Láncolt listák. PPT 2007/2008 tavasz.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Láncolt listák. PPT 2007/2008 tavasz."

Átírás

1 Láncolt listák PPT 2007/2008 tavasz 1

2 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt lista strázsa elemekkel Speciális láncolt listák Implementációs lehetőségek 2

3 Adatszerkezetek Adatszerkezet: Az adatelemek egy olyan véges halmaza, amelyben az adatelemek között szerkezeti összefüggések vannak Tárgyalandó megvalósítások Tömb Láncolt lista Fa, kupac Gráf Hasító táblázat Egyéb szerkezetek Sor Verem 3

4 Szükséges alapfogalmak Előzőleg már megismert fogalmak Változó, típus Összetett típus Generikus típusok Osztály, objektum Mutató, referencia Memóriakezelés Rekurzió Már megismert adatszerkezetek Tömbök Többdimenziós tömbök 4

5 Lista alapfogalmak Lista (list): 0 vagy több elem véges sorozata Ha az elemek mindegyikének azonos a típusa: T, akkor azt mondjuk, hogy a lista típusa: T-k listája A lista (a 1, a 2,, a n ), ahol a i a lista elemei Példák listára (2, 3, 5, 7, 11, 13, 17, 19) (hélium, neon, argon, krypton, xenon, radon) szövegsor: a felépítő karakterek az elemek dokumentum: szövegsorok a listaelemek Lista hossza: az elemek előfordulási száma a listában (az ismétlődéseket is belevesszük) Üres lista (empty): ha a lista hossza 0, (jele: ε) 5

6 Lista alapfogalmak Részlista (sublist): L = (a 1, a 2,, a n ) lista, akkor minden i-re, j-re 1 i j n (a i, a i+1,, a j ). L és ε minden listának részlistája Részsorozat (subsequence): Egy L = (a 1, a 2,, a n ) listából kapjuk, ha 0, vagy több elemet elhagyunk a listából. A megmaradt elemeknek ugyanolyan sorrendben kell a részsorozatban szerepelniük. L és ε minden listának részsorozata Előtag, utótag (prefix, suffix): az előtag olyan részlista, ami az első elemmel, az utótag az utolsó elemmel végződik. ε minden listának előtagja és utótagja Elem pozíciója: hányadik helyen szerepel a listában, használjuk az előző, a következő jelzőket is 6

7 Láncolt lista definíció Láncolt lista: A láncolt lista olyan adatszerkezet, amelynek minden eleme tartalmaz egy hivatkozást egy másik, ugyanolyan típusú elemre. Tárgyalt altípusok: Egyszeresen láncolt lista Rendezett láncolt lista Láncolt lista strázsa elemekkel Speciális láncolt listák Kétirányú Többszörösen láncolt Ciklikus 7

8 Láncolt lista eleme A láncolt lista egy elemének a definíciója: TLáncElem = Struktúra(tartalom, következő) Tartalom (példákban tart): a tárolandó adat egyszerű típus összetett típus objektum referencia Következő (példákban köv): hivatkozás a láncolt lista következő elemére tömb index mutató (TLáncElem típusú) objektum referencia A lista műveleteit megvalósító algoritmusok a konkrét implementációtól függetlenek, ezért ezzel a későbbiekben nem is foglalkozunk 8

9 Egyirányú láncolt lista jellemzői fej fej A lánc minden eleme tartalmaz egy hivatkozást a következő elemre A lánc első elemének címét a listafej tartalmazza (példákban fej változó) A listafej nem tartalmaz tartalmi részt A lánc végét az utolsó elem következő részének egy kitüntetett értéke jelzi (példákban ) Ennek valódi értéke implementációtól függ Üres listánál a listafej értéke ez a kitüntetett érték 9

10 Miért használjuk? A tömb adatszerkezet hátrányai, amelyek miatt érdemes lehet listát használni: 1. Méret nem változtatható (dinamikus tömbök?) 2. Összefüggő memóriaterületet igényel 3. Beszúrás nehézkes 4. Törlés nehézkes A

11 Miért ne használjuk? A lista adatszerkezet hátrányai, amelyek miatt érdemes lehet tömböt használni: 1. Bonyolult (használata nehézkes, hibalehetőség) 2. Elemek nem érhetőek el közvetlenül indexeléssel 3. A 2. miatt a keresés nehezen gyorsítható, alapesetben csak a lineáris keresés használható 4. A következő elemre való hivatkozás eltárolása miatt nagyobb egy elem helyfoglalása 11

12 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt lista strázsa elemekkel Speciális láncolt listák Implementációs lehetőségek 12

13 Láncolt lista bejárása Bejárás: Az adatszerkezet valamennyi elemének egyszeri elérése (feldolgozása) Ez a feldolgozás lehet tetszőleges művelet a lista egy elemének a tartalmával. A teljes listára vonatkozó műveleteket így az egyes elemekre külön-külön elvégezhető műveletek sorozatára kell bontani (pl átlagszámítás: összegzés, megszámlálás) Bejárás algoritmusa Eljárás Bejárás(fej) p fej Eljárás vége Ciklus amíg p Feldolgozás(p.tart) p p.köv Ciklus vége (Vizsgálandó esetek: üres lista, nem üres lista) 13

14 Keresés a listában Keresés: A lista fej ismeretében egy megadott tartalmú elem megkeresése eldönteni, hogy van-e ilyen tartalmú elem ha van, akkor melyik ez az elem Függvény Keresés(fej, mitkeres) p fej Ciklus amíg (p ) és (p.tart mitkeres) p p.köv Ciklus vége van (p ) Ha van akkor Keresés p Függvény vége (Vizsgálandó esetek: üres lista, nincs ilyen elem, van ilyen elem) 14

15 Házi feladat prog. tételek listával Sorozatszámítás lista elemeinek összege lista elemeinek átlaga stb. Eldöntés adott tulajdonságú elem megtalálható a listában? Kiválasztás megadott elem kiválasztása a listából? Keresés lineáris keresés Megszámolás megadott tulajdonságú elemek megszámolása Maximumkiválasztás valamilyen szempont szerinti legnagyobb elem kiválasztása 15

16 Új elem felvétele Lista inicializálása Eljárás Inicializálás(fej) fej Eljárás vége Lista elejére új elem beszúrása Eljárás ElejéreBeszúrás(fej, újérték) ElemLétrehozás(uj) uj.tart újérték (Vizsgálandó esetek: üres lista, nem üres lista) uj.köv fej fej uj Eljárás vége 16

17 Új elem felvétele Lista végére beszúrás Eljárás VégéreBeszúrás(fej, újérték) ElemLétrehozás(uj) uj.tart újérték (Vizsgálandó esetek: üres lista, nem üres lista) uj.köv Ha fej = fej uj különben p fej Ciklus amíg p.köv p p.köv Ciklus vége p.köv uj Elágazás vége Eljárás vége 17

18 Új elem felvétele Megadott helyre (n) beszúrás Eljárás MegadottHelyreBeszúrás(fej, n, újérték) ElemLétrehozás(uj) uj.tart újérték Ha (fej = ) vagy (n = 1) akkor uj.köv = fej; fej = uj különben (Vizsgálandó esetek: üres lista, egyetlen elem, lista elejére, lista közepébe, lista végére) p fej; i 2 Ciklus amíg (p.köv ) és (i < n) p p.köv; i i + 1 Ciklus vége uj.köv p.köv p.köv uj Elágazás vége Eljárás vége 18

19 Elem törlése Megadott tartalmú elem törlése Eljárás Törlés(fej, törlendő) p fej; e Ciklus amíg (p ) és (p.tart törlendő) e p p p.köv Ciklus vége Ha p akkor (Vizsgálandó esetek: üres lista, nincs elem, első elem, egyetlen elem, középső elem, utolsó elem) Ha e = akkor fej = p.köv külöben e.köv = p.köv ElemFelszabadítás(p) különben Nincs ilyen elem Elágazás vége Eljárás vége 19

20 Teljes lista törlése Az összes elem törlése Eljárás ListaTörlés(fej) Ciklus amíg (fej ) p fej fej fej.köv ElemFelszabadítás(p) Ciklus vége Eljárás vége (Vizsgálandó esetek: üres lista, nem üres lista) 20

21 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt lista strázsa elemekkel Speciális láncolt listák Implementációs lehetőségek 21

