Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu"

Átírás

1 Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet szeptember 21. Sergyán (OE NIK) Programozás I szeptember / 49

2 Tartalom 1 Programozási tételek 2 Egyszerű programozási tételek Sorozatszámítás Eldöntés Kiválasztás Lineáris keresés Megszámlálás Maximumkiválasztás Sergyán (OE NIK) Programozás I szeptember / 49

3 Tartalom 1 Programozási tételek 2 Egyszerű programozási tételek Sorozatszámítás Eldöntés Kiválasztás Lineáris keresés Megszámlálás Maximumkiválasztás Sergyán (OE NIK) Programozás I szeptember / 49

4 Programozási tételek A programozási tételek jól megválasztott, egyszerű feladatok megoldásai Segítségükkel a gyakorlatban előforduló feladatok jelentős része megoldható Helyességük egyszerűen bizonyítható Használatuk célszerű, hiszen (mások által is) jól áttekinthető kódot eredményeznek Egy lehetséges csoportosításuk Egyszerű programozási tételek Egy sorozathoz egy értéket rendelő feladatok Összetett programozási tételek Egy sorozathoz egy sorozatot rendelő feladatok Egy sorozathoz több sorozatot rendelő feladatok Több sorozathoz egy sorozatot rendelő feladatok Sergyán (OE NIK) Programozás I szeptember / 49

5 Tartalom 1 Programozási tételek 2 Egyszerű programozási tételek Sorozatszámítás Eldöntés Kiválasztás Lineáris keresés Megszámlálás Maximumkiválasztás Sergyán (OE NIK) Programozás I szeptember / 49

6 Tartalom 1 Programozási tételek 2 Egyszerű programozási tételek Sorozatszámítás Eldöntés Kiválasztás Lineáris keresés Megszámlálás Maximumkiválasztás Sergyán (OE NIK) Programozás I szeptember / 49

7 Sorozatszámítás Típusfeladatok 1 Egy osztály N darab tanulójának osztályzata alapján adjuk meg az osztály átlagát! 2 Egy M elemű betűsorozat betűit fűzzük össze egyetlen szöveg típusú változóba! 3 Készítsünk algoritmust, amely egy autóversenyző körönkénti ideje alapján meghatározza a versenyző egy kör megtételéhez szükséges átlagidejét! 4 A Balaton mentén K darab madarász végzett megfigyeléseket. Mindegyik megadta, hogy milyen madarakat látott. Készítsünk algoritmust, amely a megfigyelések alapján megadja a Balatonon előforduló madárfajokat! 5 Adjuk meg az első N darab pozitív egész szám szorzatát! Sergyán (OE NIK) Programozás I szeptember / 49

8 Sorozatszámítás Feladat Egy tömb minden eleme között akarunk egy adott műveletet (pl. összeadás) elvégezni. Eredményül a tömbelemek között az adott művelet által szolgáltatott értéket adjuk vissza. Megvalósítás Létrehozunk egy változót, amiben a műveleti eredményt tároljuk el. Ennek kezdeti értéket is adunk. Számlálós ciklussal végigmegyünk a tömb összes elemén. A műveleti eredményhez az adott művelettel hozzákapcsoljuk (pl. hozzáadjuk) az aktuális tömbelemet. Sergyán (OE NIK) Programozás I szeptember / 49

9 Sorozatszámítás Pszeudokód Bemenet: x T tömb, n egész (tömb mérete) Kimenet: érték T függvény Sorozatszámítás(x, n) érték érték 0 ciklus i 1-től n-ig érték érték x[i] ciklus vége vissza érték függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

10 Sorozatszámítás Megjegyzések Adatok sorozatához egy értéket rendelő függvényt helyettesít Minden olyan esetben használható, ha ezt a függvényt felbonthatjuk értékpárokon kiszámított műveletek ( ) sorozatára Az induláskor használt nullértéket értelemszerűen a kérdéses művelet (esetleg a feladat) alapján kell megválasztani összegzés faktoriális elemek uniója érték { } érték érték + x[i] érték érték x[i] érték érték x[i] Sergyán (OE NIK) Programozás I szeptember / 49

