A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül."

Átírás

1 Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek. A fát egy tömbben reprezentáljuk, minden elem a szint szerinti bejárás szerinti sorszámának megfelelő eleme a tömbnek. A kupacot reprezentáló A tömbhöz két értéket rendelünk, hossz(a) a tömb mérete, kupacmeret(a) a kupac elemeinek a száma. A kupac gyökere A[1], a szerkezeti kapcsolatok egyszerűen számolhatóak: A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] A[i] apja A[ i/2 ] A kupac minden gyökértől különböző elemére teljesül, hogy az értéke nem lehet nagyobb, mint az apjáé. Ennek következménye, hogy a kupac minden részfájára teljesül, hogy a gyökéreleme maximális. MAXIMUM-KUPACOL Eljárás A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül. MAXIMUM-KUPACOL(A,i) l:=2i //az A[i] elem bal fiának indexe r:=2i+1 //az A[i] elem jobb fiának indexe if l<=kupacmeret(a) and A[l]>A[i] then max:=l else max:=i if r<=kupacmeret(a) and A[r]>A[max] then max:=r // A[max] a három elem közül a legnagyobb if max!=i then {Csere(A[i],A[max]) MAXIMUM-KUPACOL(A,max)} A=[5,14,13,8,3,4,6,2] MAXIMUM-KUPACOL(A,1) A=[14,5,13,8,3,4,6,2] A=[14,8,13,5,3,4,6,2] Példa Kiválasztás kupaccal Az algoritmus során a for ciklus j értékkel való végrehajtása után a kupac az első j elemből az i legkisebbet tartalmazza. Kupacvalaszt(A,i) Kupacmeret(A):=i for j= [i/2] to 1 MAXIMUM KUPACOL(A,j) // az elso i elembol egy kupac 1

2 ábra. for j=i+1 to n {if A[1]>A[j] then {Csere(A[1],A[j]) MAXIMUM KUPACOL(A,1)}} return A[1] Futási idő: O(i) + (n i)o(logi) Példa A=[2,5,7,3,6,4,8], k=3 A=[2,5,7 3,6,4,8] A=[7,5,2 3,6,4,8] A=[3,5,2 7,6,4,8] A=[5,3,2 7,6,4,8] A=[4,3,2 7,6,5,8] Minimum és maximum egyidejű választása A feladat adott n méretű tömb elemeiből kiválasztani a maximális és minimális elemet. MaxMin(A) if (n%2=0) then {k:=2 if (A[1]<A[2]) then {mini:=1 maxi:=2} else {mini:=2 maxi:=1}} else {k:=1 mini:=1 maxi:=1} 2

3 while(k<n) {if A[k+1]<A[k+2] then {if A[k+1]<A[mini] then mini:=k+1 if A[k+2]>A[maxi] then maxi:=k+2} else {if A[k+2]<A[mini] then mini:=k+2 if A[k+1]>A[maxi] then maxi:=k+1} k:=k+2} Futási idő Az algoritmus legfeljebb 3n/2 összehasonlítást végez. Bináris keresőfák Az F = (M,R,Adat) absztrakt adatszerkezetet bináris keresőfának nevezzük, ha F bináris fa, R = {bal, jobb, apa}, bal, jobb, apa : M M, Adat : M Elemtip és Elemtip-on értelmezett egy lineáris rendezési reláció, ( x M)( p F bal(x) )( q F jobb(x) )(kulcs(p) kulcs(x) kulcs(q)) InorderBejaras(F,M) if F!=Nil then {InorderBejaras(bal(F),M) M(F) InorderBejaras(jobb(F),M)} Az InorderBejaras algoritmus a bináris keresőfa elemeit a kulcsok rendezés szerinti sorrendjében látogatja meg. Adott kulcsú elem keresése KERES(F,k) if F=Nil or k=kulcs(f) then return F If k< kulcs(f) then return KERES(bal(F),k) else return KERES(jobb(F),k) KERES2(F,k) while(f!=nil and k!=kulcs(f)) {if k<kulcs(f) then F:=bal(F) else F:=jobb(F)} return F Futási idő: A fa magasságával arányos. Minimális maximális elem keresése 3

4 > <= 2. ábra. FabanMinimum(F) while(bal(f)!=nil) F:=bal(F) return F FabanMaximum(F) while(jobb(f)!=nil) F:=jobb(F) return F Futási idő: A fa magasságával arányos. Rákövetkező, megelőző elem keresése FabanKovetkezo(p) if jobb(p)!=nil then return FabanMinimum(jobb(p)) q:=apa(p) while(q!=nil and p=jobb(q)) {p:=q q:=apa(q)} return q 4

5 FabanMegelozo(p) if bal(p)!=nil then return FabanMaximum(bal(p)) q:=apa(p) while(q!=nil and p=bal(q)) {p:=q q:=apa(q)} return q Futási idő: A fa magasságával arányos. Beszúrás bináris keresőfába A fát a gyökérpontja által adtuk meg. Beszur(F,z) y:=nil x:=f while(x!=nil) {y:=x if kulcs(z)<kulcs(x) then x:=bal(x) else x:=jobb(x)} apa(z):=y if y=nil then F:=z //Üres volt a fa else {if kulcs(z)<kulcs(y) then bal(y):=z else jobb(y):=z} Futási idő: A fa magasságával arányos. Törlés bináris keresőfából FabolTorol(F,z) If bal(z)=nil or jobb(z)=nil then y:=z else y:=fabankovetkezo(z) If bal(y)!=nil then x:=bal(y) else x:=jobb(y) If x!=nil then apa(x):=apa(y) If apa(y)=nil then F:=x else {if y=bal(apa(y)) then bal(apa(y)):=x else jobb(apa(y)):=x} If y!=z then kulcs(z):=kulcs(y) 5

6 > ábra > > ábra. 6

7 Keresőfák magassága Példa: Ha az 1,2,...,n sorrendben szúrunk pontokat egy üres fába a magasság n lesz. Tétel Az n csúcsból álló véletlen építésű bináris fák magassága O(logn). Kiegyensúlyozott bináris keresőfák magassága O(logn) piros fekete fa AVL fa önszervező bináris keresőfák (splay fák) Optimális bináris keresőfa építése Tegyük fel, hogy ismerjük minden a fában szereplő k i kulcsra a keresésének gyakoriságát, ami p i (i = 1,...,n). Továbbá adott minden i-re a k i és k i+1 közés eső sikertelen keresések gyakorisága q 0,q 1,...,q n. Értelemszerűen q 0 a k 1 -nél kisebb, q n a k n -nél nagyobb kulcsok gyakorisága. Ha felépítünk egy F bináris keresőfát x 1,...,x n pontokkal, akkor egy sikeres keresés költsége a gyakoriság szorozva a pont mélységével. A sikertelen keresésekhez hozzárendelhetünk új y i pontokat, ahol a keresés kilép a fából. Ekkor az F fára a várható keresési költség C(F) = n n p i d F (x i ) + q j d F (y j ). i=1 j=0 a cél azon fa megkonstruálása, amelyre ez az összeg minimális. Rekurzív összefüggés Tegyük fel, hogy van egy optimális F keresőfa a k 1,...,k n kulcsokból, aminek x r a gyökere. Ekkor a baloldali részfa F 1 a k 1,...,k r 1 kulcsokból álló bináris keresőfa, a jobboldali részfa F 2 pedig a k r+1,...,k n csúcsokból áll. Nyilván mindkettő optimális kell legyen, különben lecserélve őket F helyett is jobbat kapnánk. Könnyen igazolható, hogy C(F) = C(F 1 ) +C(F 2 ) + n i=1 p i + n q j. j=0 Részproblémák: Minden 0 i j n-re legyen OPT (i, j) az optimális bináris keresőfa költsége a p i+1,..., p j sikeres és a q i,...,q j sikertelen keresési gyakoriságokkal. OPT (i, j) = j u=i+1 p u + j v=i OPT (i,i) = q i q v + min {OPT (i,r 1) + OPT (r, j)}. i<r j A rekurzív összefüggések alapján a feladat megoldható átlós táblázatkitöltéssel. Kiskérdések Linkiválaszt algoritmus Kupacvalaszt algoritmus 7

8 bináris keresőfa definíciója keresés bináris keresőfában Szorgalmi feladat Adjunk meg egy eljárást, amely kiválasztja a legkisebb és a második legkisebb elemet n elemből n 1 + logn elempár összehasonlításával. Beküldés: Leírás +magyarázat + futási idő elemzés első négy megoldó 8-8 pont a második négy megoldó 5-5 pont A szerzett plusszpontok a vizsga minimumkövetelményébe nem számítanak bele. 8

Bináris keresőfák. Adat : M Elemtip és Elemtip-on értelmezett egy lineáris rendezési reláció,

Bináris keresőfák. Adat : M Elemtip és Elemtip-on értelmezett egy lineáris rendezési reláció, Bináris keresőfák Az F = (M,R,Adat) absztrakt adatszerkezetet bináris keresőfának nevezzük, ha F bináris fa, R = {bal, jobb, apa}, bal, jobb, apa : M M, Adat : M Elemtip és Elemtip-on értelmezett egy lineáris

Részletesebben

Számláló rendezés. Példa

Számláló rendezés. Példa Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a

Részletesebben

1. ábra. Számláló rendezés

1. ábra. Számláló rendezés 1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Hierarchikus adatszerkezetek

Hierarchikus adatszerkezetek 5. előadás Hierarchikus adatszerkezetek A hierarchikus adatszerkezet olyan < A, R > rendezett pár, amelynél van egy kitüntetett r A gyökérelem úgy, hogy: 1. r nem lehet végpont, azaz a A esetén R(a,r)

Részletesebben

Az absztrakt adattípus egy (E,M) párral adható meg, ahol E az értékhalmaz, M a műveletek halmaza. Fő tulajdonságok. Verem

Az absztrakt adattípus egy (E,M) párral adható meg, ahol E az értékhalmaz, M a műveletek halmaza. Fő tulajdonságok. Verem Előadás részvétel igazolása Az előadáson való részvételt az előadáson kapott kódnak az alábbi oldalra való feltöltésével lehet igazolni. http://www.inf.u-szeged.hu/~tnemeth/alg1ics/ Az adatkezelés szintjei

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Egyesíthető prioritási sor

Egyesíthető prioritási sor Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

Algoritmusok vektorokkal keresések 1

Algoritmusok vektorokkal keresések 1 Algoritmusok vektorokkal keresések 1 function TELJES_KERES1(A, érték) - - teljes keresés while ciklussal 1. i 1 2. while i méret(a) és A[i] érték do 3. i i + 1 4. end while 5. if i > méret(a) then 6. KIVÉTEL

Részletesebben

Mohó algoritmusok. Példa:

Mohó algoritmusok. Példa: Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

Hierarchikus adatszerkezetek

Hierarchikus adatszerkezetek Hierarchikus adatszerkezetek A szekveniális adatszerkezetek általánosítása. Minden adatelemnek pontosan 1 megelőzője van, de akárhány rákövetkezője lehet, kivéve egy speciális elemet. Fa (tree) Hierarchikus

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet

7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet 7. BINÁRIS FÁK Az előző fejezetekben már találkoztunk bináris fákkal. Ezt a központi fontosságú adatszerkezetet most vezetjük be a saját helyén és az általános fák szerepét szűkítve, csak a bináris fát

Részletesebben

Keresőfák és nevezetes algoritmusaikat szemléltető program

Keresőfák és nevezetes algoritmusaikat szemléltető program EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Algoritmusok és Alkalmazásaik Tanszék Keresőfák és nevezetes algoritmusaikat szemléltető program Témavezető: Veszprémi Anna Mestertanár Szerző: Ujj László

Részletesebben

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok

Részletesebben

Algoritmusok és adatszerkezetek II.

Algoritmusok és adatszerkezetek II. Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 3. Kiegyensúlyozott keresőfák A T tulajdonság magasság-egyensúlyozó

Részletesebben

file:///d:/okt/ad/jegyzet/ad1/b+fa.html

file:///d:/okt/ad/jegyzet/ad1/b+fa.html 1 / 5 2016. 11. 30. 12:58 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Algoritmusok és adatszerkezetek II.

Algoritmusok és adatszerkezetek II. Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék - Németh Tamás Algoritmusok és adatszerkezetek

Részletesebben

Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.

Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8. Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk.

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor

Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor Bináris keresőfa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Bináris keresőfa Rekurzív

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek:

Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek: Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás Piros-fekete fa B-fa 2 Fa

Részletesebben

Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.

Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető. Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös

Részletesebben

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1 Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek

Részletesebben

Információs Technológia

Információs Technológia Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Geometriai algoritmusok

Geometriai algoritmusok Geometriai algoritmusok Alapfogalmak Pont: (x,y) R R Szakasz: Legyen A,B két pont. Az A és B pontok által meghatározott szakasz: AB = {p = (x,y) : x = aa.x + (1 a)b.x,y = aa.y + (1 a)b.y),a R,0 a 1. Ha

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Az B sorozatban a pontok helyes preorder sorrendben vannak. A preorder bejárásban p k -t közvetlenül q m követi.

Az B sorozatban a pontok helyes preorder sorrendben vannak. A preorder bejárásban p k -t közvetlenül q m követi. Nemrekurzív preorder bejárás veremmel Ismét feltesszük, hogy a fa a g gyökérpontja által van megadva elsőfiú testvér reprezentációval, és az M műveletet akarjuk minden ponton végrehajtani. PreorderV(g,M)

Részletesebben

Korlátozás és szétválasztás elve. ADAGOLO adattípus

Korlátozás és szétválasztás elve. ADAGOLO adattípus Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 6.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 6. Algorimuselméle Keresőfák, piros-fekee fák Kaona Gyula Y. Sámíásudományi és Információelmélei Tansék Budapesi Műsaki és Gadaságudományi Egyeem. előadás Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Programozás alapjai II. (7. ea) C++

Programozás alapjai II. (7. ea) C++ Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

ÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA

ÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA ÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA Tétel: Ha a halmazok ábrázolására önszervező bináris keresőfát használunk, akkor minden α 1,...,α m műveletsor, ahol i {1..m}: α i {keres;bovit;torol;vag;egyesit}

Részletesebben

5. A gráf, mint adatstruktúra Gráfelméleti bevezető

5. A gráf, mint adatstruktúra Gráfelméleti bevezető 5. A gráf, mint adatstruktúra 5.1. Gráfelméleti bevezető Az irányított gráf (digráf) A G = ( V, E) rendezett párt irányított gráfnak (digráfnak) nevezzük. A rendezett pár elemeire tett kikötések: V véges

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7. Algorimuselméle Keresőfák, piros-fekee fák Kaona Gula Y. Sámíásudománi és Információelmélei Tansék Budapesi Műsaki és Gadaságudománi Egeem. előadás Kaona Gula Y. (BME SZIT) Algorimuselméle. előadás / Keresőfák

Részletesebben

Áí Ö Ú Í Á ű ő í í ű í ü ő í í íő ő É ü ű Ö Ú Í Á ú Ö Ö ü í ő ő ő ú ú ú Ó Á Á Á Ö í ő ő É É í í í í í í ú Á íí ő í í ő í í ú í ú ú ü í í ű ő í ű í ü ő í ű í í ű í í ú ü ü ő ű ü ő ú í ű ú ő ü ő ü ü ő ű

Részletesebben

Kupacrendezés. Az s sorban lévő elemeket rendezzük a k kupac segítségével! k.empty. not s.isempty. e:=s.out k.insert(e) not k.

Kupacrendezés. Az s sorban lévő elemeket rendezzük a k kupac segítségével! k.empty. not s.isempty. e:=s.out k.insert(e) not k. 10. Előadás Beszúró rendezés Használjuk a kupacokat rendezésre! Szúrd be az elemeket egy kupacba! Amíg a sor ki nem ürül, vedd ki a kupacból a maximális elemet, és tedd az eredmény (rendezett) sorba! 2

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

ü ű ű Á É É Á Á Ó ü ú Á É É ó ü ű É ó ó ü ü ó ó ü ű ü ú í ü ú í ü í ú ü ű óí í ü ü ű í ó ó ó ü ű ü ü ű ú í ó ü ó ü ű í ü ű ó í ü ű ü ű ü ű í ű ű ó ó í ü ű ü í ó í ó ó í ó ü í í í í ű ü í ó ó ó ú ó í ú

Részletesebben

Á ó í ó ó í ú í í ó ő ü ő ó ü ü ű í ő ü ó ő í ü ú ő ú ó ő ú ő í ő ő í ü ó ő ő ó ő ú ő ó ó ő ú ó ú ó ő ü ő ű í ű ű í ü ü ű ó ó ó ű ő í ű ő ő ő ü ó í ő ű ó í í ó ó ó ő ő ü ű ő ó ü ű Ü í ő ü ó ó Á ú ű í ő

Részletesebben

ö Ö í ő í í ö Ú Í ó ő ó ö Ö ő ü ö í Ü ő ó Ö Ö ő ü ö ó ó ó ö Í ö ö ö ő ö ő ő ö ő ö ö ö ó ó ó Ö ő ö ő ü ö ö ő ü Ö í í í ő ú ö ö ő Ö ő ú ü ő ó ó ó ö í ö ö ó ő ö ő ő ő ő í ő ú ö ő ü ü ő ö ö ő í ü ö ő ü ó ö

Részletesebben

í í ú ű í ú ő í ú í íí ű í ú ő ő ő Ó Ó í í Ú ú ú í ü ü í ú í ü Ö í ú ő ő ü í ő ő ő í ő ú í ű í í í ü ú í ő í í ü í ő Í Ó Í í ő í í í ű üí í í ü Ú Ő Ú ü ő í ő ü Í Ó Ú Ö í ú ő ű ő ő í ú í ű ü í í ő ő ú ú

Részletesebben

Ö í ó í í ö ú Ó É Ü ő ó í ó É Ü É Ó É ő í ö ű ü í ő ó ő ü ü ő ó ü í ő ő ó í ó ü ő í ö ű ó ő ő ő ü ő ó ő ő ő ő ő ő ó Í í ö íí ü í ö ű ó í ö ű ü ö í ö ű ü ű ö í ö ű ü ö ö í ö í ö ű ü ü í ö ű ó ű í ö ű ö

Részletesebben

Á ó ú Á Í Ú Ó Á É ö É Á ó ó ó ö ö ö ö ö ö ö ö ö ö ö ű ö í ó ú ö ö ű ö Á Á ó ú í ó ú ő ó Í ö ö É É Á Á Ö É Á ö ö ö í ö ö ö ö ö ö ó í ü ö ő ö ö ü ö ü ö Í ü ű ü ú ó ö ű ü ö ő ó í ó ű ö ő ó ö ö ü ó ó í ő ü

Részletesebben

É ü ó Ö ő ü ó ó ó ó ó ó ü í í ő ó ó Ö Ö ü ű ó ő ú ü ü ő ó í ó ő ő ü ü ü ü ő ó ő ü ő ű í ő ő ő ó ó ű ű ó ő ó ő ó ő í ő ó ó ó ő ő ő ő ő ó ű ű ő í ü ü í ó ü ó ü í ő ü ő ó ü ő ó í í ő ő ő ü í ó ü í ő ő í ó

Részletesebben

Ó ö ó í Á Á Ő ö ő í ő í ó Ó Ö Ó ü ő ő í ő í ő ő ő ő ü ő ó í ő ő ó ö ö ő ő ő ű ö í ő í ő ö ő ő ő í ö í ó ő Ó ö í ó ő ö ő ú í ő ó ő ő ö í ő ö ő ő ő ö ő ő ó ö í í ó í ó ő ő ő ő ó ö ő ő Ó ö í í ó ű ő ű ö ű

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Dinamikus programozás vagy Oszd meg, és uralkodj!

Dinamikus programozás vagy Oszd meg, és uralkodj! Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Programozási tételek, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok

Részletesebben

Térinformatikai adatszerkezetek

Térinformatikai adatszerkezetek Térinformatikai adatszerkezetek 1. Pont Egy többdimenziós pont reprezentálható sokféle módon. A választott reprezentáció függ attól, hogy milyen alkalmazás során akarjuk használni, és milyen típusú műveleteket

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Ü Ú É Á Á ő ó ő ó ó í ő ó ú ó í ó ü í ő ő ő ü Í ő ú í í ü ó í ó í ü í ü ű ú ó ő í ó Í ú í Íí ü í ú ó í ű ü í ó í ú ú Í í ó Í í ó í ú í í ü í ó í í í ő Íü í ó ú ó ü ó ő ó ő í í í Í ó É ó ü ő í ő ó ó ú ó

Részletesebben

Ó á í á ő Í í ű á űí ű í í íá ű á ű í í íá íáá á í áí á ű ő ő á ú í á á ő á ő ú á á ö ő ő á ő í á ö á á ó ő á á ó í á á á ő í Á á ő á ő ó í á á á ő á ó ő í ő á í ú ö ó ö á á á ó ó ö ő ó í á á ó ü á ő ü

Részletesebben

Adatszerkezetek 1. előadás

Adatszerkezetek 1. előadás Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

Á Í Á Ó É ö á í á ő á á Á ő ő á ő á í á ő á á á á í ő ö í á á í á á ö ő á í ő áí á á ő á í í á ú ü ö á ú ö á í á á á ö á á ő á á á ő á ő á ú ü á ő á í ő ő ő áí á á ö ő á ő á á ő ő á í á ő á ő á á á ü ő

Részletesebben

Rakov(34125)=34152. Rakov(12543)=13245. Rakov(14532)=15234. Rakov(54321)=-

Rakov(34125)=34152. Rakov(12543)=13245. Rakov(14532)=15234. Rakov(54321)=- Kombinatorikus feladatok Ládák: Egy vállalat udvarán egyetlen sorban vannak az elszállításra várakozó üres ládák. Három különböző típusú láda van, jelölje ezeket A, B és C. Minden láda a felső oldalán

Részletesebben

Algoritmusok és Adatszerkezetek II.

Algoritmusok és Adatszerkezetek II. Algoritmusok és Adatszerkezetek II. előadás Felelős tanszék: Számítógépes algoritmusok és mesterséges intelligencia tanszék Nappali tagozaton: Előadás: heti 2 óra / 5 kredit. Teljesítés módja: Kollokvium.

Részletesebben

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék 9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,

Részletesebben

Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.

Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8. Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk.

Részletesebben

3/1. tétel: Linearis adatszerkezetek és műveleteik

3/1. tétel: Linearis adatszerkezetek és műveleteik 3/1. tétel: Linearis adatszerkezetek és műveleteik A gyűjtemények (collections) közé sorolhatók a halmaz (set), a csomag (bag, multiset) és a vector (sequence, list). Gyűjtemények általánosan Értelmezzük

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek

Részletesebben

... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)

... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra) 6. Fabejáró algoritmusok Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

Az első kiegyensúlyozott fa algoritmus. Kitalálói: Adelson-Velskii és Landis (1962)

Az első kiegyensúlyozott fa algoritmus. Kitalálói: Adelson-Velskii és Landis (1962) 6. előadás AVL fák Az első kiegensúlozott fa algoritmus Kitalálói: Adelson-Velskii és Landis (196) Tulajdonságok Bináris rendezőfa A bal és jobb részfák magassága legfeljebb 1-gel különbözik A részfák

Részletesebben

KUPAC TĺPUSÚ ADATSZERKEZETEK

KUPAC TĺPUSÚ ADATSZERKEZETEK XI. Erdélyi Tudományos Diákköri Konferencia Kolozsvár, 08. május 23 24. KUPAC TĺPUSÚ ADATSZERKEZETEK Témavezető Dr. Ionescu Klára, adjunktus Babeş-Bolyai Tudományegyetem Matematika-Informatika Kar Programozási

Részletesebben

Algoritmuselmélet 1. előadás

Algoritmuselmélet 1. előadás Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források

Részletesebben

A Verem absztrakt adattípus

A Verem absztrakt adattípus A Verem absztrakt adattípus Értékhalmaz: E Verem = [a 1,...,a n : a i E,i = 1,...,n,] Műveletek: V : Verem, x : E {Igaz} Letesit(V) {V = []} {V = V } Megszuntet(V) {Igaz} {V = V } Uresit(V) {V = []} {V

Részletesebben

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből

Részletesebben

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete 8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén

Részletesebben

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb 1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben