bal és jobb ezek típusa: M ez a típus a láncolt listához hasonlóan implementációfüggő itt is használunk egy speciális üres jelet ( ) Egy gyökér nevű külső változó hivatkozik a fa első elemére A csomóponton belül egyéb mezők is lehetnek, pl. gyakran tároljuk a szülő címét is

8 8 Példa bináris fára Aritmetikai kifejezés fa: gyökér + * 2 / x - y 10 6 z Értelmezése Levelek: operandusok Csomópontok: operátorok Fenti kifejezés: (x + (y 10)) * 2 * (6 / z)

9 9 Bináris keresőfa eleme Bináris keresőfa (BST) egy elemének a definíciója: TBinFaElem = Struktúra(kulcs, tartalom, balgyerek, jobbgyerek) Kulcs tulajdonság tulajdonság neve: kulcs típusa: K ez a tulajdonság a láncolt listához hasonlóan lehet külön mező a tartalom egy része maga a tartalom Kulcs alapján rendezett: a fa minden r csomópontjára igaz, hogy r baloldali részfája legfeljebb r.kulcs nagyságú, r jobboldali részfája pedig legalább r.kulcs nagyságú kulcsokat tartalmaz A rendezés természetesen lehet fordított is Későbbi algoritmusainkban feltételezzük a kulcsok egyediségét

10 10 Példa bináris keresőfára Egész számokat tároló keresőfa, ahol kulcs = tartalom: Megjegyzések: gyökér az ábrákon mindig azonos kulcsot és tartalmat feltételezünk, de az algoritmusokban ezeket külön kezeljük a későbbiekben a záró -eket nem jelöljük, az algoritmusokban azonban számítunk ezekre üres fa esetén: gyökér =

11 Bináris keresőfa Rekurzív típusok, fa adatszerkezet Bejárás és keresés Beszúrás művelete Törlés művelete

12 12 Bináris fa bejárások Bejárás: az adatszerkezet valamennyi elemének egyszeri elérése (feldolgozása) A láncolt listához hasonlóan a bejárás algoritmusa független a végrehajtandó tevékenységtől, ezért ez utóbbira csak utalást teszünk Mivel a láncolt listával ellentétben egy elemből több irányba is tovább lehet lépni, többféle bejárás is elképzelhető A csomópontokban található adatok (tartalom, bal, jobb) feldolgozásának sorrendje alapján három fő változat különböztethető meg (ezen belül a bal és jobb megcserélhető): Preorder bejárás: tartalom, bal, jobb Inorder bejárás: bal, tartalom, jobb Postorder bejárás: bal, jobb, tartalom Valójában mindhárom algoritmus azonos sorrendben éri el az elemeket, csak a feldolgozás ideje különböző Itt nem használjuk ki a rendezettséget, tehát a kulcs-nak nincs szerepe

13 Preorder bejárás 13 Preorder bejárás algoritmusa eljárás PreorderBejárás(p) ha p akkor FELDOLGOZ(p.tart) Bejárás indítása PreorderBejárás(p.bal) PreorderBejárás(p.jobb) elágazás vége eljárás vége PreorderBejárás(gyökér) rekurzió teljes fa bejárása PreorderBejárás(p) részfa bejárása Gyakorlati alkalmazás: fa elmentése

14 Inorder bejárás 14 Inorder bejárás algoritmusa eljárás InorderBejárás(p) ha p akkor InorderBejárás(p.bal) Bejárás indítása FELDOLGOZ(p.tart) InorderBejárás(p.jobb) elágazás vége eljárás vége InorderBejárás(gyökér) rekurzió teljes fa bejárása InorderBejárás(p) részfa bejárása Gyakorlati alkalmazás: elemek elérése rendezés szerinti sorrendben (növekvő vagy csökkenő)

15 Preorder bejárás 15 Postorder bejárás algoritmusa eljárás PostorderBejárás(p) ha p akkor PostorderBejárás(p.bal) Bejárás indítása PostorderBejárás(p.jobb) FELDOLGOZ(p.tart) elágazás vége eljárás vége PostorderBejárás(gyökér) rekurzió teljes fa bejárása PostorderBejárás(p) részfa bejárása Gyakorlati alkalmazás: fa felszabadítása