11 Sorozatszámítás Pszeudokód függvény Sorozatszámítás(x, n) érték érték 0 ciklus i 1-től n-ig érték érték x[i] ciklus vége vissza érték függvény vége Futási idő A műveletet minden ciklusban egyszer végezzük el és az eredményt eltároljuk az érték-ben. A futási idő n-nel arányos: T (n) = O (n) Sergyán (OE NIK) Programozás I szeptember / 49

12 Tartalom 1 Programozási tételek 2 Egyszerű programozási tételek Sorozatszámítás Eldöntés Kiválasztás Lineáris keresés Megszámlálás Maximumkiválasztás Sergyán (OE NIK) Programozás I szeptember / 49

13 Eldöntés Típusfeladatok 1 Döntsük el egy szóról a hónapnevek sorozata alapján, hogy egy hónap neve-e! 2 Döntsük el egy tanuló év végi osztályzata alapján, hogy kitűnő tanuló-e! 3 Júniusban minden nap délben megmértük, hogy a Balaton Siófoknál hány fokos. Döntsük el a mérések alapján, hogy a víz hőfoka folyamatosan emelkedett-e! 4 Döntsük el egy számról, hogy prímszám-e! Sergyán (OE NIK) Programozás I szeptember / 49

14 Eldöntés Feladat El akarjuk dönteni, hogy egy tömbben (x) van-e legalább egy adott tulajdonságú (P) elem. Eredményül egy logikai értéket adunk vissza, mely pontosan akkor igaz, ha találtunk legalább egy P tulajdonságú elemet az x-ben. Megvalósítás A tömböt bejárjuk az elejétől a vége felé haladva. A bejárást akkor hagyjuk abba, ha végigmentünk az összes elemen és nem találtunk egyetlen P tulajdonságú elemet sem; ha az aktuális elem P tulajdonságú. Sergyán (OE NIK) Programozás I szeptember / 49

15 Eldöntés Pszeudokód Bemenet: x T tömb, n egész (tömb mérete), P logikai (tulajdonság) Kimenet: van logikai függvény Eldöntés(x, n, P) i 1 ciklus amíg (i n) P(x[i]) i i + 1 ciklus vége van (i n) vissza van függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

16 Eldöntés Pszeudokód függvény Eldöntés(x, n, P) i 1 ciklus amíg (i n) P(x[i]) i i + 1 ciklus vége van (i n) vissza van függvény vége Futási idő A P tulajdonság függvényt legalább egyszer és legfeljebb n-szer értékeljük ki. Az index növeléshez legrosszabb esetben n-szer kerül a vezérlés. A futási idő: T (n) = O (n) Sergyán (OE NIK) Programozás I szeptember / 49

17 Eldöntés Megjegyzések A P tulajdonság helyes megválasztásával a tétel sokféle szituációban alkalmazható. A minden elem P tulajdonságú feladatot egyszerűen visszavezethetjük az eldöntésre a P tulajdonság tagadásával. A sorozatszámításnál megismert módszerrel ellentétben ez az algoritmus az első P tulajdonságú elem megtalálása után már nem folytatja a keresést. Sergyán (OE NIK) Programozás I szeptember / 49

18 Eldöntés: minden elem P tulajdonságú-e? Pszeudokód Bemenet: x T tömb, n egész (tömb mérete), P logikai (tulajdonság) Kimenet: van logikai függvény Eldöntés Minden(x, n, P) i 1 ciklus amíg (i n) P(x[i]) i i + 1 ciklus vége van (i > n) vissza van függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

19 Prímteszt Pszeudokód Bemenet: N egész (N 2) Kimenet: pr ím logikai 1: függvény PrímTeszt(N) 2: i 2 3: ciklus amíg (i N) Osztója(i, N) 4: i i + 1 5: ciklus vége 6: prím (i > N) 7: vissza pr ím 8: függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