22 Rendezett láncolt lista Rendezett láncolt lista: A láncolt lista elemei tartalmuk szerint valamilyen előre definiált rendezési szempont szerint sorrendben helyezkednek el fej A E X Az utólagos rendezés nehézkes, emiatt a lista felépítésekor célszerű rendezni (beszúró rendezés erre alkalmas) Az előzőek kibővítése az alábbiakkal: KeresésRendezettben RendezettBeszúrás 22

23 Rendezett láncolt lista - keresés Keresés rendezett listában Függvény KeresésRendezettben(fej, mitkeres) p fej Ciklus amíg (p ) és (p.tart < mitkeres) p p.köv Ciklus vége van (p ) és (p.tart = mitkeres) Ha van akkor Keresés p Függvény vége (Vizsgálandó esetek: üres lista, nincs ilyen elem, van ilyen elem) 23

24 Rendezett láncolt lista - beszúrás Eljárás RendezettBeszúrás(fej, újérték) ElemLétrehozás(uj); uj.tart újérték Ha fej = uj.köv ; fej uj; különben Ha fej.tart > újérték uj.köv fej; fej uj különben p fej; e Ciklus amíg (p ) és (p.tart < újérték) e p; p p.köv Ciklus vége Ha p = uj.köv = ; e.köv = uj különben uj.köv = p; e.köv = uj Elágazás vége Elágazás vége Elágazás vége Eljárás vége üres lista első elem elé utolsó elem mögé két elem közé 24

25 Rendezett láncolt lista - beszúrás Azonos ágak összevonása után Eljárás RendezettBeszúrás(fej, újérték) Eljárás vége ElemLétrehozás(uj); uj.tart újérték p fej; e Ciklus amíg (p ) és (p.tart < újérték) e p; p p.köv Ciklus vége Ha e = akkor uj.köv fej fej uj különben uj.köv p e.köv uj Elágazás vége 25

26 Miért rendezzük? Keresési lehetőségek és átlagos lépésszám: Adatszerk. Algoritmus Lineáris keresés Logaritmikus keresés Tömb Ο(n) Rendezett tömb Láncolt lista Rendezett láncolt lista Ο(n) Ο(n) Ο(n) Ο(log 2 n) Tehát a keresés ezzel nem gyorsítható 26

27 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt lista strázsa elemekkel Speciális láncolt listák Implementációs lehetőségek 27

28 Néhány optimalizálási ötlet Mutatott elem mögé beszúrás Eljárás MutatottMögéBeszúrás(p, újérték) ElemLétrehozás(uj); uj.tart újérték uj.köv p.köv p.köv uj Eljárás vége Mutatott elem elé beszúrás (a fej nem ismert) Eljárás MutatottEléBeszúrás(p, újérték) ElemLétrehozás(uj) uj.tart p.tart uj.köv p.köv p.köv uj p.tart újérték Eljárás vége 28

29 További ötletek Mutatott elem törlése (a fej nem ismert) Eljárás MutatottMögéBeszúrás(p) Eljárás vége q p.köv p.tart q.tart p.köv q.köv ElemFelszabadítás(q) Az utóbbi kettő egyszerű (és igen hatékony) algoritmus a kivételes esetek miatt nem használható, mivel Beszúrás: üres lista esetén nincs elem Törlés: az utolsó elem után nincs elem Legyen! 29

30 Strázsa technika Strázsa (sentinel) elemek: A lista elejére és a végére felvett kiegészítő elemek. Értékes adatot nem tárolnak, csak technikai szerepük van, hogy kiküszöböljék a kivételes eseteket Elérhető előnyök egyszerűbb beszúrás/törlés gyorsabb beszúrás/törlés Szükséges kompromisszumok helyfoglalás bejárás körülményesebb (hibalehetőség) Példa strázsa elemek használatára fej

31 Technikai megvalósítás Strázsa elem megkülönböztetése: Kiegészítő tulajdonság felvételével Tartalom alapján Rendezett lista esetén az első strázsa célszerűen az adott implementációban legkisebb, az utolsó pedig a lehető legnagyobb értéket tartalmazza Lista inicializálása (az üres lista is tartalmaz elemeket) Eljárás StrázsaInicializálás(fej) ElemLétrehozás(st2) st2.tart + st2.köv ElemLétrehozás(st1) st1.tart - st1.köv st2 fej st1 Eljárás vége fej

