Rekurzió. Működése, programtranszformációk. Programozás II. előadás. Szénási Sándor.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Rekurzió. Működése, programtranszformációk. Programozás II. előadás. Szénási Sándor."

Átírás

1 Rekurzió Működése, programtranszformációk előadás Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar

2 Rekurzió Rekurzió alapjai Rekurzív algoritmusok végrehajtása Programtranszformációk

3 Rekurzió alapelve 3 Ahhoz, hogy megérthessük a rekurziót, először meg kell értenünk a rekurziót (ismeretlen szerző) Rekurzív algoritmusokat általában akkor használunk, ha az alapfeladat túl bonyolult, azonban rekurzív hívásokkal ezt vissza tudjuk vezetni egyszerűbb (rész)feladatok megoldására Ennek megfelelően egy rekurzív feladatot általában ehhez hasonlóan definiálunk: triviális megoldása általános eset egyszerűsítése Technikai értelemben rekurzív algoritmusnak azt tekintjük, ami közvetve (közvetlen rekurzió) vagy más függvények közbeiktatásával (közvetett rekurzió) meghívja önmagát

4 Rekurzív függvény felépítése 4 Az előzőek alapján egy lehetséges definíció: f(x) = g(x) h f i(x) ha t(x) ha t(x) f(x) a rekurzív függvény t(x) triviális esethez jutottunk-e? g(x) triviális esetben a megoldás h(x) utólagos feldolgozás i(x) előzetes feldolgozás Feltételezzük, hogy bármelyik bemenetből a triviális megoldás biztosan, véges lépésből elérhető A függvény általában nem csak önmagát hívja, hanem ez előtt és után van lehetősége műveleteket végezni a továbbítandó paramétereken

5 5 Rekurzív függvény általános pszeudokódja Az előző oldalon látottaknak megfelelően: függvény Rekurzív(x) ha t(x) akkor Rekurzív g(x) különben a i(x) b Rekurzív(a) c h(b) Rekurzív c elágazás vége A pszeudokódban található függvényhívások értelemszerűen feladattól függően jelenthetnek tetszőleges összetett műveletet A fenti csak egy általános minta, a konkrét feladatok ettől egészen eltérő szerkezeteket is igényelhetnek (pl. több hívás, ezek eredményei között műveletek)

6 6 Rekurzív függvény általános pszeudokódja Rekurzív feladat megoldásának lehetőségei Rekurzív specifikáció Nemrekurzív specifikáció Rekurzív algoritmus Nemrekurzív algoritmus Rekurzív programnyelv Nemrekurzív programnyelv Számítógép Az implementált programot minden esetben Neumann elvű (tehát nem rekurzív) gépen hajtjuk végre

7 Rekurzió Rekurzió alapjai Rekurzív algoritmusok végrehajtása Programtranszformációk

8 8 Verem Verem adatszerkezet Adatok tárolására szolgáló szerkezet Mindig az utoljára belehelyezett elemet (push) tudjuk belőle kiolvasni (pop) (LIFO Last In First Out) Kiolvasáskor az elem egyben törlődik is BE 5 BE 4 BE 3 5 BE 7 KI 7 KI 3 BE 5 Később részletesebben tárgyaljuk Processzor verem A verem gyakran használt adatszerkezet az operációs rendszer, illetve a processzor működése során eljárások hívásakor a verem tárolja el a hívó utasítást követő utasítás címét (ide kell majd visszatérni a befejezés után) Szintén a veremben tárolódnak a meghívott eljárás paraméterei, lokális változói stb. Ez természetesen implementációtól függ, a mi számunkra azonban ez az egyszerűsített működési elv is megfelelő

9 eljárások hívásának (egy lehetséges) módja 9... E1(1, 2)... eljárás E1(a, b) x lokális változó... E2(a+b)... eljárás E2(d) y lokális változó... C 1 2 x C 3 y verem aktuális állapota Minden függvényhíváskor eltárolódik a visszatérési cím, illetve a függvény lokális változói Visszatéréskor ezek törlődnek a veremből Ez alapján látható, hogy az általuk látott adatok szempontjából az egymás után hívott függvények valójában egymástól függetlenek Lásd változók élettartama

10 Rekurzív eljáráshívás függvény Fakt(a) x = Fakt(3) Ha a = 0 függvény akkor Fakt(a) a = 3... Ha a = 0 függvény akkor Fakt(a) a = 2 Fakt 1 Ha a = 0 függvény akkor Fakt(a) a = 1 különben Fakt 1 ha a = 0 akkor különben Fakt 1 (6) Fakt a * Fakt(a-1) különben (1) Fakt 1 elágazás vége (2) Fakt a * Fakt(a-1) különben függvény vége elágazás vége (1) Fakt a * Fakt(a-1) függvény vége elágazás vége Fakt a * Fakt(a-1) függvény vége elágazás vége függvény vége a = 0 x C 3.. C 2.. C 1.. C 0.. verem aktuális állapota Látható, hogy rekurzív hívás esetén is egymástól független adatokon dolgoznak az egyes függvények Az ugyanolyan nevű lokális változók emiatt nincsenek egymásra hatással Ennek figyelembevételével kell megoldanunk az egyes függvények közötti adatcserét

11 11 Rekurzív algoritmus bemenete Biztosítani kell, hogy minden meghívott függvény hozzáférjen a működéséhez szükséges bemenő paraméterekhez Bemenet biztosítása külső változókon keresztül Az egyes futó függvény példányok nem látják egymás lokális adatait, ezért a mindegyik számára szükséges bemeneti adatokat nem tudjuk ezek között tárolni A függvényen kívüli adatokat azonban a rekurzió minden szintjéről elérjük (globális változók, objektum adattagjai stb.) Tárhely/futásidő szempontjából optimális megoldás Bemenet biztosítása paramétereken keresztül Mint minden más függvénynél, a rekurzív függvényeknél is van lehetőség minden bemenő paramétert átadni a függvény hívásakor Ebben az esetben értelemszerűen a következő rekurzív híváskor mindezt újra át kell adni Ez jóval áttekinthetőbb, bár kevésbé hatékony megoldást nyújt

12 12 Rekurzív algoritmus kimenete Rekurzív hívási lánc során problémát jelenthet az eredmény visszaadás, mivel az eredeti hívó, illetve a végeredményt elérő függvény között számos függvényhívás állhat Eredmény visszaadás külső változókon keresztül A bemenethez hasonlóan itt is van arra lehetőség, hogy a végeredményig eljutó szint egy külső változóban eltárolja az eredményt, a hívó pedig majd innen kiolvassa Eredmény visszaadás függvény visszatérési értékkel Hagyományos függvényekhez hasonlóan a rekurzív függvények is rendelkezhetnek visszatérési értékkel Az önmagát meghívó függvénynek azonban biztosítania kell, hogy az (önmagától) visszakapott értéket továbbítsa a hívója felé Eredmény visszaadás paraméterekkel Amennyiben az újrahíváskor is mindig címszerinti paraméterátadás történt, akkor bármelyik szint változtatja meg a paraméter értékét, az a hívó szintjén is változni fog

13 13 Rekurzió jellemzői Előnyök Gyakran elegáns, jól érthető, áttekinthető kódot ad Bizonyos feladatoknál (pl. rekurzív adatszerkezetek feldolgozása esetén) jóval egyszerűbbek a rekurzív megoldások Hátrányok Gyakran áttekinthetetlen, ember számára nagyon nehezen értelmezhető kódot ad Nagyszámú újrahívás esetén a nyomkövetés nehézkes, nehezen áttekinthető A függvényhívás általában meglehetősen költséges művelet, emiatt a rekurzív algoritmusok nem hatékonyak Egy rekurzívan megadott algoritmusban gyakran észrevétlenek maradnak elhibázott döntések (bár ez nem a rekurzió, hanem a tervező hibája) Átalakítások Később látni fogjuk, hogy a rekurzív és iteratív megoldások általában egymásba alakíthatók

14 Rekurzió Rekurzió alapjai Rekurzív algoritmusok végrehajtása Programtranszformációk

15 15 Elemi konstrukciók függvények segítségével A strukturált programozásnál megismert három konstrukció egyszerűen felírható függvényekkel is Szekvencia Elágazás ciklus f(x) = g h(x) f(x) = f(x) = g(x) h(x) g(x) h f i(x) ha p(x) ha p(x) ha p(x) ha p(x) Egyszerű szabályokat követve így megadhatjuk a programozási tételek rekurzív formáját S 1 S 2 Ha L akkor S 1 különben S 2 elágazás vége ciklus amíg L S ciklus vége

16 16 R I Rekurzív formában megadott fv. Ha egy rekurzív függvény az alábbiak szerint számítható ki: g(f(i-1), f(i-2),..., f(i-k)) f(i) = h(i) Az iteratív megoldás: eljárás f(n) ciklus i 0-tól (K-1)-ig F[i] h[i] ciklus vége ciklus i K-tól N-ig F[i] g(f[i-1], F[i-2],..., F[i-K]) ciklus vége f F[N] ha i > K ha 0 i < K Optimálisabb változat is készíthető, hiszen a tömbből mindig csak az utolsó K elemre van szükségünk

17 17 R I Jobbrekurzió átírása Jobbrekurzió általános esete (a rekurzív hívást követően már nincs szükség a függvény lokális változóira): eljárás JobbRek(X, Y) Q(X, Y) ha p(x, Y) akkor S(X, Y) JobbRek(f(X), Y) elágazás vége Az iteratív megoldás: eljárás JobbRek(X, Y) Q(X, Y) ciklus amíg p(x, Y) S(X, Y) X f(x) Q(X, Y) ciklus vége

18 18 R I Balrekurzió átírása 1. Balrekurzió során a rekurzív függvény meghívása után is szükség van a lokális változók értékeire, azok módosulhatnak is Balrekurzió általános esete: eljárás BalRek(X, Y) ha p(x, Y) akkor BalRek(f(X), Y) S(X, Y) különben T(X, Y) elágazás vége A hívás előtt is szerepelhet valamilyen művelet, az egyszerűség kedvéért ezzel nem foglalkozunk Tipikusan akkor célszerű ezt használni, ha egy sorozatot visszafelé szeretnénk feldolgozni (verem?)

19 19 R I Balrekurzió átírása 2. Balrekurzió egy lehetséges iteratív átirata: eljárás BalRek(X, Y) N 0 ciklus amíg p(x, Y) Verembe(X) X f(x) N N + 1 ciklus vége T(X, Y) ciklus i 1-től N-ig Veremből(X) S(X, Y) ciklus vége Ha a sorozat elemszámát előre ismerjük, értelemszerűen nincs szükség az N számolásra Ha az f(x) függvénynek van inverze, egyszerűbb (veremnélküli) algoritmus is adható

20 20 Iteratív Rekurzív átalakítás Az elöl és hátultesztelős ciklusok átírása eljárás ElölTeszt(X) ciklus amíg P(X) S(X) ciklus vége eljárás HátulTeszt(X) ciklus S(X) ciklus amíg P(X) eljárás ElölTeszt(X) ha p(x) akkor S(X) ElölTeszt(X) elágazás vége eljárás HátulTeszt(X) S(X) ha p(x) akkor HátulTeszt(X) elágazás vége Számlálós ciklus egyszerűen átírható elöltesztelőssé Amennyiben a ciklus előtt vagy után további műveletek szerepelnek, azokat célszerű egy másik függvényben (a rekurzió 0. szintjén ) elvégezni

21 21 Irodalomjegyzék Javasolt/felhasznált irodalom Pap, Szlávi, Zsakó: μlógia4 Módszeres programozás: Rekurzió ELTE TTK, 2004 S. Harris, J. Ross: Kezdőkönyv az algoritmusokról SZAK Kiadó, 2006 Wikipedia.org megfelelő szócikkek

Rekurzió. Témakörök. Rekurzió alapelve. Rekurzió alapjai Rekurzív algoritmusok végrehajtása Visszalépéses keresés Programtranszformációk

Rekurzió. Témakörök. Rekurzió alapelve. Rekurzió alapjai Rekurzív algoritmusok végrehajtása Visszalépéses keresés Programtranszformációk Rekurzió szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Rekurzió alapjai Rekurzív algoritmusok végrehajtása Visszalépéses keresés Programtranszformációk 2 Rekurzió alapelve

Részletesebben

Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)

Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió és iteráció Balrekurzió Ha az eljárás első utasításaként szerepel a rekurzív hívás, akkor a rekurzió lényegében az első nem

Részletesebben

Programozás II. előadás

Programozás II. előadás Nem összehasonlító rendezések Nem összehasonlító rendezések Programozás II. előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Programozás II. 2 Rendezés

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

Eseménykezelés. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor.

Eseménykezelés. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor. Eseménykezelés előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Függvénymutatókkal Származtatással Interfészekkel Egyéb

Részletesebben

5. Rekurzió és iteráció (Rekurzív programok átírása nemrekurzívvá)

5. Rekurzió és iteráció (Rekurzív programok átírása nemrekurzívvá) 5. Rekurzió és iteráció (Rekurzív programok átírása nemrekurzívvá) Az elõzõekben megbarátkoztunk a rekurzióval, mint egy problémamegoldási stratégiával, sõt megvizsgáltunk néhány programozási nyelvet a

Részletesebben

Eljárások és függvények

Eljárások és függvények Eljárások és függvények Jegyzet Összeállította: Faludi Anita 2012. Bevezetés Ez a jegyzet elsősorban azoknak a diákoknak készült, akiket tanítok, ezért a jegyzet erőteljesen hiányos. Az olvasó egy percig

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10. Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás. Szénási Sándor

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás.  Szénási Sándor Láncolt listák Egyszerű, rendezett és speciális láncolt listák előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Láncolt

Részletesebben

Algoritmusok, adatszerkezetek, objektumok

Algoritmusok, adatszerkezetek, objektumok Algoritmusok, adatszerkezetek, objektumok 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 14. Sergyán (OE NIK) AAO 01 2011.

Részletesebben

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10. Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /

Részletesebben

ALGORITMIKUS SZERKEZETEK ELÁGAZÁSOK, CIKLUSOK, FÜGGVÉNYEK

ALGORITMIKUS SZERKEZETEK ELÁGAZÁSOK, CIKLUSOK, FÜGGVÉNYEK ALGORITMIKUS SZERKEZETEK ELÁGAZÁSOK, CIKLUSOK, FÜGGVÉNYEK 1. ELÁGAZÁSOK ÉS CIKLUSOK SZERVEZÉSE Az adatszerkezetek mellett a programok másik alapvető fontosságú építőkövei az ún. algoritmikus szerkezetek.

Részletesebben

Optimalizációs stratégiák 1.

Optimalizációs stratégiák 1. Optimalizációs stratégiák 1. Nyers erő, Oszd meg és uralkodj, Feljegyzéses, Dinamikus, Mohó előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János

Részletesebben

Összetett programozási tételek

Összetett programozási tételek Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

Rekurzív algoritmusok

Rekurzív algoritmusok Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív

Részletesebben

Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Függvények. Dr. Bécsi Tamás 6. Előadás

Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Függvények. Dr. Bécsi Tamás 6. Előadás Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Függvények Dr. Bécsi Tamás 6. Előadás Bevezetés Egy idő után az egyetlen main(){ függvénnyel megírt programunk túl nagy méretű lesz. Vannak

Részletesebben

Programozási nyelvek a közoktatásban alapfogalmak I. előadás

Programozási nyelvek a közoktatásban alapfogalmak I. előadás Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)

Részletesebben

Verem Verem mutató 01

Verem Verem mutató 01 A számítástechnikában a verem (stack) egy speciális adatszerkezet, amiben csak kétféle művelet van. A berak (push) egy elemet a verembe rak, a kivesz (pop) egy elemet elvesz a verem tetejéről. Mindig az

Részletesebben

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi

Részletesebben

Rekurzió. (Horváth Gyula és Szlávi Péter előadásai. felhasználásával)

Rekurzió. (Horváth Gyula és Szlávi Péter előadásai. felhasználásával) Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió Klasszikus példák Faktoriális n! Fibonacci-számok Fib n A rekurzió lényege: önhivatkozás n * n 1! ha n 0 1 ha n 0 0 ha n 0 1

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)

Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió Klasszikus példák Faktoriális n! n * n 1! ha n 0 1 ha n 0 Fibonacci-számok Fib n 0 ha n 0 1 ha n 1 Fib n 1 Fib n 2 ha n 1 A

Részletesebben

Adatszerkezetek 1. Dr. Iványi Péter

Adatszerkezetek 1. Dr. Iványi Péter Adatszerkezetek 1. Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot kódoltan tároljuk

Részletesebben

Programozási nyelvek Java

Programozási nyelvek Java statikus programszerkezet Programozási nyelvek Java Kozsik Tamás előadása alapján Készítette: Nagy Krisztián 2. előadás csomag könyvtárak könyvtárak forrásfájlok bájtkódok (.java) (.class) primitív osztály

Részletesebben

Optimalizációs stratégiák 2.

Optimalizációs stratégiák 2. Optimalizációs stratégiák 2. Visszalépéses keresés, szétválasztás és korlátozás előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

A függvény kód szekvenciáját kapcsos zárójelek közt definiáljuk, a { } -ek közti részt a Bash héj kód blokknak (code block) nevezi.

A függvény kód szekvenciáját kapcsos zárójelek közt definiáljuk, a { } -ek közti részt a Bash héj kód blokknak (code block) nevezi. Függvények 1.Függvények...1 1.1.A függvény deníció szintaxisa... 1..Függvények érték visszatérítése...3 1.3.Környezettel kapcsolatos kérdések...4 1.4.Lokális változók használata...4 1.5.Rekurzív hívások...5.kód

Részletesebben

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok. Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto

Részletesebben

Programozási tételek. PPT 2007/2008 tavasz.

Programozási tételek. PPT 2007/2008 tavasz. Programozási tételek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Strukturált programozás paradigma Alapvető programozási tételek Összetett programozási tételek Programozási

Részletesebben

A C programozási nyelv II. Utasítások. A függvény.

A C programozási nyelv II. Utasítások. A függvény. A C programozási nyelv II. Utasítások. A függvény. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv II (Utasítások, fuggvények) CBEV2 / 1 Kifejezés utasítás Kifejezés utasítás, blokk

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

Már megismert fogalmak áttekintése

Már megismert fogalmak áttekintése Interfészek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Polimorfizmus áttekintése Interfészek Interfészek kiterjesztése Eseménykezelési módszerek 2 Már megismert fogalmak

Részletesebben

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24. Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom

Részletesebben

Informatika tanítási módszerek

Informatika tanítási módszerek Informatika tanítási módszerek Programozás tanítási módszerek módszeres, algoritmusorientált; adatorientált; specifikációorientált; feladattípus-orientált; nyelvorientált; utasításorientált; matematikaorientált;

Részletesebben

Programozás alapjai. 7. előadás

Programozás alapjai. 7. előadás 7. előadás Wagner György Általános Informatikai Tanszék Jótanács (1) Tipikus hiba a feladat elkészítésekor: Jótanács (2) Szintén tipikus hiba: a file-ból való törléskor, illetve a file-nak új elemmel való

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)

Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió Klasszikus példák Faktoriális n! Fibonacci-számok Fib n A rekurzió lényege: önhivatkozás n * n 1! ha n 0 1 ha n 0 0 ha n 0 1

Részletesebben

Információs Technológia

Információs Technológia Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió

Részletesebben

Programozási nyelvek 6. előadás

Programozási nyelvek 6. előadás Programozási nyelvek 6. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig) Számítási modell (hogyan

Részletesebben

OOP. Alapelvek Elek Tibor

OOP. Alapelvek Elek Tibor OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós

Részletesebben

Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor

Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor Bináris keresőfa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Bináris keresőfa Rekurzív

Részletesebben

A programozás alapjai

A programozás alapjai A programozás alapjai Változók A számítógép az adatokat változókban tárolja A változókat alfanumerikus karakterlánc jelöli. A változóhoz tartozó adat tipikusan a számítógép memóriájában tárolódik, szekvenciálisan,

Részletesebben

Programozási nyelvek a közoktatásban alapfogalmak II. előadás

Programozási nyelvek a közoktatásban alapfogalmak II. előadás Programozási nyelvek a közoktatásban alapfogalmak II. előadás Szintaxis, szemantika BNF szintaxisgráf absztrakt értelmező axiomatikus (elő- és utófeltétel) Pap Gáborné. Szlávi Péter, Zsakó László: Programozási

Részletesebben

Gráfok. Programozás II. előadás. Szénási Sándor.

Gráfok. Programozás II. előadás.   Szénási Sándor. Gráfok előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Tárolási módok Szélességi bejárás Mélységi bejárás Legrövidebb

Részletesebben

Algoritmizálás, adatmodellezés tanítása 6. előadás

Algoritmizálás, adatmodellezés tanítása 6. előadás Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér

Részletesebben

A verem (stack) A verem egy olyan struktúra, aminek a tetejéről kivehetünk egy (vagy sorban több) elemet. A verem felhasználása

A verem (stack) A verem egy olyan struktúra, aminek a tetejéről kivehetünk egy (vagy sorban több) elemet. A verem felhasználása A verem (stack) A verem egy olyan struktúra, aminek a tetejére betehetünk egy új (vagy sorban több) elemet a tetejéről kivehetünk egy (vagy sorban több) elemet A verem felhasználása Függvény visszatérési

Részletesebben

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév

Részletesebben

Interfészek. PPT 2007/2008 tavasz.

Interfészek. PPT 2007/2008 tavasz. Interfészek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Polimorfizmus áttekintése Interfészek Interfészek kiterjesztése 2 Már megismert fogalmak áttekintése Objektumorientált

Részletesebben

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:

Részletesebben

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19.

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Programkészítés Megrendelői igények begyűjtése Megoldás megtervezése (algoritmuskészítés)

Részletesebben

5. Hét Sorrendi hálózatok

5. Hét Sorrendi hálózatok 5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő

Részletesebben

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás. Szénási Sándor

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás.  Szénási Sándor Hasító táblázatok Hasító függvények, kulcsütközés kezelése előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Felépítése

Részletesebben

Adatok ábrázolása, adattípusok

Adatok ábrázolása, adattípusok Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában

Részletesebben

Programozás C nyelven 6. ELŐADÁS. Sapientia EMTE

Programozás C nyelven 6. ELŐADÁS. Sapientia EMTE Programozás C nyelven 6. ELŐADÁS Sapientia EMTE 2015-16 ELJÁRÁSOK: void-függvények Olvassu k be szá ot a bille tyűzetről, és írassuk ki a égyzeteiket a képer yőre. int main(){ int n, i, szam; cin >> n;

Részletesebben

Programozás BMEKOKAA146. Dr. Bécsi Tamás 5. előadás

Programozás BMEKOKAA146. Dr. Bécsi Tamás 5. előadás Programozás BMEKOKAA146 Dr. Bécsi Tamás 5. előadás Tömbök átméretezése public static void Resize( ref T[] array, int newsize ) Példa: int[] a=new int[20]; Array.Resize(ref a, 22); 2016. 10. 19.

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:

Részletesebben

van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk

van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk függvények ismétlése lista fogalma, használata Game of Life program (listák használatának gyakorlása) listák másolása (alap szintű, teljes körű) Reversi 2 Emlékeztető a függvények lényegében mini-programok,

Részletesebben

és az instanceof operátor

és az instanceof operátor Java VIII. Az interfacei és az instanceof operátor Krizsán Zoltán Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2005. 10. 24. Java VIII.: Interface JAVA8 / 1 Az interfészről általában

Részletesebben

Java programozási nyelv

Java programozási nyelv Java programozási nyelv 2. rész Vezérlő szerkezetek Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2005. szeptember A Java programozási nyelv Soós Sándor 1/23 Tartalomjegyzék

Részletesebben

Java VIII. Az interfacei. és az instanceof operátor. Az interfészről általában. Interfészek JAVA-ban. Krizsán Zoltán

Java VIII. Az interfacei. és az instanceof operátor. Az interfészről általában. Interfészek JAVA-ban. Krizsán Zoltán Java VIII. Az interfacei és az instanceof operátor Krizsán Zoltán Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2005. 10. 24. Java VIII.: Interface JAVA8 / 1 Az interfészről általában

Részletesebben

29. Visszalépéses keresés 1.

29. Visszalépéses keresés 1. 29. Visszalépéses keresés 1. A visszalépéses keresés algoritmusa Az eddig megismert algoritmusok bizonyos értelemben nyílegyenesen haladtak elôre. Tudtuk, hogy merre kell mennünk, és minden egyes lépéssel

Részletesebben

A programozás alapjai 1 Rekurzió

A programozás alapjai 1 Rekurzió A programozás alapjai Rekurzió. előadás Híradástechnikai Tanszék - preorder (gyökér bal gyerek jobb gyerek) mentés - visszaállítás - inorder (bal gyerek gyökér jobb gyerek) rendezés 4 5 6 4 6 7 5 7 - posztorder

Részletesebben

Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás

Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Programozás alapjai 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Háziellenőrzés Egészítsd ki úgy a simplemaths.c programot, hogy megfelelően működjön. A program feladata az inputon soronként megadott

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus

Részletesebben

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok

Részletesebben

Programozás alapjai. (GKxB_INTM023) Dr. Hatwágner F. Miklós október 11. Széchenyi István Egyetem, Gy r

Programozás alapjai. (GKxB_INTM023) Dr. Hatwágner F. Miklós október 11. Széchenyi István Egyetem, Gy r Programozás alapjai (GKxB_INTM023) Széchenyi István Egyetem, Gy r 2018. október 11. Függvények Mi az a függvény (function)? Programkód egy konkrét, azonosítható, paraméterezhet, újrahasznosítható blokkja

Részletesebben

Objektumorientált Programozás VI.

Objektumorientált Programozás VI. Objektumorientált Programozás Metódusok Paraméterek átadása Programozási tételek Feladatok VI. ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendő

Részletesebben

Programozás I. 5. Előadás: Függvények

Programozás I. 5. Előadás: Függvények Programozás I 5. Előadás: Függvények Függvény Egy alprogram Egy C program általában több kisméretű, könnyen értelmezhető függvényből áll Egy függvény megtalálható minden C programban: ez a main függvény

Részletesebben

Láncolt listák Témakörök. Lista alapfogalmak

Láncolt listák Témakörök. Lista alapfogalmak Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök

Részletesebben

Programozás. (GKxB_INTM021) Dr. Hatwágner F. Miklós március 3. Széchenyi István Egyetem, Gy r

Programozás. (GKxB_INTM021) Dr. Hatwágner F. Miklós március 3. Széchenyi István Egyetem, Gy r Programozás (GKxB_INTM021) Széchenyi István Egyetem, Gy r 2018. március 3. Függvények Mi az a függvény (function)? Programkód egy konkrét, azonosítható, paraméterezhet, újrahasznosítható blokkja Miért

Részletesebben

Web-programozó Web-programozó

Web-programozó Web-programozó Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 33

Bánsághi Anna 2014 Bánsághi Anna 1 of 33 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 7. ELŐADÁS - ABSZTRAKT ADATTÍPUS 2014 Bánsághi Anna 1 of 33 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Paraméter átadás regisztereken keresztül

Paraméter átadás regisztereken keresztül Eljárások paramétereinek átadási módjai Az eljárások deklarációjánál nincs mód arra, hogy paramétereket adjunk meg, ezért más, közvetett módon tudunk átadni paramétereket az eljárásoknak. Emlékeztetőül:

Részletesebben

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 4 (2012.03.26) Bevezető Mi is az a programozási nyelv, mit láttunk eddig (HTML+CSS)? Az eddig tanult két nyelven is mondhatni programoztunk, de ez nem a klasszikus értelemben

Részletesebben

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6. Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Bevezetés a programozásba. 8. Előadás: Függvények 2.

Bevezetés a programozásba. 8. Előadás: Függvények 2. Bevezetés a programozásba 8. Előadás: Függvények 2. ISMÉTLÉS Helló #include using namespace std; int main() cout

Részletesebben

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10. Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,

Részletesebben

Programozás alapjai II. (7. ea) C++

Programozás alapjai II. (7. ea) C++ Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Az összetett programozási tételek is egy tőről fakadnak

Az összetett programozási tételek is egy tőről fakadnak Az összetett programozási tételek is egy tőről fakadnak Zsakó László 1, Törley Gábor 2, Szlávi Péter 3 1 zsako@caesar.elte.hu, 2 pezsgo@inf.elte.hu, 3 szlavi@elte.hu ELTE IK Absztrakt. A programozás tanulás

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

Objektumorientált paradigma és a programfejlesztés

Objektumorientált paradigma és a programfejlesztés Objektumorientált paradigma és a programfejlesztés Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján Objektumorientált

Részletesebben

Algoritmusok és adatszerkezetek I. 4. előadás

Algoritmusok és adatszerkezetek I. 4. előadás Algoritmusok és adatszerkezetek I. 4. előadás A lista olyan sorozat, amelyben műveleteket egy kiválasztott, az ún. aktuális elemmel lehet végezni. A lista rendelkezik az alábbi műveletekkel: Üres: Lista

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 5 (2012.04.09) Programozás alapok Eddig amit láttunk: Programozás lépései o Feladat leírása (specifikáció) o Algoritmizálás, tervezés (folyamatábra, pszeudokód) o Programozás

Részletesebben

Programozási alapismeretek 1. előadás

Programozási alapismeretek 1. előadás Programozási alapismeretek 1. előadás Tartalom A problémamegoldás lépései programkészítés folyamata A specifikáció Az algoritmus Algoritmikus nyelvek struktogram A kódolás a fejlesztői környezet 2/33 A

Részletesebben

Fordítás Kódoptimalizálás

Fordítás Kódoptimalizálás Fordítás Kódoptimalizálás Kód visszafejtés. Izsó Tamás 2016. október 20. Izsó Tamás Fordítás Kódoptimalizálás / 1 Aktív változók Angol irodalomban a Live Variables kifejezést használják, míg az azt felhasználó

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés tanítása 1. előadás Specifikáció A specifikáció elemei bemenet mit ismerünk? kimenet mire vagyunk kíváncsiak? előfeltétel mit tudunk az ismertekről? utófeltétel mi az összefüggés

Részletesebben

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism)

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism) Programozás alapjai C nyelv 8. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény

Részletesebben