20 Növekvő rendezettség vizsgálat Pszeudokód Bemenet: x T tömb, n egész; ahol T összehasonĺıtható Kimenet: rendezett logikai 1: függvény Rendezett E(x, n) 2: i 1 3: ciklus amíg (i n 1) (x[i] x[i + 1]) 4: i i + 1 5: ciklus vége 6: rendezett (i > n 1) 7: vissza rendezett 8: függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

21 Tartalom 1 Programozási tételek 2 Egyszerű programozási tételek Sorozatszámítás Eldöntés Kiválasztás Lineáris keresés Megszámlálás Maximumkiválasztás Sergyán (OE NIK) Programozás I szeptember / 49

22 Kiválasztás Típusfeladatok 1 Ismerjük egy hónap nevét. A hónapnevek sorozata alapján mondjuk meg a hónap sorszámát! 2 Adjuk meg egy egynél nagyobb természetes szám legkisebb, 1-től különböző osztóját! 3 A naptárban található névnapok alapján adjuk meg a legjobb barátunk névnapját! Sergyán (OE NIK) Programozás I szeptember / 49

23 Kiválasztás Pszeudokód Bemenet: x T tömb, n egész, P logikai Kimenet: idx egész 1: függvény Kiválasztás(x, n, P) 2: i 1 3: ciklus amíg P (x[i]) 4: i i + 1 5: ciklus vége 6: idx i 7: vissza idx 8: függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

24 Kiválasztás Megjegyzések Az eldöntéssel ellentétben ez visszaadja az első P tulajdonságú elem sorszámát A tétel feltételezi, hogy biztosan van legalább egy P tulajdonságú elem Sorszám helyett visszaadhatjuk az elem értékét is, de célszerűbb a sorszám használata (ez alapján az elem is egyszerűen meghatározható) Az algoritmus működése és futási ideje hasonló az eldöntéshez Sergyán (OE NIK) Programozás I szeptember / 49

25 Tartalom 1 Programozási tételek 2 Egyszerű programozási tételek Sorozatszámítás Eldöntés Kiválasztás Lineáris keresés Megszámlálás Maximumkiválasztás Sergyán (OE NIK) Programozás I szeptember / 49

26 Lineáris keresés Típusfeladatok 1 Ismerjük egy üzlet egy havi forgalmát: minden napra megadjuk, hogy mennyi volt a bevétel és mennyi a kiadás. Adjunk meg egy olyan napot ha van, amelyik nem volt nyereséges! 2 A Budapest-Nagykanizsa vasúti menetrend alapján két adott állomáshoz adjunk meg egy olyan vonatot, amellyel el lehet jutni átszállás nélkül az egyikről a másikra! 3 Egy tetszőleges (nem 1) természetes számnak adjuk meg egy osztóját, ami nem az 1 és nem is önmaga! Sergyán (OE NIK) Programozás I szeptember / 49

27 Lineáris keresés Pszeudokód Bemenet: x T tömb, n egész, P logikai Kimenet: van logikai, idx egész 1: függvény LineárisKeresés(x, n, P) 2: i 1 3: ciklus amíg (i n) P (x[i]) 4: i i + 1 5: ciklus vége 6: van (i n) 7: ha van akkor 8: idx i 9: vissza (van, idx) 10: különben 11: vissza van 12: elágazás vége 13: függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

28 Lineáris keresés Megjegyzések Tekinthető az eldöntés és a kiválasztás tétel ötvözetének is: választ ad arra, hogy van-e P tulajdonságú elem a sorozatban, és ha van, akkor visszaadja a sorszámát is. Értelemszerűen nem feltételezi, hogy biztosan van P tulajdonságú elem a sorozatban. Ha nincs, akkor a van értéke hamis, ilyenkor az idx változó nem kap értéket. Az algoritmus működése és futási ideje hasonló az eldöntéshez. Sergyán (OE NIK) Programozás I szeptember / 49