16 16 Keresés bináris keresőfában Az általános keresés (tetszőleges feltételnek megfelelő tartalom keresése) az előzőleg megismert bejárások segítségével valósítható meg Megadott kulcsú elem keresésekor már ki tudjuk használni a fa rendezettségét: a fa gyökérelemének kulcsa vagy egyenlő a keresett kulccsal, vagy egyértelműen meghatározza, hogy melyik részfában kell a keresést folytatni Ez ugyanúgy igaz a teljes bináris fa gyökérelemére, illetve bármelyik (a keresés során elért) részfájának gyökerére A rekurzív keresés menete (p gyökerű (rész)fában keressük az x-et) triviális megoldás ha p üres, akkor x nincs a fában ha p kulcsa x, akkor megtaláltuk indukció ha p kulcsa kisebb mint x, akkor x-et a jobb részfában, ha p kulcsa nagyobb mint x, akkor a bal részfában keressük.

17 Keresés algoritmusa 17 Kulcs alapján keresés függvény Keresés(p, kulcs) ha p akkor ha p.kulcs > kulcs akkor vissza Keresés(p.bal, kulcs) különben különben ha p.kulcs < kulcs akkor vissza Keresés(p.jobb, kulcs) különben vissza p.tart elágazás vége hiba nincs ilyen kulcs elágazás vége függvény vége Átlagos lépésszám (kiegyensúlyozott fában): O(log 2 n) Ez azonban jelentősen függ a fa felépítésétől

18 Bináris keresőfa Rekurzív típusok, fa adatszerkezet Bejárás és keresés Beszúrás művelete Törlés művelete

19 19 Beszúrás bináris keresőfába A beszúrás során az elem beláncolásán kívül ügyelnünk kell a keresőfa tulajdonság fenntartására is Ugyanazok az elemek többféleképpen is elhelyezkedhetnek egy bináris keresőfában, beszúráskor ez alapján több stratégiánk is lehet minél kisebb erőforrásigényű legyen a beszúrás minél kiegyensúlyozottabb legyen a fa a beszúrás(ok) után Mi olyan beszúrást használunk, ahol nem kell átmozgatni a már meglévő elemeket az új elem felvételekor A rekurzív beszúrás menete (p gyökerű (rész)fába szúrjuk az x-et) triviális esetek ha p üres, akkor új x kulcsú csomópontot veszünk fel, ami a gyökér lesz ha p nem üres, és a kulcsa x, akkor hibát jelzünk indukció ha p kulcsa kisebb mint x, akkor x-et a jobb részfába, ha p kulcsa nagyobb mint x, akkor a bal részfába szúrjuk be.

20 Beszúrás algoritmusa 20 Új elem beszúrása eljárás Beszúrás(címsz. p, kulcs, érték) ha p = akkor p LÉTREHOZ(M) p.kulcs kulcs; p.tart érték; p.bal ; p.jobb különben ha p.kulcs > kulcs akkor Beszúrás(p.bal, kulcs, érték) különben ha p.kulcs < kulcs akkor Beszúrás(p.jobb, kulcs, érték) különben hiba már van ilyen kulcs elágazás vége elágazás vége elágazás vége eljárás vége

21 Bináris keresőfa Rekurzív típusok, fa adatszerkezet Bejárás és keresés Beszúrás művelete Törlés művelete

22 22 Törlés bináris keresőfából A törlés során az elem kiláncolásán kívül ügyelnünk kell a keresőfa tulajdonság fenntartására is Törlés során az alábbi problémák merülhetnek fel két gyerekkel rendelkező elem mindkét gyerekét nem tudjuk az ő szülőjének egy mutatójára rákapcsolni gyökérelem törlése A rekurzív törlés menete (p gyökerű (rész)fából töröljük az x-et) triviális esetek ha p üres, akkor hibát jelzünk ha p nem üres, és a kulcsa x, akkor töröljük, majd helyreállítjuk a BST-t indukció ha p kulcsa kisebb mint x, akkor x-et a jobb részfából, ha p kulcsa nagyobb mint x, akkor a bal részfából töröljük. A BST helyreállítás menete attól függ, hogy hány gyereke van p-nek Egy sincs (levél) Egy gyerek Két gyerek