32 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt lista strázsa elemekkel Speciális láncolt listák Implementációs lehetőségek 32

33 Kétirányú láncolt lista fej vége A lánc minden eleme tartalmaz egy hivatkozást a sorban rá következő, illetve a sorban őt megelőző elemre is A lánc végét az utolsó elem következő részének egy kitüntetett értéke jelzi (példákban ) A lánc elejét az első elem előző részének egy kitüntetett értéke jelzi (példákban ) A lánc első elemének címét a listafej tartalmazza (példákban fej változó) A lánc utolsó elemének címét is célszerű tárolni egy külső változóban (vége) 33

34 Kétirányú láncolt lista Előnyei az egyirányú listához képest keresés: Ha van információnk az elem listabeli elhelyezkedéséről (pl. tudjuk, hogy a vége felé helyezkedik el) akkor előnyös lehet törlés: Előnyös, hiszen azonnal elérhetjük a szomszédos elemeket beszúrás: Szintén kihasználható a beláncolás során, hogy közvetlenül elérhető minden elem őt megelőző eleme Hátrányok az egyirányú listához képest nagyobb elemenkénti helyfoglalás (az előző elem címét tartalmazó mező miatt) módosításkor bonyolultabb algoritmusra van szükség, mivel az előző hivatkozást is mindig aktualizálni kell 34

35 Többszörösen láncolt lista fej1 fej fej3 A lánc minden eleme tartalmazza n darab következő elem címet A lánc végét az utolsó elem megfelelő következő részének egy kitüntetett értéke jelzi ( ) A lánc tartalmaz n darab listafejet Műveletei gyakorlatilag megfelelnek az egyszerű láncolt listánál megismertekkel, felfogható n darab független láncolt listaként A tartalmi rész azonban csak egyszer szerepel, emiatt: kisebb helyfoglalás módosításkor egyidőben minden láncban módosul a tartalmi rész (ez nyílván csak akkor előny, ha ez a cél) 35

36 Ciklikusan láncolt lista fej A lánc minden eleme tartalmazza a következő elem címét, az utolsó elem pedig a elsőre mutat vissza A lánc végét külön nem jelöljük, a bejáró algoritmus felelőssége, hogy észrevegye ha már feldolgozott minden elemet A láncba akár több belépési pont is tárolható A lista lehet egy- illetve kétirányú is Előnyei az egyszerű láncolt listához képest: speciális feladatoknál hasznos (pl. fix méretű sor adatszerkezet) törlés: nincsenek kivételes első és utolsó elemek beszúrás: nincsenek kivételes első és utolsó elemek 36

37 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt lista strázsa elemekkel Speciális láncolt listák Implementációs lehetőségek 37

38 Statikus megvalósítás Statikus láncolt lista: A láncolt lista elemeit egy tömbben tároljuk, a listaelem következő mezője a listában következő elem indexét tartalmazza A fej egész típusú változó, az első elem indexét tárolja. A tartalom és a következő mező eltárolható két különböző tömbben is. Miklós 4 Zsuzsa -1 András 1 Palika 5 Tilda 6 Tóni 2 fej = 3 38

39 Implementációs részletek A lezáró elem lehet egy tetszőleges, indexként nem értelmezhető szám, pl -1 Értelemszerűen üres lista esetén fej = -1 ElemFelszabadítás(p : Egész) A listát tartalmazó tömb p. elemét bejelöli töröltként. Az állapot tárolható az elem egy mezőjében vagy egy másik tömbben ElemLétrehozás(új : Egész) A listát tartalmazó tömbben keres egy még szabad helyet (Dinamikus tömb esetén ha nincs hely, növeli a tömb méretét) Lefoglalja ezt a helyet Az új változóban visszaadja az indexet 39

40 Dinamikus megvalósítás Dinamikus láncolt lista: A láncolt lista elemeit dinamikus memóriakezelés segítségével hozzuk létre, a következő mező értéke így egy mutató lesz a lista következő elemének memóriabeli címére Minden elem következő mezője egy mutató, ami a lista következő elemének a címét tárolja Miklós fej András Tilda Zsuzsa 0 Tóni Palika 40

41 Implementációs részletek A fej egy mutató típusú változó, ami az első elem memóriabeli címét tárolja A lezáró elem lehet egy 0 mutató (null, nil stb.) Értelemszerűen ez jelzi a lista végét, ill. az üres listát is ElemFelszabadítás(p : Mutató) Felszabadítja a p mutató által mutatott helyen található TListaElem méretű memóriaterületet ElemLétrehozás(új : Mutató) Dinamikus memóriakezelés segítségével lefoglal helyet egy TListaElem tárolására Az új változóban visszaadja a lefoglalt memóriaterület címét 41

42 Objektum-orientált megvalósítás Technikai megvalósítás tekintetében tulajdonképpen megegyezik a dinamikus megoldással: TListaElem struktúra TListaElem osztály Mutató Objektum referencia Memória foglalás Konstruktor hívása Memória felszabadítás Destruktor hívása Részletesebben lásd. gyakorlaton 42

43 Gyakorló feladatok Elemi programozási tételek Összetett programozási tételek Verem, sor Javított buborékrendezés Strázsa elemekkel rendelkező láncolt lista implementálása Kétirányú láncolt lista algoritmusok megvalósítása Többszörösen láncolt lista algoritmusok megvalósítása Ciklikus láncolt lista algoritmusok megvalósítása 43

Láncolt listák Témakörök. Lista alapfogalmak

Láncolt listák Témakörök. Lista alapfogalmak Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök

Részletesebben

Láncolt Listák. Adat1 Adat2 Adat3 ø. Adat1 Adat2 ø Adat3

Láncolt Listák. Adat1 Adat2 Adat3 ø. Adat1 Adat2 ø Adat3 Láncolt Listák Adatszerkezetek Adatszerkezet: Az adatelemek egy olyan véges halmaza, amelyben az adatelemek között szerkezeti összefüggések vannak Megvalósítások: - Tömb, Láncolt lista, Fa, Kupac, Gráf,

Részletesebben

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás. Szénási Sándor

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás.  Szénási Sándor Láncolt listák Egyszerű, rendezett és speciális láncolt listák előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Láncolt

Részletesebben

Egyirányban láncolt lista

Egyirányban láncolt lista Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten

Részletesebben

Programozás alapjai II. (7. ea) C++

Programozás alapjai II. (7. ea) C++ Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Adatszerkezetek 1. előadás

Adatszerkezetek 1. előadás Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Adatszerkezetek 1. Dr. Iványi Péter

Adatszerkezetek 1. Dr. Iványi Péter Adatszerkezetek 1. Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot kódoltan tároljuk

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

Programozás I. - 11. gyakorlat

Programozás I. - 11. gyakorlat Programozás I. - 11. gyakorlat Struktúrák, gyakorlás Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 16, 2009 1 tar@dcs.vein.hu Tar

Részletesebben

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism)

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism) Programozás alapjai C nyelv 8. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

A lista adatszerkezet A lista elemek egymásutániságát jelenti. Fajtái: statikus, dinamikus lista.

A lista adatszerkezet A lista elemek egymásutániságát jelenti. Fajtái: statikus, dinamikus lista. Lista adatszerkezet A lista adatszerkezet jellemzői 1 Különböző problémák számítógépes megoldása során gyakran van szükség olyan adatszerkezetre, amely nagyszámú, azonos típusú elem tárolására alkalmas,

Részletesebben

Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában

Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában Programozás alapjai C nyelv 8. gyakorlat Szeberényi mre BME T Programozás alapjai. (C nyelv, gyakorlat) BME-T Sz.. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény

Részletesebben

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

Már megismert fogalmak áttekintése

Már megismert fogalmak áttekintése Interfészek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Polimorfizmus áttekintése Interfészek Interfészek kiterjesztése Eseménykezelési módszerek 2 Már megismert fogalmak

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2009. november 20. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció El z órák anyagainak

Részletesebben

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás. Szénási Sándor

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás.  Szénási Sándor Hasító táblázatok Hasító függvények, kulcsütközés kezelése előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Felépítése

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Összetett programozási tételek

Összetett programozási tételek Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember

Részletesebben

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E 5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Generikus osztályok, gyűjtemények és algoritmusok

Generikus osztályok, gyűjtemények és algoritmusok Programozási, gyűjtemények és algoritmusok bejárása Informatikai Kar Eötvös Loránd Tudományegyetem 1 Tartalom 1 bejárása 2 bejárása 2 Java-ban és UML-ben bejárása Az UML-beli paraméteres osztályok a Java

Részletesebben

Rekurzív algoritmusok

Rekurzív algoritmusok Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24. Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom

Részletesebben

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék 9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Objektum Orientált Programozás VII.

Objektum Orientált Programozás VII. Objektum Orientált Programozás VII. Összetett programozási tételek Programozási tételek összeépítése Feladatok ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk

Részletesebben

C++ programozási nyelv

C++ programozási nyelv C++ programozási nyelv Gyakorlat - 13. hét Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2004. december A C++ programozási nyelv Soós Sándor 1/10 Tartalomjegyzék Objektumok

Részletesebben

Objektumorientált Programozás VI.

Objektumorientált Programozás VI. Objektumorientált Programozás VI. Tömb emlékeztető Egyszerű programozási tételek Összetett programozási tételek V 1.0 ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

6. LISTÁK ábra. A lista absztrakt adatszerkezet (ADS)

6. LISTÁK ábra. A lista absztrakt adatszerkezet (ADS) 6. LISTÁK Az előző fejezetekben megismerkedtünk a láncolt ábrázolással. Láttuk a verem és a sor, valamint előre tekintve a keresőfa pointeres megvalósításának a lehetőségét és előnyeit. A láncolt ábrázolással

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok

Részletesebben

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Programozási tételek. PPT 2007/2008 tavasz.

Programozási tételek. PPT 2007/2008 tavasz. Programozási tételek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Strukturált programozás paradigma Alapvető programozási tételek Összetett programozási tételek Programozási

Részletesebben

C++ programozási nyelv Konstruktorok-destruktorok

C++ programozási nyelv Konstruktorok-destruktorok C++ programozási nyelv Konstruktorok-destruktorok Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2004. szeptember A C++ programozási nyelv Soós Sándor 1/20 Tartalomjegyzék

Részletesebben

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1 Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek

Részletesebben

Információs Technológia

Információs Technológia Információs Technológia Sor és verem adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2009. november 19. Alapötlet

Részletesebben

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon Bevezetés Ütközés detektálás Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel Az objektumok áthaladnak a többi objektumon A valósághű megjelenítés része Nem tisztán

Részletesebben

Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek:

Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek: Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás Piros-fekete fa B-fa 2 Fa

Részletesebben

Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Dinamikus adatszerkezetek. Dinamikus adatszerkezetek. Önhivatkozó struktúrák. Önhivatkozó struktúrák

Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Dinamikus adatszerkezetek. Dinamikus adatszerkezetek. Önhivatkozó struktúrák. Önhivatkozó struktúrák 2012. március 27. A PROGAMOZÁS ALAPJAI 1 Vitéz András egyetemi adjunktus BME Híradástechnikai Tanszék vitez@hit.bme.hu Miről lesz ma szó? Dinamikus adatszerkezetek Önhivatkozó struktúra keresés, beszúrás,

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

C++ programozási nyelv Konstruktorok Gyakorlat

C++ programozási nyelv Konstruktorok Gyakorlat C++ programozási nyelv Konstruktorok Gyakorlat Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2004. október A C++ programozási nyelv Soós Sándor 1/17 Tartalomjegyzék

Részletesebben

A C programozási nyelv IV. Deklaráció és definíció

A C programozási nyelv IV. Deklaráció és definíció A C programozási nyelv IV. Deklaráció és definíció Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv IV. (Deklaráció és definíció) CBEV4 / 1 Definíció és deklaráció Definíció: meghatározza

Részletesebben

5. Gyakorlat. struct diak {

5. Gyakorlat. struct diak { Rövid elméleti összefoglaló 5. Gyakorlat Felhasználó által definiált adattípusok: A typedef egy speciális tárolási osztály, mellyel érvényes típusokhoz szinonim nevet rendelhetünk. typedef létező_típus

Részletesebben

Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor

Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor Bináris keresőfa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Bináris keresőfa Rekurzív

Részletesebben

Programozás alapjai. 5. előadás

Programozás alapjai. 5. előadás 5. előadás Wagner György Általános Informatikai Tanszék Cserélve kiválasztásos rendezés (1) A minimum-maximum keresés elvére épül. Ismétlés: minimum keresés A halmazból egy tetszőleges elemet kinevezünk

Részletesebben

file:///d:/okt/ad/jegyzet/ad1/b+fa.html

file:///d:/okt/ad/jegyzet/ad1/b+fa.html 1 / 5 2016. 11. 30. 12:58 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

A C programozási nyelv III. Pointerek és tömbök.

A C programozási nyelv III. Pointerek és tömbök. A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

A gráffogalom fejlődése

A gráffogalom fejlődése A gráffogalom fejlődése ELTE Informatikai Kar, Doktori Iskola, Budapest Batthyány Lajos Gimnázium, Nagykanizsa erdosne@blg.hu a prezentáció kézirata elérhető: http://people.inf.elte.hu/szlavi/infodidact16/manuscripts/ena.pdf

Részletesebben

Algoritmizálás, adatmodellezés tanítása 7. előadás

Algoritmizálás, adatmodellezés tanítása 7. előadás Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk

Részletesebben

Bevezetés, a C++ osztályok. Pere László

Bevezetés, a C++ osztályok. Pere László Programozás módszertan II. p. Programozás módszertan II. Bevezetés, a C++ osztályok Pere László (pipas@linux.pte.hu) PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR INFORMATIKA ÉS ÁLTALÁNOS TECHNIKA TANSZÉK

Részletesebben

A C programozási nyelv III. Pointerek és tömbök.

A C programozási nyelv III. Pointerek és tömbök. A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

Programozás C++ -ban

Programozás C++ -ban Programozás C++ -ban 4. Bevezetés az osztályokba 4.1 Az adatokhoz való hozzáférés ellenőrzése Egy C programban a struktúrák minden része mindig elérhető. Ugyanakkor ez nem a legkedvezőbb helyzet. Több

Részletesebben

Programozás alapjai. 10. előadás

Programozás alapjai. 10. előadás 10. előadás Wagner György Általános Informatikai Tanszék Pointerek, dinamikus memóriakezelés A PC-s Pascal (is) az IBM PC memóriáját 4 fő részre osztja: kódszegmens adatszegmens stackszegmens heap Alapja:

Részletesebben

Fejlett programozási nyelvek C++ Iterátorok

Fejlett programozási nyelvek C++ Iterátorok Fejlett programozási nyelvek C++ Iterátorok 10. előadás Antal Margit 2009 slide 1 Témakörök I. Bevezetés II. Iterátor definíció III. Iterátorok jellemzői IV. Iterátorkategóriák V. Iterátor adapterek slide

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Programozási tételek, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2009. november 13. Ismétlés El z órai anyagok áttekintése Ismétlés Specikáció Típusok, kifejezések, m veletek, adatok ábrázolása, típusabsztakció Vezérlési szerkezetek Függvények, paraméterátadás, rekurziók

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

Web-programozó Web-programozó

Web-programozó Web-programozó Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet

7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet 7. BINÁRIS FÁK Az előző fejezetekben már találkoztunk bináris fákkal. Ezt a központi fontosságú adatszerkezetet most vezetjük be a saját helyén és az általános fák szerepét szűkítve, csak a bináris fát

Részletesebben

Például számokból álló, egyszeresen láncolt lista felépítéséhez az alábbi struktúra definíciót használhatjuk:

Például számokból álló, egyszeresen láncolt lista felépítéséhez az alábbi struktúra definíciót használhatjuk: 8. előadás Ismétlés Dinamikus adatszerkezetek: listák (egyszeresen vagy többszörösen láncolt), fák. Kétfelé ágazó fa: bináris fa Dinamikus adatszerkezetek - önhivatkozó adatstruktúrák: adatok és reájuk

Részletesebben

Láncolt lista. az itt adott nevet csak a struct deklaráción belül használjuk

Láncolt lista. az itt adott nevet csak a struct deklaráción belül használjuk Láncolt lista int szam char szoveg[10] következő elemre mutató pointer int szam char szoveg[10] következő elemre mutató pointer elem elem elem int szam char szoveg[10] következő elemre mutató pointer A

Részletesebben

Inczédy György Középiskola, Szakiskola és Kollégium Nyíregyháza, Árok u. 53. TANMENET. Informatika szakmacsoport

Inczédy György Középiskola, Szakiskola és Kollégium Nyíregyháza, Árok u. 53. TANMENET. Informatika szakmacsoport TANMENET Informatika szakmacsoport Programozási gyakorlatok III. tantárgy 12. évfolyam A osztály 2013/2014 tanév Heti óraszám: Éves óraszám: 3 óra 96 óra Készítette: Szikszai Gusztáv tanár Ellenőrizte:.

Részletesebben

Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság

Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság datszerkezetek Bevezetés datszerkezet adatok rendszerének matematikai, logikai modellje elég jó ahhoz, hogy tükrözze a valós kapcsolatokat elég egyszerű a kezeléshez datszerkezet típusok Tömbök lineáris

Részletesebben

Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.

Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető. Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös

Részletesebben

3. TÖMBÖK A tömb absztrakt adattípus Legyen T az E alaptípus feletti k ( 1) dimenziós tömb típus. Vezessük be az I I1

3. TÖMBÖK A tömb absztrakt adattípus Legyen T az E alaptípus feletti k ( 1) dimenziós tömb típus. Vezessük be az I I1 3. TÖMBÖK Az egyszerű adattípusok ismertetését a tömbökkel kezdjük. Az sem okozna zavart, ha ezt a fejezet nem szerepelne jegyzetünkben, tekintettel arra, hogy a tömböket ismerjük a programozási kurzusokból.

Részletesebben

OOP. Alapelvek Elek Tibor

OOP. Alapelvek Elek Tibor OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós

Részletesebben

mul : S T N 1 ha t S mul(s, t) := 0 egyébként Keresés Ezt az eljárást a publikus m veletek lenti megvalósításánál használjuk.

mul : S T N 1 ha t S mul(s, t) := 0 egyébként Keresés Ezt az eljárást a publikus m veletek lenti megvalósításánál használjuk. Érdi Gerg EF II. 2/2. Feladat Készítsen egy zsák típust! lkalmazzon osztályt! zsákokat rendezett láncolt listával ábrázolja! Implementálja a szokásos m veleteket, egészítse ki az osztályt a kényelmes és

Részletesebben

Nagy HF ke szı te si u tmutato

Nagy HF ke szı te si u tmutato A programozás alapjai 1. BMEVIHIAA01 Nagy HF ke szı te si u tmutato Analízis és Specifikáció (Nyelv független) 0. A Házi feladat témája 1. A Házi feladat téma szöveges leírása 2. A feladat résztvevőinek

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok Adatszerkezetek és algoritmusok Jegyzet dr. Juhász István előadása alapján Készítette Csordás Annamária és Mohai Gábor A valós világban rendszerekről beszélünk. A dolgok összetevői egymással kölcsönhatásban

Részletesebben

Alkalmazott modul: Programozás 8. előadás. Strukturált programozás: dinamikus memóriakezelés. Dinamikus memóriakezelés. Dinamikus memóriakezelés

Alkalmazott modul: Programozás 8. előadás. Strukturált programozás: dinamikus memóriakezelés. Dinamikus memóriakezelés. Dinamikus memóriakezelés Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 8. előadás Strukturált programozás: dinamikus memóriakezelés Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto

Részletesebben

Alkalmazott modul: Programozás 10. fejezet. Strukturált programozás: dinamikus memóriakezelés. Giachetta Roberto

Alkalmazott modul: Programozás 10. fejezet. Strukturált programozás: dinamikus memóriakezelés. Giachetta Roberto Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 10. fejezet Strukturált programozás: dinamikus memóriakezelés Giachetta Roberto A jegyzet az ELTE Informatikai Karának 2015.

Részletesebben

- Levelek: operandusok - Csomópontok: operátorok. Fenti kifejezés: (x+ (y 10)) * (6 / z) Bináris Keresőfa (BST) Példa bináris keresőfára.

- Levelek: operandusok - Csomópontok: operátorok. Fenti kifejezés: (x+ (y 10)) * (6 / z) Bináris Keresőfa (BST) Példa bináris keresőfára. Fák Fa definíciója Fa(Tree): csomópontok(nodes) halmaza, amelyeket élek(edges) kötnek össze, és teljesülnek az alábbi feltételek: - létezik egy kitűntetett csomópont: a gyökér (root) - a gyökértől különböző

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy

Részletesebben