29 Adott érték keresése Pszeudokód Bemenet: x T tömb, n egész, érték T Kimenet: van logikai, idx egész 1: függvény LineárisKeresés(x, n, érték) 2: i 1 3: ciklus amíg (i n) (x[i] érték) 4: i i + 1 5: ciklus vége 6: van (i n) 7: ha van akkor 8: idx i 9: vissza (van, idx) 10: különben 11: vissza van 12: elágazás vége 13: függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

30 Tartalom 1 Programozási tételek 2 Egyszerű programozási tételek Sorozatszámítás Eldöntés Kiválasztás Lineáris keresés Megszámlálás Maximumkiválasztás Sergyán (OE NIK) Programozás I szeptember / 49

31 Megszámlálás Típusfeladatok 1 Családok létszáma, illetve jövedelme alapján állapítsuk meg, hogy hány család él a létminimum alatt! 2 Egy futóverseny időeredményei alapján határozzuk meg, hogy a versenyzők hány százaléka teljesítette az olimpiai induláshoz szükséges szintet! 3 Adjuk meg egy szöveg magánhangzóinak számát! Sergyán (OE NIK) Programozás I szeptember / 49

32 Megszámlálás Feladat Egy tömbben (x) szeretnénk az adott tulajdonságú (P) elemek számát meghatározni. Kimenetként a x tömb P tulajdonságú elemeinek számát adjuk vissza. Megvalósítás Az x tömb minden elemét meg kell vizsgálni, hogy P tulajdonságú-e. Emiatt számlálós ciklussal bejárjuk az egész tömböt. Ha az aktuális tömbelem (x[i]) P tulajdonságú, akkor egy számláló (db) értékét eggyel növeljük. A db számlálónak kezdetben nullának kell lennie. Sergyán (OE NIK) Programozás I szeptember / 49

33 Megszámlálás Pszeudokód Bemenet: x T tömb, n egész (tömb mérete), P logikai (tulajdonság) Kimenet: db egész (darabszám) függvény Megszámlálás(x, n, P) db 0 ciklus i 1-től n-ig ha P (x[i]) akkor db db + 1 elágazás vége ciklus vége vissza db függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

34 Megszámlálás Pszeudokód függvény Megszámlálás(x, n, P) db 0 ciklus i 1-től n-ig ha P (x[i]) akkor db db + 1 elágazás vége ciklus vége vissza db függvény vége Futási idő A P tulajdonság teljesülését minden elemre meg kell vizsgálni. Csak akkor növeljük db értékét, ha a P (x[i]) igaz volt. A futási idő arányos a tömb méretével: T (n) = O (n) Sergyán (OE NIK) Programozás I szeptember / 49

35 Megszámlálás Megjegyzések Amennyiben nincs P tulajdonságú elem a sorozatban, akkor értelemszerűen 0 kerül a db változóba. Valójában egy sorozatszámítás, amely minden P tulajdonságú elem esetén 1-et hozzáad a db értékéhez. Sergyán (OE NIK) Programozás I szeptember / 49

36 Tartalom 1 Programozási tételek 2 Egyszerű programozási tételek Sorozatszámítás Eldöntés Kiválasztás Lineáris keresés Megszámlálás Maximumkiválasztás Sergyán (OE NIK) Programozás I szeptember / 49

37 Maximumkiválasztás Típusfeladatok 1 Egy kórházban megmérték minden beteg lázát. Adjuk meg, hogy ki a leglázasabb! 2 Egy család havi bevételei és kiadásai alapján adjuk meg, hogy melyik hónapban tudtak a legtöbbet megtakarítani! 3 Egy osztály tanulóinak nevei alapján adjuk meg a névsorban legelső tanulót! Sergyán (OE NIK) Programozás I szeptember / 49

38 Maximumkiválasztás Feladat Adott egy tömb (x), melynek elemei összehasonĺıthatóak. Keressük meg, hogy melyik elem a legnagyobb a tömbben. Megvalósítás Tekintsük először a tömb első elemét a legnagyobbnak. A legnagyobb elem indexét tároljuk el a max változóban. (Ez kezdetben 1.) Egy számlálós ciklussal járjuk be a tömböt a második elemtől az utolsóig. Ha az aktuális tömbelem (x[i]) nagyobb, mint az eddig legnagyobb elem (x[max]), akkor tekintsük az aktuális elemet a legnagyobbnak, azaz az aktuális elem indexek legyen a max. Sergyán (OE NIK) Programozás I szeptember / 49

39 Maximumkiválasztás Pszeudokód Bemenet: x T tömb, n egész (tömb mérete); ahol T összehasonĺıtható Kimenet: max egész függvény Maximumkiválasztás(x, n) max 1 ciklus i 2-től n-ig ha x[i] > x[max] akkor max i elágazás vége ciklus vége vissza max függvény vége Sergyán (OE NIK) Programozás I szeptember / 49

40 Maximumkiválasztás Pszeudokód függvény Maximumkiválasztás(x, n) max 1 ciklus i 2-től n-ig ha x[i] > x[max] akkor max i elágazás vége ciklus vége vissza max függvény vége Futási idő Az összehasonĺıtást (n 1)-szer végezzük el. Az értékadáshoz legfeljebb (n 1)-szer, de lehet, hogy egyszer sem kerül a vezérlés. A futási idő arányos a tömb méretével: T (n) = O (n) Sergyán (OE NIK) Programozás I szeptember / 49

41 Maximumkiválasztás Megjegyzések Reláció megfordításával értelemszerűen minimumkiválasztás lesz a tétel célja. Index helyett visszaadhatjuk az elem értékét is, de célszerűbb az index használata (ez alapján az elem is azonnal meghatározható). Feltételezzük, hogy legalább egy elem létezik a tömbben. Több maximális elem esetén az elsőt adja vissza. Sergyán (OE NIK) Programozás I szeptember / 49

42 Gyakorló feladat Kirándulás során 100 méterenként feljegyeztük a tengerszint feletti magasság értékeket. 1 Volt a kirándulás során olyan szakasz, amikor sík terepen haladtunk? 2 Hány olyan száz méteres szakasz volt, amikor emelkedőn haladtunk? 3 Mekkora volt a kirándulás során a teljes szintemelkedés? (És a szintcsökkenés?) 4 Hányszor 100 méteres volt az a leghosszabb szakasz, ahol folyamatosan emelkedőn haladtunk? 5 Mekkora volt a 100 méter alatt megtett legnagyobb szintemelkedés? Sergyán (OE NIK) Programozás I szeptember / 49

43 Felhasznált irodalom Szlávi Péter, Zsakó László: Módszeres programozás: Programozási tételek (Mikrológia 19). ELTE TTK, 2002 Sergyán (OE NIK) Programozás I szeptember / 49

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia

Részletesebben

Összetett programozási tételek

Összetett programozási tételek Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember

Részletesebben

Programozási tételek. PPT 2007/2008 tavasz.

Programozási tételek. PPT 2007/2008 tavasz. Programozási tételek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Strukturált programozás paradigma Alapvető programozási tételek Összetett programozási tételek Programozási

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Elemi programozási tételek 1 TÁMOP-4.2.3.-12/1/KONV-2012-0018 Feladataink egy jelentős csoportjában egyetlen bemenő sorozat alapján

Részletesebben

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24. Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

Objektum Orientált Programozás VII.

Objektum Orientált Programozás VII. Objektum Orientált Programozás VII. Összetett programozási tételek Programozási tételek összeépítése Feladatok ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk

Részletesebben

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10. Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /

Részletesebben

Rekurzív algoritmusok

Rekurzív algoritmusok Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19.

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Programkészítés Megrendelői igények begyűjtése Megoldás megtervezése (algoritmuskészítés)

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy

Részletesebben

Algoritmusok, adatszerkezetek, objektumok

Algoritmusok, adatszerkezetek, objektumok Algoritmusok, adatszerkezetek, objektumok 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 14. Sergyán (OE NIK) AAO 01 2011.