23 23 BST tulajdonság helyreállítása 1. eset Ebben az esetben a törlendő csúcspont egy levél, tehát nincsenek gyerek elemei Itt elhagyjuk a törlendő kulcsot tartalmazó elemet, a szülő megfelelő mutatóját pedig -ra állítjuk Pl. töröljük a 70-et

24 24 BST tulajdonság helyreállítása 2. eset A törlendő csúcspontnak csak egy bal vagy csak egy jobb oldali gyereke van Ilyenkor a láncolt listákhoz hasonlóan ki tudjuk láncolni a törlendő kulcsot tartalmazó elemet Pl. töröljük a 60-at

25 25 BST tulajdonság helyreállítása 3. eset Ilyenkor a törlendő csúcspontnak bal és jobb oldali gyereke is van Ebben az esetben a szükséges lépések: Megkeressük a baloldali részfa legjobboldalibb elemét Ennek tartalmát és kulcsát felmásoljuk a törlendő elembe Majd ezt az elemet töröljük (ennek biztos nincs jobboldali gyereke) Pl. töröljük az 50-et

26 26 Törlés algoritmusa Megadott kulcsú elem törlése eljárás Törlés(címsz. p, kulcs) ha p akkor ha p.kulcs > kulcs akkor Törlés(p.bal, kulcs) különben ha p.kulcs < kulcs akkor Törlés(p.jobb, kulcs) különben ha p.bal = akkor q = p; p p.jobb; FELSZABADÍT(q) különben ha p.jobb = akkor q = p; p p.bal; FELSZABADÍT(q) különben TörlésKétGyerek(p, p.bal) elágazás vége elágazás vége elágazás vége elágazás vége különben hiba Nincs ilyen elem elágazás vége eljárás vége

27 Törlés algoritmus két gyerek kezelése 27 eljárás TörlésKétGyerek(e, címsz. r) ha r.jobb akkor TörlésKétGyerek(e, r.jobb) különben e.tart r.tart e.kulcs r.kulcs q r r r.bal FELSZABADÍT(q) elágazás vége eljárás vége Baloldali részfa legjobboldalibb elemének megkeresése, és ennek tartalmával felülírjuk a törlendő elemet Ez tulajdonképpen a törlendőnél kisebb kulcsok közül a legnagyobb Ezt megtehetjük, hiszen ez biztosan nagyobb, mint a baloldali elemek és biztosan kisebb, mint a jobboldali elemek

28 28 Miért használjuk? A bináris fa előnyei rendezett ebből adódóan gyors keresés relatív gyors elem felvétel relatív gyors elem törlés, legrosszabb esetben sincs szükség a fa nagy részének átalakítására a csomópontok tartalma gyakran egy más adatszerkezet elemére mutat: ideális indexelésre kiegészítő adatszerkezetként A bináris fa hátrányai bonyolult, lásd bejárások rekurzióval a műveletek költségesek, illetve maga a rekurzió az OOP nyelvekben gyakran életidegen módon jelenik meg elemek nem érhetőek el közvetlenül (sőt, maga az indexelés sem egyértelmű, csak a bejárás módjával együtt) a gyors keresés nem garantált, csak kiegyensúlyozott fákban valósul meg a két gyerek címe miatt nagy lehet egy elem helyfoglalása

29 29 Kiegyensúlyozatlan fák problémája Vizsgáljuk meg az alábbi kettő, adattartalom szempontjából azonos, de szerkezetileg más fákat keresés szempontjából A jobboldali (elfajult) fa keresési szempontból nem ideális, láncolt listához hasonló lépésszámot igényel Egyéb fa szerkezetek: piros-fekete fa, B-fa

30 30 Kiegyensúlyozottság Kiegyensúlyozott fa: legfeljebb egy szintnyi (mélység) eltérés van az egyes (azonos szinten található) részfái között Teljesen kiegyensúlyozott fa: minden csúcsából leágazó bal- és jobboldali részfa csúcsainak száma legfeljebb egyel különbözik egymáshoz képest Teljes fa: Minden csúcsból leágazó bal- és jobboldali részfa csúcsainak száma azonos Célunk: a módosító algoritmusok kiegészítése, hogy minél inkább kiegyensúlyozott (az előző oldalon látható bal oldalihoz hasonló) fák építésére törekedjenek Ennek egy lehetséges megoldása, ha a beszúrás és törlés után a fa szerkezetét megváltoztatjuk, például forgatásokkal

31 31 Forgatás Forgatás: olyan lokális művelet, amely megváltoztatja a fa szerkezetét, de megőrzi a rendezettséget Megkülönböztetünk balra-, illetve jobbraforgatás műveletet eljárás Balra-forgat(x) y x.jobb x.jobb y.bal ha y.bal akkor y.bal.szülő x elágazás vége y.szülő x.szülő ha x.szülő = akkor gyökér y különben ha x.szülő.bal = x akkor x.szülő.bal = y különben x.szülő.jobb = y elágazás vége elágazás vége y.bal x x.szülő y eljárás vége

32 32 Piros-fekete fa Piros-fekete fa: Olyan bináris keresőfa, amely rendelkezik az alábbi tulajdonságokkal: minden csúcs színe piros vagy fekete minden levél színe fekete minden piros csúcsnak mindkét gyereke fekete bármely két, azonos csúcsból kiinduló és levélig vezető úton ugyanannyi fekete csúcs van (fekete magasság) Megvalósítással kapcsolatos megjegyzések: a BST struktúrát kiegészítjük egy új attribútummal, ami jelzi a színt (értéke csak piros vagy fekete lehet) az egyszerűbb algoritmusok miatt tároljuk a csomópontok szüleit is (a gyökérpont esetén ezt -el jelöljük) az egyszerűbb algoritmusok miatt a tartalommal külön nem foglalkozunk, feltételezzük, hogy amennyiben a kulcsot átmásoljuk, az mindig a kulccsal együtt mozog

33 33 Piros-fekete fa példa Piros-fekete fa Megjegyzés: levélnek a nem ábrázolt értékeket tekintjük (ezek kötelezően feketék) Megközelítőleg kiegyensúlyozott: biztosítható, hogy bármely, a gyökértől levélig vezető út hossza nem nagyobb, mint a legrövidebb ilyen út hosszának a kétszerese

34 34 Irodalomjegyzék Javasolt/felhasznált irodalom Aho, Hopcroft, Ulmann: Számítógép-algoritmusok tervezése és analízise, Műszaki Könyvkiadó, 1982 Cormen, Leiserson, Rivest: Algoritmusok, Műszaki Könyvkiadó, 1997 Knuth: A számítógép programozás művészete 3. kötet. Keresés és rendezés, Műszaki Könyvkiadó, 1988 Kotsis, Légrádi, Nagy, Szénási: Többnyelvű programozástechnika, Panem Könyvkiadó, 2007 Pap, Szlávi, Zsakó: μlógia27 Módszeres programozás: Rekurzív típusok, ELTE TTK, 1998 Szénási: Algoritmusok, adatszerkezetek II., Óbudai Egyetem, 2014

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok

Részletesebben

Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek:

Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek: Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás Piros-fekete fa B-fa 2 Fa

Részletesebben

- Levelek: operandusok - Csomópontok: operátorok. Fenti kifejezés: (x+ (y 10)) * (6 / z) Bináris Keresőfa (BST) Példa bináris keresőfára.

- Levelek: operandusok - Csomópontok: operátorok. Fenti kifejezés: (x+ (y 10)) * (6 / z) Bináris Keresőfa (BST) Példa bináris keresőfára. Fák Fa definíciója Fa(Tree): csomópontok(nodes) halmaza, amelyeket élek(edges) kötnek össze, és teljesülnek az alábbi feltételek: - létezik egy kitűntetett csomópont: a gyökér (root) - a gyökértől különböző

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás. Szénási Sándor

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás.  Szénási Sándor Láncolt listák Egyszerű, rendezett és speciális láncolt listák előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Láncolt

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 07

Algoritmusok és adatszerkezetek gyakorlat 07 Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet

Részletesebben

Programozás II. előadás

Programozás II. előadás Nem összehasonlító rendezések Nem összehasonlító rendezések Programozás II. előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Programozás II. 2 Rendezés

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú

Részletesebben

Elemi adatszerkezetek

Elemi adatszerkezetek 2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

10. előadás Speciális többágú fák

10. előadás Speciális többágú fák 10. előadás Adatszerkezetek és algoritmusok előadás 2018. április 17., és Debreceni Egyetem Informatikai Kar 10.1 A többágú fák kezelésére nincsenek általános elvek, implementációjuk elsősorban alkalmazásfüggő.

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek:

A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek: A programozás alapjai 1 Dinamikus adatszerkezetek:. előadás Híradástechnikai Tanszék Dinamikus adatszerkezetek: Adott építőelemekből, adott szabályok szerint felépített, de nem rögzített méretű adatszerkezetek.

Részletesebben

Hierarchikus adatszerkezetek

Hierarchikus adatszerkezetek 5. előadás Hierarchikus adatszerkezetek A hierarchikus adatszerkezet olyan < A, R > rendezett pár, amelynél van egy kitüntetett r A gyökérelem úgy, hogy: 1. r nem lehet végpont, azaz a A esetén R(a,r)

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 8. előadás (Horváth Gyula anyagai felhasználásával) Kereső- és rendezőfák Közös tulajdonságok: A gyökérelem (vagy kulcsértéke) nagyobb vagy egyenlő minden tőle balra levő elemnél. A

Részletesebben

file:///d:/okt/ad/jegyzet/ad1/b+fa.html

file:///d:/okt/ad/jegyzet/ad1/b+fa.html 1 / 5 2016. 11. 30. 12:58 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes

Részletesebben

Gráfok. Programozás II. előadás. Szénási Sándor.

Gráfok. Programozás II. előadás.   Szénási Sándor. Gráfok előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Tárolási módok Szélességi bejárás Mélységi bejárás Legrövidebb

Részletesebben

6. előadás. Kiegyensúlyozottság, AVL-fa, piros-fekete fa. Adatszerkezetek és algoritmusok előadás március 6.

6. előadás. Kiegyensúlyozottság, AVL-fa, piros-fekete fa. Adatszerkezetek és algoritmusok előadás március 6. 6. előadás, AVL-fa, piros-fekete fa Adatszerkezetek és algoritmusok előadás 2018. március 6.,, és Debreceni Egyetem Informatikai Kar 6.1 Általános tudnivalók Ajánlott irodalom: Thomas H. Cormen, Charles

Részletesebben

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás. Szénási Sándor

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás.  Szénási Sándor Hasító táblázatok Hasító függvények, kulcsütközés kezelése előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Felépítése

Részletesebben

7 7, ,22 13,22 13, ,28

7 7, ,22 13,22 13, ,28 Általános keresőfák 7 7,13 13 13 7 20 7 20,22 13,22 13,22 7 20 25 7 20 25,28 Általános keresőfa Az általános keresőfa olyan absztrakt adatszerkezet, amely fa és minden cellájában nem csak egy (adat), hanem

Részletesebben

Rekurzió. Működése, programtranszformációk. Programozás II. előadás. Szénási Sándor.

Rekurzió. Működése, programtranszformációk. Programozás II. előadás.   Szénási Sándor. Rekurzió Működése, programtranszformációk előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Rekurzió Rekurzió alapjai Rekurzív

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

file:///d:/apa/okt/ad/jegyzet/ad1/b+fa.html

file:///d:/apa/okt/ad/jegyzet/ad1/b+fa.html 1 / 6 2018.01.20. 23:23 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes tananyagának

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Rendezések. Összehasonlító rendezések

Rendezések. Összehasonlító rendezések Rendezések Összehasonlító rendezések Remdezés - Alapfeladat: Egy A nevű N elemű sorozat elemeinek nagyság szerinti sorrendbe rendezése - Feltételezzük: o A sorozat elemei olyanok, amelyekre a >, relációk

Részletesebben

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia

Részletesebben

Láncolt listák Témakörök. Lista alapfogalmak

Láncolt listák Témakörök. Lista alapfogalmak Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök

Részletesebben

Keresőfák és nevezetes algoritmusaikat szemléltető program

Keresőfák és nevezetes algoritmusaikat szemléltető program EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Algoritmusok és Alkalmazásaik Tanszék Keresőfák és nevezetes algoritmusaikat szemléltető program Témavezető: Veszprémi Anna Mestertanár Szerző: Ujj László

Részletesebben

Algoritmusok és adatszerkezetek II.

Algoritmusok és adatszerkezetek II. Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 3. Kiegyensúlyozott keresőfák A T tulajdonság magasság-egyensúlyozó

Részletesebben

Egyirányban láncolt lista

Egyirányban láncolt lista Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten

Részletesebben

Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal:

Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal: Buborékrendezés: For ciklussal: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábr.: ha p egy mutató típusú változó akkor p^ az általa mutatott adatelem, p^.adat;p^.mut. A semmibe mutató ponter a NIL.Szabad

Részletesebben

7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet

7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet 7. BINÁRIS FÁK Az előző fejezetekben már találkoztunk bináris fákkal. Ezt a központi fontosságú adatszerkezetet most vezetjük be a saját helyén és az általános fák szerepét szűkítve, csak a bináris fát

Részletesebben

Láncolt listák. PPT 2007/2008 tavasz.

Láncolt listák. PPT 2007/2008 tavasz. Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt

Részletesebben

Eseménykezelés. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor.

Eseménykezelés. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor. Eseménykezelés előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Függvénymutatókkal Származtatással Interfészekkel Egyéb

Részletesebben

Láncolt Listák. Adat1 Adat2 Adat3 ø. Adat1 Adat2 ø Adat3

Láncolt Listák. Adat1 Adat2 Adat3 ø. Adat1 Adat2 ø Adat3 Láncolt Listák Adatszerkezetek Adatszerkezet: Az adatelemek egy olyan véges halmaza, amelyben az adatelemek között szerkezeti összefüggések vannak Megvalósítások: - Tömb, Láncolt lista, Fa, Kupac, Gráf,

Részletesebben

Hierarchikus adatszerkezetek

Hierarchikus adatszerkezetek Hierarchikus adatszerkezetek A szekveniális adatszerkezetek általánosítása. Minden adatelemnek pontosan 1 megelőzője van, de akárhány rákövetkezője lehet, kivéve egy speciális elemet. Fa (tree) Hierarchikus

Részletesebben

Példa 30 14, 22 55,

Példa 30 14, 22 55, Piros-Fekete fák 0 Példa 14, 22 55, 77 0 14 55 22 77 Piros-Fekete fák A piros-fekete fa olyan bináris keresőfa, amelynek minden pontja egy extra bit információt tartalmaz, ez a pont színe, amelynek értékei:

Részletesebben

Kupac adatszerkezet. 1. ábra.

Kupac adatszerkezet. 1. ábra. Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Absztrakt adatstruktúrák A bináris fák

Absztrakt adatstruktúrák A bináris fák ciós lámpa a legnagyobb élettartamú és a legjobb hatásfokú fényforrásnak tekinthető, nyugodtan mondhatjuk, hogy a jövő fényforrása. Ezt bizonyítja az a tény, hogy ezen a területen a kutatások és a bejelentett

Részletesebben

15. A VERSENYRENDEZÉS

15. A VERSENYRENDEZÉS 15. A VERSENYRENDEZÉS A versenyrendezés (tournament sort) a maximum-kiválasztó rendezések közé tartozik, ugyanis az elemek közül újra és újra kiválasztja (eltávolítja és kiírja) a legnagyobbat. Az eljárás

Részletesebben

Információs Technológia

Információs Technológia Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió

Részletesebben

Adatszerkezetek 1. előadás

Adatszerkezetek 1. előadás Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:

Részletesebben

Térinformatikai adatszerkezetek

Térinformatikai adatszerkezetek Térinformatikai adatszerkezetek 1. Pont Egy többdimenziós pont reprezentálható sokféle módon. A választott reprezentáció függ attól, hogy milyen alkalmazás során akarjuk használni, és milyen típusú műveleteket

Részletesebben

Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?

Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime? Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás

1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.

Részletesebben

17. A 2-3 fák és B-fák. 2-3 fák

17. A 2-3 fák és B-fák. 2-3 fák 17. A 2-3 fák és B-fák 2-3 fák Fontos jelentősége, hogy belőlük fejlődtek ki a B-fák. Def.: Minden belső csúcsnak 2 vagy 3 gyermeke van. A levelek egy szinten helyezkednek el. Az adatrekordok/kulcsok csak

Részletesebben

Optimalizációs stratégiák 1.

Optimalizációs stratégiák 1. Optimalizációs stratégiák 1. Nyers erő, Oszd meg és uralkodj, Feljegyzéses, Dinamikus, Mohó előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 6.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 6. Algorimuselméle Keresőfák, piros-fekee fák Kaona Gyula Y. Sámíásudományi és Információelmélei Tansék Budapesi Műsaki és Gadaságudományi Egyeem. előadás Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

Tuesday, March 6, 12. Hasító táblázatok

Tuesday, March 6, 12. Hasító táblázatok Hasító táblázatok Halmaz adattípus U (kulcsuniverzum) K (aktuális kulcsok) Függvény adattípus U (univerzum) ÉT (értelmezési tartomány) ÉK (érték készlet) Milyen az univerzum? Közvetlen címzésű táblázatok

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Algoritmusok és adatszerkezetek I. 1. előadás

Algoritmusok és adatszerkezetek I. 1. előadás Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási

Részletesebben

R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský

R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský Recenzió: Németh Boldizsár Térbeli indexelés Az adatszerkezetek alapvetően fontos feladata, hogy

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1 Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek

Részletesebben

Önszervező bináris keresőfák

Önszervező bináris keresőfák Önszervező bináris keresőfák Vágható-egyesíthető halmaz adattípus H={2,5,7,11,23,45,75} Vag(H,23) Egyesit(H1,H2) H1= {2,5,7,11} H2= {23,45,75} Vágás A keresési útvonal mentén feldaraboljuk a fát, majd

Részletesebben

Rendezettminta-fa [2] [2]

Rendezettminta-fa [2] [2] Rendezettminta-fa Minden p ponthoz tároljuk a p gyökerű fa belső pontjainak számát (méretét) Adott elem rangja: az elem sorszáma (sorrendben hányadik az adatszekezetben) Adott rangú elem keresése - T[r]

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

Algoritmusok és adatszerkezetek II.

Algoritmusok és adatszerkezetek II. Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék - Németh Tamás Algoritmusok és adatszerkezetek

Részletesebben

Adatszerkezetek II. 2. előadás

Adatszerkezetek II. 2. előadás Adatszerkezetek II. 2. előadás Gráfok bejárása A gráf bejárása = minden elem feldolgozása Probléma: Lineáris elrendezésű sokaság (sorozat) bejárása könnyű, egyetlen ciklussal elvégezhető. Hálós struktúra

Részletesebben

Adatbáziskezelés. Indexek, normalizálás NZS 1

Adatbáziskezelés. Indexek, normalizálás NZS 1 Adatbáziskezelés Indexek, normalizálás NZS 1 Fáljszervezés módjai Soros elérés: a rekordok a fájlban tetszőleges sorrendben, például a felvitel sorrendjében helyezkednek el. A rekord azonosítója vagyis

Részletesebben

A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.

A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül. Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Algoritmusok és adatszerkezetek II.

Algoritmusok és adatszerkezetek II. Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 5. Vágható-egyesíthető Halmaz adattípus megvalósítása önszervező

Részletesebben

III. Gráfok. 1. Irányítatlan gráfok:

III. Gráfok. 1. Irányítatlan gráfok: III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Web-programozó Web-programozó

Web-programozó Web-programozó Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

Gyakori elemhalmazok kinyerése

Gyakori elemhalmazok kinyerése Gyakori elemhalmazok kinyerése Balambér Dávid Budapesti M szaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudomány szakirány 2011 március 11. Balambér Dávid (BME) Gyakori

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság

Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság datszerkezetek Bevezetés datszerkezet adatok rendszerének matematikai, logikai modellje elég jó ahhoz, hogy tükrözze a valós kapcsolatokat elég egyszerű a kezeléshez datszerkezet típusok Tömbök lineáris

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

Adatszerkezet - műveletek

Adatszerkezet - műveletek Adatszerkezet - műveletek adatszerkezet létrehozása adat felvétele adat keresése adat módosítása adat törlése elemszám visszaadása minden adat törlése (üresít) adatszerkezet felszámolása (megszüntet) +

Részletesebben

Gráfok bejárása. Szlávi Péter, Zsakó László: Gráfok II :17

Gráfok bejárása. Szlávi Péter, Zsakó László: Gráfok II :17 Gráfok 2. előadás Gráfok bejárása A gráf bejárása = minden elem feldolgozása Probléma: Lineáris elrendezésű sokaság (sorozat) bejárása könnyű, egyetlen ciklussal elvégezhető. Hálós struktúra bejárása nem

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7. Algorimuselméle Keresőfák, piros-fekee fák Kaona Gula Y. Sámíásudománi és Információelmélei Tansék Budapesi Műsaki és Gadaságudománi Egeem. előadás Kaona Gula Y. (BME SZIT) Algorimuselméle. előadás / Keresőfák

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n). Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a

Részletesebben

Optimalizációs stratégiák 2.

Optimalizációs stratégiák 2. Optimalizációs stratégiák 2. Visszalépéses keresés, szétválasztás és korlátozás előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai

Részletesebben

Összetett programozási tételek

Összetett programozási tételek Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember

Részletesebben

A programozás alapjai 1 Rekurzió

A programozás alapjai 1 Rekurzió A programozás alapjai Rekurzió. előadás Híradástechnikai Tanszék - preorder (gyökér bal gyerek jobb gyerek) mentés - visszaállítás - inorder (bal gyerek gyökér jobb gyerek) rendezés 4 5 6 4 6 7 5 7 - posztorder

Részletesebben

Számláló rendezés. Példa

Számláló rendezés. Példa Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a

Részletesebben

Programozás I. - 11. gyakorlat

Programozás I. - 11. gyakorlat Programozás I. - 11. gyakorlat Struktúrák, gyakorlás Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 16, 2009 1 tar@dcs.vein.hu Tar

Részletesebben

Fák 3. előadás. (Horváth Gyula anyagai felhasználásával)

Fák 3. előadás. (Horváth Gyula anyagai felhasználásával) Fák 3. előadás (Horváth Gyula anyagai felhasználásával) Fák Bináris fa "fordított" ábrázolása, a levelektől vissza: Ha a bináris fa elemei címezhetőek is (pl. sorszámuk van), akkor elképzelhető egy olyan

Részletesebben

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24. Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom

Részletesebben

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y. Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás

Részletesebben

Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12

Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12 Módosítható Prioritási sor Binomiális kupaccal modosit(x,k) {! if (k>x.kulcs) {!! x.kulcs=k ;!! y=x!! z=x.apa ;!! while(z!=nil and y.kulcs

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben