Optimalizációs stratégiák 2.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Optimalizációs stratégiák 2."

Átírás

1 Optimalizációs stratégiák 2. Visszalépéses keresés, szétválasztás és korlátozás előadás Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar

2 Optimalizációs stratégiák 2. Visszalépéses keresés Visszalépéses kereséssel optimalizálás Szétválasztás és korlátozás

3 3 Bevezető feladat Egy építkezésen több egymástól független munkafázist kell elvégezni. Osszuk szét a munkákat az arra alkalmas személyek között (úgy, hogy mindenki csak egyet vállalhat)! Géza Miklós Miklós András Zsolt Géza Miklós Klaudia András Zsolt Palika András Géza Szponzor Irányítás Alap Végigpróbálgathatjuk az összes lehetséges változatot, (amelyekből összesen = 96 db van), ezek túlnyomó többsége azonban nem megoldása a feladatnak Olyan algoritmust keresünk, ami a megoldás keresése során eleve nem folytat olyan utakat, amelyek láthatóan nem vezethetnek megoldáshoz Fal Engedély Lefizetés

4 Feladat általánosítása 4 N darab részeredményt keresünk (E 1, E 2... E N ) Mindegyikhez ismerjük a véges értékkészletet (pl. E 1 -hez ennek mérete M 1, elemei: R 1,1, R 1,2,... R 1,M1 ) M 1 =2 M 2 =2 M 3 =2 R 2,1 R 3,1 M 4 =3 R 4,1 R 4,2 M 5 =2 M 6 =2 R 1,2 R 2,2 R 3,2 R 4,3 R 1,1 R 6,2 R 5,1 R 6,1 R 5,2 E 1 E 2 E 3 E 4 E 5 E 6 N=6 A visszalépéses keresés olyan feladat típusoknál alkalmazható hatékonyan, ahol A megoldandó feladat több, egymástól csak közvetve függő részfeladat megoldásából áll Már a részfeladatok egy részéből is lehet arra következtetni, hogy az azokra adott részmegoldásokkal biztosan nem érhető el a teljes megoldás

5 5 Visszalépéses keresés paraméterei Keresés bemenete: N megoldandó részfeladatok száma M szint szint-edik részfeladat lehetséges részmegoldásainak a száma R szint,i szint-edik részfeladat i. lehetséges részmegoldása Keresés kimenete: van van-e teljes megoldás? E részmegoldásokat tartalmazó vektor (E i az i. részmegoldás értéke) A feladattól függő szabályokat általában két függvény segítségével adjuk meg: F t (szint, s) Egy függvény, ami azt határozza meg, hogy a szint-edik részfeladat esetében lehetséges megoldás-e az s? F k (szint, s, E) Azt határozza meg, hogy a szint-edik részfeladat esetében választhatjuk-e az s részmegoldást, amennyiben az előző szinteken az E vektorban található részmegoldásokat választottuk? Az előző példa esetében az F t mindig igaz (hiszen csak olyanokat soroltunk fel, akik megfelelnek az adott feladatra), az F k pedig akkor igaz, ha a megadott embert még nem választottuk más munkára

6 6 Rekurzív visszalépéses keresés Visszalépéses keresés egy lehetséges megvalósítása eljárás VisszalépésesKeresés(szint, címsz. E, címsz. van) i 0 ciklus amíg van i < M szint i i + 1 ha F t (szint, R szint,i ) akkor ha F k (szint, R szint,i, E) akkor E szint R szint,i ha szint = N akkor van igaz különben VisszalépésesKeresés(szint + 1, E, van) ciklus vége eljárás vége van hamis VisszalépésesKeresés(1, E, van)

7 7 Rekurzív visszalépéses keresés egymást kizáró részmegoldásokkal Amennyiben az egyes részeredmények páronként kizáróak eljárás VisszalépésesKeresés(szint, címsz. E, címsz. van) i 0 ciklus amíg van i < M szint i i + 1 ha F t (szint, R szint,i ) akkor k 1 ciklus amíg k < szint F k (szint, R szint,i, k, E k ) k k + 1 ciklus vége ha k = szint akkor E szint R szint,i ha szint = N akkor van igaz különben VisszalépésesKeresés(szint + 1, E, van) ciklus vége eljárás vége van hamis VisszalépésesKeresés(1, E, van)

8 8 Visszalépéses kereséssel kezelhető problémák osztályozása Részfeladatok egymást kizárják igen (ilyenkor használható az általános algoritmus) nem (erre láttuk a második algoritmust) Részmegoldások száma logikai változók minden részfeladatnál két lehetőség közül választhatunk M darab több előre rögzített feltétel közül választhatunk előzményfüggő egy adott helyen a lehetséges választások száma attól függ, hogy az előző szinteken milyen értékeket választottunk (ilyenkor úgy kell az F t függvényt módosítani, hogy az is hozzáférjen az eddigi részeredményekhez) Logikai átfedések, időzítés Backtrack Kölcsönösen kizáró Összetett feltétel M darab Előzményfüggő Logikai M darab Előzményfüggő 8 királynő, sudoku, feladat kioszt. szólánc hátizsák pakolás összetett feladatkiosztás optimális útkeresés, huszár útja

9 9 Problématér átalakítása A visszalépéses keresés általunk vizsgált algoritmusa egy vektor elemeinek keresi az értékét A feladatok azonban gyakran több dimenzióban vannak meghatározva, pl. töltsünk ki egy sudoku táblát helyezzünk el egy sakktáblán királynőket járjunk be egy sakktáblát egy huszárral Megoldási lehetőségek algoritmus módosítása: az i ciklus cseréje egy két vagy többdimenziós teret bejáró egymásba ágyazott ciklusokkal problématér átalakítása: az eredetileg többdimenziós problémát felírjuk egydimenziós formában (erre látunk példákat a következő diákon) 1,1 1,2 1,3 szint N = 6 2,1 2,2 2,3 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 3,1 3,2 3,3

10 10 8 királynő a sakktáblán Klasszikus feladat: helyezzünk el úgy 8 királynőt a sakktáblán, hogy azok ne üssék egymást A lehetséges elhelyezések száma meglehetősen nagy: ,78 * A visszalépéses keresés jól használható, mivel ha bármelyik két már lerakott királynő üti egymást, akkor nem is kell vizsgálni a többieket Problématér átalakítása: minden oszlopba pontosan egy királynőt kell elhelyeznünk, így valójában 8 darab 1..8 közötti számot keresünk, ez már egyszerű egydimenziós probléma A kölcsönösen kizáró algoritmus így már alkalmazható: N = 8 M i = 8 ; R i,j = j (i=1..8 ; j = 1..8) F t (i, r) = igaz F k (i, r, j, q) = akkor igaz, ha a sakk szabályai szerint az i,r és a j,q pozícióban lévő királynők nem ütik egymást

11 11 8 királynő a sakktáblán (2) Egy lehetséges elhelyezés F k megvalósítása: (x 1,y 1 ) és (x 2, y 2 ) helyen álló királynők akkor ütik egymást, ha az alábbiak közül bármelyik teljesül: x 1 = x 2 y 1 = y 2 x 1 - x 2 = y 1 - y 2

12 12 Huszár útja a sakktáblán Klasszikus feladat: egy fix kezdőpontból be lehet járni egy huszárral az egész táblát úgy, hogy minden mezőt pontosan egyszer érintünk? Egy huszár 8 irányba tud lépni, így az ellenőrizendő kombinációk száma: kb ,84 * Visszalépéses keresés jól használható, mivel egy n-edik rossz lépés után nem kell foglalkozni az utána következő (63-n) darabbal Problématér átalakítása: tudjuk, hogy 63 lépésünk lesz, így a feladat valójában a 63 megfelelő irány megtalálása (minden lépésnél 8 lehetőség közül választhatunk) Az algoritmus előzményfüggő változata használható: N = 63 M i = 8 ; R i,j = a j. lehetséges lépés iránya (pl. 2 fel+1 balra, 2 fel+1 jobbra, stb.) F t megadott helyre léphet-e a huszár (táblán belül marad?). Mivel ez egy előzményfüggő feladat, itt az F t is megkapja az előző lépések értékét (E vektor), ami alapján tudja hogy épp hol jár, és ez alapján tud dönteni F k az előző lépések nem zárják-e ki az új helyet? (járt már ott?)

13 13 Sudoku feladat megoldó Egy 9x9-es táblázat tartalmaz előre beírt és üres mezőket. Az n darab üres mezőt kell kitölteni az alábbi szabályok szerint minden üres helyre egy szám írható 1..9 között egy sorban, illetve egy oszlopban nem szerepelhet kétszer ugyanaz a szám a tábla 3x3-as blokkokra oszlik, egy blokkon belül nem lehet kétszer ugyanaz Lineáris kereséssel a lépésszám: kb. n 9 Visszalépéses keresés jól használható, mivel ha két mezőbe beírt érték kizárja egymást, akkor a többi mezőt nem is kell vizsgálni Problématér átalakítása: maga a tábla kétdimenziós, azonban egy listába felsorolhatjuk az üres mezőket. Így megfelelően n darab részfeladatunk lesz, amelyekbe 1..9 közötti értéket keresünk Az algoritmus előzményfüggő változata használható: N = üres mezők száma M i = 9 ; R i,j = j (i=1..n ; j = 1..9) F t (i, j) az i. számú üres mezőbe beírható-e a j érték (a fix mezők alapján) F k (i,r,j,q) az i. üres mezőbe írt r szám nem zárja ki a j. üres mezőbe írt q-t

14 14 Sudoku feladat megoldó Kétdimenziós tábla átalakítása egydimenziós szerkezetté Ezzel a módszerrel jelentősen kibővíthető a visszalépéses kereséssel megoldható feladatok köre Fix mezők: Üres mezők: (0,0) (0,2) (0,3) (1,0) (0,1) (0,4) (1,2) (1,3) Az egyes szinteknek az egyes üres mezők felelnek meg, ezek között kell keresni megfelelő számokat 1..9 között

15 Optimalizációs stratégiák 2. Visszalépéses keresés Visszalépéses kereséssel optimalizálás Szétválasztás és korlátozás

16 16 Minden megoldás kiválogatása Az első megoldás után nem állunk meg, keressük a többit eljárás VisszalépésesKeresés(szint, címsz. E, címsz. van, címsz. MIND) i 0 ciklus amíg van i < M szint i i + 1 ha F t (szint, R szint,i ) akkor ha F k (szint, R szint,i, E) akkor E szint R szint,i ha szint = N akkor van igaz MIND MIND E különben VisszalépésesKeresés(szint + 1, E, van, MIND) ciklus vége eljárás vége van hamis MIND VisszalépésesKeresés(1, E, van, MIND)

17 17 Optimális megoldás keresése Keresés helyett tulajdonképpen minimumkiválasztás eljárás VisszalépésesKeresés(szint, címsz. E, címsz. van, címsz. OPT) i 0 ciklus amíg van i < M szint i i + 1 ha F t (szint, R szint,i ) akkor ha F k (szint, R szint,i, E) akkor E szint R szint,i ha szint = N akkor ha van Jóság(E) > Jóság(OPT) akkor OPT E van igaz különben VisszalépésesKeresés(szint + 1, E, van, OPT) ciklus vége eljárás vége van hamis VisszalépésesKeresés(1, E, van, OPT)

18 18 Hátizsák probléma 0-1 hátizsák probléma Bemenete W max : hátizsák mérete N: rendelkezésre álló tárgyak száma w i : i. tárgy súlya p i : i. tárgy értéke Kimenete P max : egy optimális pakolás értéke Pakolás: tárgyanként meghatározzuk, hogy bekerül-e a zsákba vagy sem (pl. N elemű logikai tömb) Pakolás összsúlya/összértéke: a pakolás által a hátizsákba választott tárgyak súlyának/értékének összege Érvényes pakolás: olyan pakolás, amelynek összsúlya nem nagyobb mint a hátizsák mérete Optimális pakolás: olyan érvényes pakolás, amelyiknél nincs nagyobb összértékű érvényes pakolás

19 19 Hátizsákba pakolás A visszalépéses keresés használható: ha néhány tárgy együtt nem fér a hátizsákba, akkor az ezen az úton nem kell tovább vizsgálódni Az algoritmus előzményfüggő változata használható: N = tárgyak száma M i = 2 ; R i,1 = igaz (adott tárgy bekerül), R i,2 = hamis (adott tárgy nem kerül be) F t igaz, ha a tárgy önmagában belefér a zsákba F k igaz, ha az előző tárgyakkal együtt sem lépte túl a maximális méretet Az összehasonlíthatóság érdekében egyszerűsített algoritmust írunk Nincs külön M i és R i, hiszen minden szinten két részmegoldás van csak Az F t -t mindig igaznak tekintjük így el is hagyhatjuk (ha egy tárgy mégse férne be a zsákba, akkor az F k úgyis hamis lesz) A VAN változóra sincs szükség, mivel a kiinduló állapot (semmit se rakunk a zsákba) egy biztosan érvényes pakolást tartalmaz. Megállási feltételre pedig nincs szükség az optimalizáció miatt.

20 0-1 hátizsák probléma megoldása visszalépéses keresés segítségével 20 függvény F k (szint, E) vissza ÖsszSúly(E) W max függvény vége eljárás Backtrack(szint, címsz. E, címsz. OPT) ciklus i 0-tól 1-ig E[szint] (i = 0) ha F k (szint, E) akkor ha szint = N akkor ha ÖsszÉrték(E) > ÖsszÉrték(OPT) akkor OPT E különben Backtrack(szint + 1, E, OPT) ciklus vége eljárás vége függvény HátizsákBT E [hamis,hamis,,hamis]; OPT [hamis,hamis,,hamis] Backtrack(1, E, OPT) vissza ÖsszÉrték(OPT) függvény vége

21 21 A visszalépéses keresés módszer értékelése Előnyei Jól áttekinthető, általánosan használható módszer Az oszd meg és uralkodj módszerhez hasonlóan a nyilvánvalóan felesleges részfeladatok vizsgálatát elkerüli Hátrányai A rekurzív hívások miatt az erőforrásigénye nagy lehet (persze megírható a backtrack iteratív formában is) Az átfedő részfeladatok esetén elképzelhető, hogy többször megoldja ugyanazt a részfeladatot Bizonyos feladatokra találhatunk jobb megoldást is

22 Optimalizációs stratégiák 2. Visszalépéses keresés Visszalépéses kereséssel optimalizálás Szétválasztás és korlátozás

23 23 Szétválasztás és korlátozás (branch and bound) Bizonyos feladatoknál a keresés közben nem csak azt tudjuk megállapítani, hogy egy úton lehet-e megoldás, hanem azt is, hogy ez a megoldás lehet-e jobb mint az eddig talált legjobb Ilyenkor használható jól a szétválasztás és korlátozás technika, amely során az alábbi két függvényre van szükség: Szétválasztási függvény: ennek szerepe, hogy egy bonyolult feladatot szétbontson egyszerűbb részfeladatokra (ez már ismerős lehet az eddigi technikákból) Korlátozó függvény: ez próbálja megmondani, hogy egy részfeladat megoldásának érdemes-e nekiállni. Általában egy felső becslést ad arra, hogy a megadott részfeladatnak mi lehet a legjobb eredménye. Ha még ezzel se járunk jobban, mint az eddigi optimum, akkor nem is kezd bele a vizsgálatba A hátizsákpakolásnál pl. megnézhetjük, hogy ha az összes hátralévő tárgyat bele tudjuk rakni a megmaradt szabad helyre, akkor jobb megoldást kapunk-e mint az eddigi legjobb ez egy felső becslés, ha már ez se igaz, akkor nem is érdemes vizsgálódni erre ha nem, akkor folytatni kell a rekurziót, hogy mi a tényleges részmegoldás erre

24 0-1 hátizsák probléma megoldása szétválasztás és korlátozás -sal függvény F b (szint, E) pfk 0 ciklus i szint + 1-től N-ig ha ÖsszSúly(E) + w i < W max akkor pfk pfk + p i ciklus vége vissza pfk függvény vége eljárás Backtrack(szint, címsz. E, címsz. OPT) ciklus i 0-tól 1-ig E[szint] (i = 0) ha F k (szint, E) akkor ha szint = N akkor ha ÖsszÉrték(E) > ÖsszÉrték(OPT) akkor OPT E különben ha ÖsszÉrték(E) + F b (szint,e) > ÖsszÉrték(OPT) akkor Backtrack(szint + 1, E, OPT) ciklus vége eljárás vége Az algoritmus többi része megegyezik az előző megoldással szenasi.sandor@nik.uni-obuda.hu 24

25 25 A szétválasztás és korlátozás módszer értékelése Előnyei A fentieknek megfelelően egy kellőképpen finomhangolt algoritmus nagyon sok felesleges lépést meg tud spórolni Nem csak a már rögzített részeredményeken alapul a továbblépés, hanem a még fel nem dolgozott részproblémákat is figyelembe veszi Hátrányai Csak megfelelően kiválasztott szétválasztó és korlátozó függvények esetében működik Megjegyzés A példaprogramban a visszalépéses keresés által adott algoritmust módosítottuk úgy, hogy egy korlátozó függvény is legyen benne. Ez természetesen más technikáknál is lehetséges Bár nehéz egyértelműen összehasonlítani az egyes technikákat, talán ezt tekinthetjük a leghatékonyabbnak, hiszen ez előrefele is néz a keresés során

26 26 Irodalomjegyzék Javasolt/felhasznált irodalom Pap, Szlávi, Zsakó: μlógia4 Módszeres programozás: Rekurzió, ELTE TTK, 2004 Rónyai, Ivanyos, Szabó: Algoritmusok, Typotex, 2005 Cormen, Leiserson, Rivest: Algoritmusok, Műszaki Könyvkiadó, 1997 Mehlhorn, Sanders: Algorithms and Data Structures, Springer, 2008 Szénási: Algoritmusok, adatszerkezetek II., Óbudai Egyetem, 2014

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

Optimalizációs stratégiák 1.

Optimalizációs stratégiák 1. Optimalizációs stratégiák 1. Nyers erő, Oszd meg és uralkodj, Feljegyzéses, Dinamikus, Mohó előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János

Részletesebben

Programozás II. előadás

Programozás II. előadás Nem összehasonlító rendezések Nem összehasonlító rendezések Programozás II. előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Programozás II. 2 Rendezés

Részletesebben

Rekurzió. Témakörök. Rekurzió alapelve. Rekurzió alapjai Rekurzív algoritmusok végrehajtása Visszalépéses keresés Programtranszformációk

Rekurzió. Témakörök. Rekurzió alapelve. Rekurzió alapjai Rekurzív algoritmusok végrehajtása Visszalépéses keresés Programtranszformációk Rekurzió szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Rekurzió alapjai Rekurzív algoritmusok végrehajtása Visszalépéses keresés Programtranszformációk 2 Rekurzió alapelve

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás. Szénási Sándor

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás.  Szénási Sándor Láncolt listák Egyszerű, rendezett és speciális láncolt listák előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Láncolt

Részletesebben

Rekurzió. Működése, programtranszformációk. Programozás II. előadás. Szénási Sándor.

Rekurzió. Működése, programtranszformációk. Programozás II. előadás.   Szénási Sándor. Rekurzió Működése, programtranszformációk előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Rekurzió Rekurzió alapjai Rekurzív

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Algoritmizálás, adatmodellezés tanítása 8. előadás

Algoritmizálás, adatmodellezés tanítása 8. előadás Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11. 11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses keresés TÁMOP-4.2.3.-12/1/KON A visszalépéses keresés (backtrack) a problémamegoldás igen széles területén alkalmazható

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

Algoritmizálás, adatmodellezés tanítása 7. előadás

Algoritmizálás, adatmodellezés tanítása 7. előadás Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk

Részletesebben

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi

Részletesebben

29. Visszalépéses keresés 1.

29. Visszalépéses keresés 1. 29. Visszalépéses keresés 1. A visszalépéses keresés algoritmusa Az eddig megismert algoritmusok bizonyos értelemben nyílegyenesen haladtak elôre. Tudtuk, hogy merre kell mennünk, és minden egyes lépéssel

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj. Nagy

Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj. Nagy Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj Divide & Conquer (,,Oszd meg és uralkodj ) paradigma Divide: Osszuk fel az adott problémát kisebb problémákra. Conquer: Oldjuk meg a kisebb

Részletesebben

Összetett programozási tételek

Összetett programozási tételek Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember

Részletesebben

Algoritmusok és adatszerkezetek I. 1. előadás

Algoritmusok és adatszerkezetek I. 1. előadás Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási

Részletesebben

2017/ Szegedi Tudományegyetem Informatikai Intézet

2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű

Részletesebben

BACKTRACKING Visszalépéses keresés

BACKTRACKING Visszalépéses keresés BACKTRACKING Visszalépéses keresés I. rész A wiki.prog.hu weboldal az alábbi leírással vezeti fel a visszalépéses keresés algoritmus bemutatását: A visszalépéses keresés (Backtracking) olyan esetekben

Részletesebben

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok. Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Dinamikus programozás vagy Oszd meg, és uralkodj!

Dinamikus programozás vagy Oszd meg, és uralkodj! Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Algoritmizálás és adatmodellezés tanítása 2. előadás

Algoritmizálás és adatmodellezés tanítása 2. előadás Algoritmizálás és adatmodellezés tanítása 2. előadás Tartalom Összegzés vektorra, mátrixra Megszámolás vektorra, mátrixra Maximum-kiválasztás vektorra, mátrixra Eldöntés vektorra, mátrixra Kiválasztás

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Visszalépéses kiválogatás

Visszalépéses kiválogatás elépő a tudás közösségébe Informatika szakköri segédanyag Heizlerné akonyi iktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő: Abonyi-Tóth Andor, Zsakó László

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

Algoritmusokfelülnézetből. 1. ELŐADÁS Sapientia-EMTE

Algoritmusokfelülnézetből. 1. ELŐADÁS Sapientia-EMTE Algoritmusokfelülnézetből 1. ELŐADÁS Sapientia-EMTE 2015-16 Algoritmus Az algoritmus kifejezés a bagdadi arab tudós, al-hvárizmi(780-845) nevének eltorzított, rosszul latinra fordított változatából ered.

Részletesebben

Algoritmusok, adatszerkezetek II.

Algoritmusok, adatszerkezetek II. NEUMANN JÁNOS INFORMATIKAI KAR Szénási Sándor Algoritmusok, adatszerkezetek II. ÓE-NIK 50 Budaest, 05. Készült az Óbudai Egyetem án az ÓE-NIK 50. sz. jegyzetszerz dés keretein belül 04-ben. Szerz : Dr.

Részletesebben

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24. Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses kiválogatás TÁMOP-4.2.3.-12/1/KON isszalépéses kiválogatás 1. Az összes lehetséges sorrend Sokszor előfordul feladatként,

Részletesebben

Eseménykezelés. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor.

Eseménykezelés. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor. Eseménykezelés előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Függvénymutatókkal Származtatással Interfészekkel Egyéb

Részletesebben

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás. Szénási Sándor

Hasító táblázatok. Hasító függvények, kulcsütközés kezelése. Programozás II. előadás.  Szénási Sándor Hasító táblázatok Hasító függvények, kulcsütközés kezelése előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Felépítése

Részletesebben

Programozási tételek. PPT 2007/2008 tavasz.

Programozási tételek. PPT 2007/2008 tavasz. Programozási tételek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Strukturált programozás paradigma Alapvető programozási tételek Összetett programozási tételek Programozási

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

2. Visszalépéses keresés

2. Visszalépéses keresés 2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Diszkrét, egészértékű és 0/1 LP feladatok

Diszkrét, egészértékű és 0/1 LP feladatok Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok

Részletesebben

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport 10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)

Részletesebben

Programozási nyelvek a közoktatásban alapfogalmak I. előadás

Programozási nyelvek a közoktatásban alapfogalmak I. előadás Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)

Részletesebben

Gráfok. Programozás II. előadás. Szénási Sándor.

Gráfok. Programozás II. előadás.   Szénási Sándor. Gráfok előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Tárolási módok Szélességi bejárás Mélységi bejárás Legrövidebb

Részletesebben

Az optimális megoldást adó algoritmusok

Az optimális megoldást adó algoritmusok Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.

Részletesebben

Algoritmusok és adatszerkezetek 2.

Algoritmusok és adatszerkezetek 2. Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Mohó algoritmusok. Példa:

Mohó algoritmusok. Példa: Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján

Részletesebben

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák

Részletesebben

Korlátozás és szétválasztás elve. ADAGOLO adattípus

Korlátozás és szétválasztás elve. ADAGOLO adattípus Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}

Részletesebben

4. Előfeltételek (ha vannak) 4.1 Tantervi Nincs 4.2 Kompetenciabeli Feladatok kijelentéseinek megértése

4. Előfeltételek (ha vannak) 4.1 Tantervi Nincs 4.2 Kompetenciabeli Feladatok kijelentéseinek megértése A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás

Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Programozás alapjai 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Háziellenőrzés Egészítsd ki úgy a simplemaths.c programot, hogy megfelelően működjön. A program feladata az inputon soronként megadott

Részletesebben

Korlátozás és szétválasztás módszere Holló Csaba 2

Korlátozás és szétválasztás módszere Holló Csaba 2 Korlátozás és szétválasztás módszere Holló Csaba 2 A módszert Imreh Balázs, Imreh Csanád: Kombinatorikus optimalizálás Novadat, Győr, 25 egyetemi tankönyve alapján, kisebb változtatásokkal fogjuk bemutatni.

Részletesebben

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat

Részletesebben

Bevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok

Bevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 3. gyakorlat PLanG: 2011.09.27. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok

Részletesebben

Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor

Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor Bináris keresőfa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Bináris keresőfa Rekurzív

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet

Részletesebben

Algoritmusok, adatszerkezetek, objektumok

Algoritmusok, adatszerkezetek, objektumok Algoritmusok, adatszerkezetek, objektumok 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 14. Sergyán (OE NIK) AAO 01 2011.

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation

Részletesebben

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása

Részletesebben

Problémamegoldási stratégiák

Problémamegoldási stratégiák Problémamegoldási stratégiák Kumulatív összegzés Algoritmusok kumulatív összegzés Adott egy N elemű számsorozat, adjuk meg a sorozat azon [a,b] intervallumát, ahol az elemek összege maximális! Bemenet:

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses maximumkiválasztás TÁMOP-4.2.3.-12/1/KONV 1. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Algoritmusok és adatszerkezetek I. 3. előadás

Algoritmusok és adatszerkezetek I. 3. előadás Algoritmusok és adatszerkezetek I. 3. előadás Kupac A kupac olyan véges elemsokaság, amely rendelkezik az alábbi tulajdonságokkal: 1. Minden elemnek legfeljebb két rákövetkezője (leszármazottja) lehet.

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses keresés korlátozással TÁMOP-4.2.3.-12/1/KONV A visszalépéses keresés (backtrack) a problémamegoldás igen széles területén

Részletesebben

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10. Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,

Részletesebben

Programozás alapjai II. (7. ea) C++

Programozás alapjai II. (7. ea) C++ Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

Visszalépéses keresés korlátozással

Visszalépéses keresés korlátozással Belépő a tudás közösségébe Informatika szakköri segédanyag Visszalépéses keresés korlátozással Heizlerné Bakonyi Viktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő:

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek:

A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek: A programozás alapjai 1 Dinamikus adatszerkezetek:. előadás Híradástechnikai Tanszék Dinamikus adatszerkezetek: Adott építőelemekből, adott szabályok szerint felépített, de nem rögzített méretű adatszerkezetek.

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Algoritmusok pszeudókód... 1

Algoritmusok pszeudókód... 1 Tartalomjegyzék Algoritmusok pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 2 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 3 Minimum

Részletesebben

5. Hét Sorrendi hálózatok

5. Hét Sorrendi hálózatok 5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő

Részletesebben

Adatszerkezetek 1. előadás

Adatszerkezetek 1. előadás Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Algoritmusok és adatszerkezetek I. 4. előadás

Algoritmusok és adatszerkezetek I. 4. előadás Algoritmusok és adatszerkezetek I. 4. előadás A lista olyan sorozat, amelyben műveleteket egy kiválasztott, az ún. aktuális elemmel lehet végezni. A lista rendelkezik az alábbi műveletekkel: Üres: Lista

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Abszolút érték...1 Hányados ismételt kivonással...1 Legnagyobb közös osztó... 1 2 Páros számok szűrése...2 Palindrom számok... 2 3 Orosz szorzás...3 Minimum

Részletesebben

Fibonacci számok. Dinamikus programozással

Fibonacci számok. Dinamikus programozással Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

Adatszerkezetek II. 1. előadás

Adatszerkezetek II. 1. előadás Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Visszalépéses maximumkiválasztás

Visszalépéses maximumkiválasztás Belépő a tudás közösségébe Informatika szakköri segédanyag Visszalépéses maximumkiválasztás Heizlerné Bakonyi Viktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő:

Részletesebben