Részletesebben

Algoritmizálás, adatmodellezés tanítása 2. előadás

Algoritmizálás, adatmodellezés tanítása 2. előadás Algoritmizálás, adatmodellezés tanítása 2. előadás Programozási tételek Mi az, hogy programozási tétel? Típusfeladat általános megoldása. Sorozat érték Sorozat sorozat Sorozat sorozatok Sorozatok sorozat

Részletesebben

Programozás alapjai (ANSI C)

Programozás alapjai (ANSI C) Programozás alapjai (ANSI C) 1. Előadás vázlat A számítógép és programozása Dr. Baksáné dr. Varga Erika adjunktus Miskolci Egyetem, Informatikai Intézet Általános Informatikai Intézeti Tanszék www.iit.uni-miskolc.hu

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 9. ÖSSZETETT FELADATOK...111 9.1. ELEMI ALGORITMUSOK ÖSSZEÉPÍTÉSE...111 9.2. ÖSSZEFOGLALÁS...118 9.3. GYAKORLÓ FELADATOK...118

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Elemi programozási tételek 2 TÁMOP-4.2.3.-12/1/KONV-2012-0018 Feladataink egy jelentős csoportjában egyetlen bemenő sorozat alapján

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 5 (2012.04.09) Programozás alapok Eddig amit láttunk: Programozás lépései o Feladat leírása (specifikáció) o Algoritmizálás, tervezés (folyamatábra, pszeudokód) o Programozás

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Sorozat érték típusú programozási tételek

Sorozat érték típusú programozási tételek Sorozat érték típusú programozási tételek A soron következő specifikációk és algoritmusok mind olyan típusfeladatokhoz kötődnek, amik igazán sűrűn előfordulhatnak a gyakorlatban. Meg kell keresni valamit,

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Megoldási útmutató I.

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

Programozási tételek feladatok

Programozási tételek feladatok 2016/11/22 03:56 1/6 Programozási tételek feladatok < Programozási feladatok Programozási tételek feladatok Szerző: Sallai ndrás Copyright Sallai ndrás, 2011 Licenc: NU Free Documentation License 1.3 Web:

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Gyakorló feladatok az 1. nagy zárthelyire

Gyakorló feladatok az 1. nagy zárthelyire Gyakorló feladatok az 1. nagy zárthelyire 2012. október 7. 1. Egyszerű, bevezető feladatok 1. Kérjen be a felhasználótól egy sugarat. Írja ki az adott sugarú kör kerületét illetve területét! (Elegendő

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

Bevezetés a programozásba

Bevezetés a programozásba Bevezetés a programozásba 1. Előadás Bevezetés, kifejezések http://digitus.itk.ppke.hu/~flugi/ Egyre precízebb A programozás természete Hozzál krumplit! Hozzál egy kiló krumplit! Hozzál egy kiló krumplit

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Programozási tételek, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok

Részletesebben

Láncolt listák Témakörök. Lista alapfogalmak

Láncolt listák Témakörök. Lista alapfogalmak Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Programozási alapismeretek 3. előadás

Programozási alapismeretek 3. előadás Programozási alapismeretek 3. előadás Tartalom Ciklusok specifikáció+ algoritmika +kódolás Egy bevezető példa a tömbhöz A tömb Elágazás helyett tömb Konstans tömbök 2/42 Ciklusok Feladat: Határozzuk meg

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses maximumkiválasztás TÁMOP-4.2.3.-12/1/KONV 1. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra

Részletesebben

Algoritmusok. Dr. Iványi Péter

Algoritmusok. Dr. Iványi Péter Algoritmusok Dr. Iványi Péter Egyik legrégebbi algoritmus i.e. IV század, Alexandria, Euklidész két természetes szám legnagyobb közös osztójának meghatározása Tegyük fel, hogy a és b pozitív egész számok

Részletesebben

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás. Szénási Sándor

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás.  Szénási Sándor Láncolt listák Egyszerű, rendezett és speciális láncolt listák előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Láncolt

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK Informatikai alapismeretek középszint 0621 ÉRETTSÉGI VIZSGA 2007. május 25. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Web-programozó Web-programozó

Web-programozó Web-programozó Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Objektumorientált Programozás VI.

Objektumorientált Programozás VI. Objektumorientált Programozás VI. Tömb emlékeztető Egyszerű programozási tételek Összetett programozási tételek V 1.0 ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók

Részletesebben

Programozási tételek. Jegyzet. Összeállította: Faludi Anita 2012.

Programozási tételek. Jegyzet. Összeállította: Faludi Anita 2012. Programozási tételek Jegyzet Összeállította: Faludi Anita 2012. Tartalomjegyzék Bevezetés... 3 Programozási tételek... 4 I. Elemi programozási tételek... 4 1. Sorozatszámítás (összegzés)... 4 2. Eldöntés...

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás Eljárás Sorozatszámítás(N, X, S) R R 0 Ciklus i 1-től N-ig R R művelet A[i] A : számokat tartalmazó tömb N : A tömb elemszáma R : Művelet eredménye Eldöntés

Részletesebben

OKTV 2005/2006 döntő forduló

OKTV 2005/2006 döntő forduló Informatika I. (alkalmazói) kategória feladatai OKTV 2005/2006 döntő forduló Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

Bevezetés a programozásba I 4. gyakorlat. PLanG: Szekvenciális fájlkezelés. Szekvenciális fájlkezelés Fájlok használata

Bevezetés a programozásba I 4. gyakorlat. PLanG: Szekvenciális fájlkezelés. Szekvenciális fájlkezelés Fájlok használata Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 4. gyakorlat PLanG: 2011.10.04. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Fájlok

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Összetett programozási tételek 2 TÁMOP-4.2.3.-12/1/KONV Feladataink egy jelentős csoportjában több bemenő sorozat alapján egy sorozatot

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás tétele Például az X tömbben kövek súlyát tároljuk. Ha ki kellene számolni az összsúlyt, akkor az S = f(s, X(i)) helyére S = S + X(i) kell írni. Az f0 tartalmazza

Részletesebben

Programozás I. zárthelyi dolgozat

Programozás I. zárthelyi dolgozat Programozás I. zárthelyi dolgozat 2013. november 11. 2-es szint: Laptopot szeretnénk vásárolni, ezért írunk egy programot, amelynek megadjuk a lehetséges laptopok adatait. A laptopok árát, memória méretét

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában

A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában Oktatási Hivatal A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb 1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =

Részletesebben

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Közismereti informatika I. 4. előadás

Közismereti informatika I. 4. előadás Közismereti informatika I. 4. előadás Rendezések Bemenet: N: Egész, X: Tömb(1..N: Egész) Kimenet: X: Tömb(1..N: Egész) Előfeltétel: Utófeltétel: Rendezett(X) és X=permutáció(X ) Az eredmény a bemenet egy

Részletesebben

Számláló rendezés. Példa

Számláló rendezés. Példa Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a

Részletesebben

Láncolt listák. PPT 2007/2008 tavasz.

Láncolt listák. PPT 2007/2008 tavasz. Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt

Részletesebben

Java programozási nyelv

Java programozási nyelv Java programozási nyelv 2. rész Vezérlő szerkezetek Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2005. szeptember A Java programozási nyelv Soós Sándor 1/23 Tartalomjegyzék

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Szerző. Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: Név: vp.05@hotmail.com Kurzuskód:

Szerző. Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: Név: vp.05@hotmail.com Kurzuskód: Szerző Név: Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: vp.05@hotmail.com Kurzuskód: IP-08PAEG/27 Gyakorlatvezető neve: Kőhegyi János Feladatsorszám: 20 1 Tartalom Szerző... 1 Felhasználói dokumentáció...

Részletesebben

Programozás I. házi feladat

Programozás I. házi feladat Programozás I. házi feladat 2013. 6. hét, 1. rész A feladatsor 4 feladatot tartalmaz, amelyeket egy közös forráskódban kell megvalósítani. Annak érdekében, hogy a tesztelő egymástól függetlenül tudja tesztelni

Részletesebben

BABEŞ-BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR. Informatika záróvizsga tankönyv

BABEŞ-BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR. Informatika záróvizsga tankönyv BABEŞ-BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR Informatika záróvizsga tankönyv 2013 1 4 I. Algoritmusok és programozás 1. Programozási tételek A feladatok feladatosztályokba sorolhatók a jellegük szerint. E feladatosztályokhoz

Részletesebben

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága A PhysioBank adatmegjelenítő szoftvereinek hatékonysága Kaczur Sándor kaczur@gdf.hu GDF Informatikai Intézet 2012. november 14. Célok, kutatási terv Szabályos EKG-felvétel: P, Q, R, S, T csúcs Anatómiai

Részletesebben

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás. Szénási Sándor

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás.  Szénási Sándor Hasító táblázatok Hasító függvények, kulcsütközés kezelése előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Felépítése

Részletesebben

1. Jelölje meg az összes igaz állítást a következők közül!

1. Jelölje meg az összes igaz állítást a következők közül! 1. Jelölje meg az összes igaz állítást a következők közül! a) A while ciklusban a feltétel teljesülése esetén végrehajtódik a ciklusmag. b) A do while ciklusban a ciklusmag után egy kilépési feltétel van.

Részletesebben

29. Visszalépéses keresés 1.

29. Visszalépéses keresés 1. 29. Visszalépéses keresés 1. A visszalépéses keresés algoritmusa Az eddig megismert algoritmusok bizonyos értelemben nyílegyenesen haladtak elôre. Tudtuk, hogy merre kell mennünk, és minden egyes lépéssel

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

6. előadás Faktorizációs technikák közepes méretű osztókra

6. előadás Faktorizációs technikák közepes méretű osztókra 6. előadás Faktorizációs technikák közepes méretű osztókra Dr. Kallós Gábor 2016 2017 1 Tartalom Feladatok, megjegyzések Irodalom 2 Eml.: Próbaosztásos algoritmus (teljes felbontás) 14-18 jegyű számokig

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Elágazás Bevezetés a programozásba I. 2. gyakorlat, tömbök Surányi Márton PPKE-ITK 2010.09.14. Elágazás Elágazás Eddigi programjaink egyszer ek voltak, egy beolvasás (BE: a), esetleg valami m velet (a

Részletesebben

Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1

Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1 Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1 Készítette: Gipsz Jakab Neptun-azonosító: ABC123 E-mail: gipszjakab@seholse.hu Kurzuskód: IT-13AAT1EG Gyakorlatvezető

Részletesebben

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Programozási alapismeretek 1. előadás

Programozási alapismeretek 1. előadás Programozási alapismeretek 1. előadás Tartalom A problémamegoldás lépései programkészítés folyamata A specifikáció Az algoritmus Algoritmikus nyelvek struktogram A kódolás a fejlesztői környezet 2/33 A

Részletesebben

Algoritmus fogalma. Mi az algoritmus? HF: Al Khwarizmi. Egy adott probléma megoldásának leírása elemi lépések sorozatával

Algoritmus fogalma. Mi az algoritmus? HF: Al Khwarizmi. Egy adott probléma megoldásának leírása elemi lépések sorozatával Algoritmusok Algoritmus fogalma Mi az algoritmus? Egy adott probléma megoldásának leírása elemi lépések sorozatával HF: Al Khwarizmi Követelmények Véges: nem állhat végtelen sok lépésből Teljes: teljes

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

1. gyakorlat

1. gyakorlat Követelményrendszer Bevezetés a programozásba I. 1. gyakorlat Surányi Márton PPKE-ITK 2010.09.07. Követelményrendszer Követelményrendszer A gyakorlatokon a részvétel kötelező! Két nagyzárthelyi Röpzárthelyik

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben