4. Előadás Titkosítás, RSA algoritmus

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "4. Előadás Titkosítás, RSA algoritmus"

Átírás

1 4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor

2 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános) kulcsú titkosítás Az RSA algoritmus Alapötlet Lépések Alkalmazási példák Feladatok Irodalom 2

3 Számítástudomány Titkosítás Kriptográfia Több ezer éves tudomány (művészet) Írások és üzenetek olyan (titkos anyagba történő) átalakításával/rejtjelezésével foglalkozik, amely illetéktelen személyek számára megakadályozza a visszafejtést Titkosító rendszer/módszer (kriptográfiai protokoll) Szövegek rejtjelezésére szolgáló eljárás, úgy, hogy a jogosult fogadó képes legyen hatékonyan és egyértelműen visszafejteni a szöveget Kriptoanalízis Szintén több ezer éves tudomány (művészet) Rejtjelezett üzenetek (illetéktelen) visszafejtésével/feltörésével foglalkozik A kriptográfia tipikus alaphelyzete: Kommunikáció két szereplő között (Alice és Bob) nem biztonságos csatornán, amelyet lehallgathat egy külső szereplő (Eve) Ezért az üzenetküldés egy kulcs segítségével kódolva (titkosítva) történik (encoding E függvény), a titkosított üzenet pedig egy (másik) kulccsal visszafejthető (decoding D függvény) A titkosítás lehet szimmetrikus (titkos) kulcsú és aszimmetrikus (nyilvános) kulcsú 3

4 Szimmetrikus (titkos) kulcsú titkosítás Itt a titkosításhoz és a visszafejtéshez használt kulcs megegyezik, vagy az egyik könnyen kiszámolható a másikból A kulcsot feltétlenül titokban kell tartani! Amennyiben valaki hozzáfér a kulcshoz, úgy képes az összes korábbi üzenetet dekódolni, illetve bármelyik fél nevében üzenetet hamisítani A régi korok titkosító eljárásai mind ilyenek voltak Pl. betűeltolásos titkosítás (a nyílt szöveg minden betűjének ugyanaz a betű felel meg a titkosított szövegben) egyszerű feltörni Javított változatok: a szövegbeli elhelyezkedéstől függően más és más a kódkarakter de ezek is feltörhetők voltak A módszer napjainkban is jól alkalmazható sok esetben (pl. ott, ahol a küldés és a fogadás egy helyen történik titkosító fájlrendszer) Hátrányok/nehézségek (két vagy több kommunikáló partner esetén): A kulcsot az adatátvitel előtt valahogy el kell juttatni egyik féltől a másikig Minden kommunikációs partnerhez különböző kulcsot kell használni, hisz közös kulcs esetén el tudnák olvasni egymás üzeneteit 4

5 Szimmetrikus kulcsú titkosítás Klasszikus titkosító eljárások szemléltetése Feltörés lehetősége a 2. esetben: periódus meghatározása, majd utána gyakorisági elemzés (sokszor nehéz végrehajtani, időigényes!) Betűk, betűpárok, betűhármasok, stb. előfordulását vizsgálják Lényegében ezen az elven (csak jóval bonyolultabban, csavarosabban több tárcsa) működött az Enigma titkosító eljárása 5

6 Aszimmetrikus (nyilvános) kulcsú titkosítás A nagyobb teljesítményű számítógépek korszakában már nem voltak megfelelőek a hagyományos, klasszikus titkosító eljárások Felkészült, jó eszközökkel (szuperszg.) rendelkező feltörő Forradalmian új ötlet (Diffie és Hellman, 1976): nyilvános kulcsú titkosítás e nyilvános kulcs, d titkos/privát kulcs Itt d e, a titkosítás és a visszafejtés a kulcsokkal gyors, de csak nagyon nehezen végezhető el az a feladat, hogy d-t e-ből kiszámítsuk (feltörés) A visszafejtő függvény/eljárás a titkosító inverze Mit jelent az, hogy nagyon nehezen végezhető el? Néhány válaszlehetőség: A kriptorendszer kialakítója nem ismer polinomiális megoldó algoritmust Senki sem ismer polinomiális megoldó algoritmust Aki feltöri a kriptorendszert, valószínűleg megoldott már jól ismert nehéz problémát Aki feltöri a kriptorendszert, biztosan megoldott már jól ismert nehéz problémát Aki feltöri a kriptorendszert, biztosan megoldott már egy NP-teljes problémát Bizonyítottan nem létezik (valószínűségi) polinomiális megoldó algoritmus Jelen pillanatban senki sem ismer olyan kriptorendszert, amely kielégíti az utolsó három feltétel valamelyikét is, de a nagyon nehezen végezhető el az ilyen esetekben matematikailag jól leírható 6

7 Aszimmetrikus (nyilvános) kulcsú titkosítás Lépések: Egy nyilvánosan elérhető, megbízható forrásból (pl. magától a címzettől, vagy kulcsszerverről) megszerezzük a címzett nyilvános kulcsát Az üzenetet kódoljuk ezzel a kulccsal, majd elküldjük A kódolt üzenet csakis a címzett privát kulcsával nyitható (!) A megkapott üzenetet a címzett saját privát kulcsával visszafejti, a végeredmény az eredeti, titkosítatlan szöveg lesz A legtöbb ma használt kommunikációs protokoll (pl. SSL, SSH) ilyen típusú megoldást alkalmaz a biztonságos adatcseréhez Ugyanezen a módon digitális aláírás is készíthető és ellenőrizhető 7

8 Az RSA titkosítás Az RSA az egyik leggyakrabban használt nyilvános kulcsú algoritmus Alapötlet Rövidítés: Ron Rivest, Adi Shamir, Leonard Adleman; ők találták ki, ban (MIT) Itt szerepelt először nyilvános kulcs (!) (jól alkalmazható módon) Legyenek p és q különböző nagy prímek és n = p q. Tfh. van két egészünk, d (decryption) és e (encryption) úgy, hogy d e 1 (modφ(n)). Az n és e számok nyilvánosak, p, q és d pedig titkosak. Legyen M a küldendő üzenet (pozitív egész szám, kódolás után). [A módszer akkor biztonságos, ha M < p és q, de a gyakorlatban megfelel, ha M < n és annak esélye, hogy p M vagy q M, elhanyagolható.] [Az üzenet könnyen számmá alakítható, pl. A = 10, B = 11,, Z = 35, space = 99, így HELLO = ] A küldő kiszámolja és elküldi az E = M e mod n számot. A fogadó kiszámítja az E d mod n számot. Euler-tétele (b φ(n) 1 (mod n)) miatt E d (M e ) d M e d M φ(n) többszöröse M M(mod n). Mivel M és E d mod n egyaránt 0 és n között van, ezért megegyeznek. Kérdés: Hogyan válasszuk meg e-t és d-t? 8

9 Az RSA titkosítás Alapötlet (folyt.) Ha e-t úgy választjuk, hogy lnko(e, φ(n)) = 1, akkor található megfelelő d. Segédállítás 1.: Legyenek a és m relatív prím egészek. Ekkor található olyan mod m egyértelmű b egész, hogy a b 1 (mod m). [Definíció: Ha a b 1 (mod m), akkor azt mondjuk, hogy b az a inverze mod m. Feladat: Írjuk fel Z 5 -ben az elemek összeadási és szorzási tábláját. Ellenőrizzük a táblázat segítségével az inverzek létezését!] Bizonyítás: A kiterjesztett Euklideszi algoritmussal tudunk találni olyan b és c egészeket, hogy a b + m c = 1. Ez azt jelenti, hogy a b 1 (mod m). Legyen e tetszőleges másik egész, amelyre a e 1 (mod m). Ekkor e e (a b) (a e) b b(mod m). Ahogy láttuk, ha ismerjük n felbontását (n = p q, p és q különböző prímek), akkor könnyen kiszámíthatóφ(n) = (p 1)(q 1). Ennél egyszerűbb módon φ(n) nem állítható elő. Továbbá, ha ismerjük φ(n)-t, akkor n felbontását is, mert p + q előáll: p + q = n φ(n) + 1 = p q (p q p q + 1) + 1, és így p q is megkapható: p q = ( p + q) 4n = p + 2 p q + q 4 p q = p 2 p q q végül pedig: p = ((p + q) + (p q))/2, q = ((p + q) (p q))/2. A d titkos kulcs megtalálásának problémáját visszavezettük n felbontására. 9

10 Az RSA titkosítás Az algoritmus lépései Kulcsgenerálás Rejtjelezés Visszafejtés Bob választ véletlenszerűen két (nagy) prímszámot, p-t és q-t (itt p q), és kiszámítja az N = p q számot A következő lépésben választ egy e kitevőt úgy, hogy 1 < e < φ(n) = (p 1)(q 1) és lnko(e, φ(n)) = 1 Ezután meghatározza azt az egyértelmű d számot, amelyre 1 < d < φ(n) és e d 1 (modφ(n)) (d itt az e inverze moduloφ(n)) Az (N, e) pár Bob nyilvános kulcsa, d pedig Bob titkos kulcsa [Legyen m < N az üzenet egyik blokkjának megfelelő szám, amelyet Alice szeretne Bobnak elküldeni] Alice ismeri Bob nyilvános kulcsát, így m-et a következő módon rejtjelezi: E(m) = m e mod N [Legyen c < N a rejtjelezett üzenet egyik blokkjának a kódja, amit Bob megkapott] Bob vissza tudja fejteni az üzenetet a következő módon: D(c) = c d mod N D(E(m)) = m, azaz a visszafejtéskor az eredeti üzenetet kapjuk vissza 10

11 Az RSA titkosítás Egyszerű RSA példa 11

12 Az RSA titkosítás Az RSA lépéseinek alkalmazásával kapcsolatos fontos kérdések Hogyan válasszuk meg a p és q prímszámokat? Ezeknek nagyoknak kell lenniük, hiszen különben az üzenetet elcsípő Eve az n számot faktorizálni tudná, és így meg tudná határozni a d titkos kulcsot (d az e-ből a kiterjesztett euklideszi algoritmussal meghatározható) Ezért a gyakorlatban (a mostani nagy gépek teljesítményét és a feltörő algoritmusok tudását figyelembe véve) p-t és q-t legalább (decimális) jegyű számnak kell választani Hol/hogy találunk ilyen nagy prímeket? Javaslat: véletlenül generálunk ilyen sok jegyű számokat, és teszteljük, hogy prímek-e A prímek elég sűrűn helyezkednek el ahhoz, hogy az eljárás működhessen (tudjuk: N/ln N darab N-nél kisebb prímszám van) De: a prímtulajdonság biztos/pontos tesztelése nehéz feladat (!) Ugyanakkor ismertek elég gyors valószínűségi prímtesztek, amelyek gyakorlati szempontból teljesen megbízhatóan igazolják, hogy a jelölt prím (pl. Miller-Rabin-féle teszt) Hogyan tudunk hatékonyan nagy hatványra emelni számokat? Elég modulo N dolgozni, és 2 hatványok szerinti csoportokat képezhetünk, azaz Pl =

13 Az RSA titkosítás Az RSA lépéseinek alkalmazásával kapcsolatos fontos kérdések (folyt.) Mennyire biztonságos az RSA kódolás? A biztonság döntő módon azon alapszik, hogy a nagy számok faktorizációja igen nehéz feladat Így az algoritmus feltörése általános esetben, megfelelően nagy p és q választásával olyan sok ideig tartana, hogy nem érdemes megpróbálni (!) Ez a tulajdonság általánosan igaz, de egyes speciális esetekben ( ügyetlen prímválasztás) meg lehet találni az osztókat, nagy N (összetett szám) esetében is Egy példa: Pollard-(p 1) algoritmusa azon alapulva találja meg az n szám p prímosztóját, hogy p 1 minden prímosztója viszonylag kicsi, pl. kisebb 1 milliónál. Ezért figyelnünk kell arra, hogy (p 1)-nek és (q 1)-nek egyaránt legyen nagy p' és q' prímosztója. Más betartandó (lásd Bressoud, Gathen Gerhard, itt nem részletezzük): φ(φ(p q)) legyen nagy, és osztható legyen nagy prímekkel, azaz: lnko(p 1, q 1) legyen kicsi és (p' 1) ill. (q' 1) mindegyike legyen osztható nagy prímekkel További tipikus feltörést segítő hibák az RSA kódolásnál Kis vagy nagyon speciális e szám választása (ekkor az e-edik gyökvonás E(m) = m e mod N-re nem túl nehezen elvégezhető) p és q túl közel van egymáshoz (ez segíti a brute force feltörést, lásd Fermat alg.) Szöveg karakterenkénti vagy kis blokkonkénti kódolása A karakterenkénti titkosítás itt is minden azonos karakterre ugyanazt a kimenetet adja 13

14 Az RSA titkosítás RSA példa (prímválasztás, d és e, kódolás) Eml. (feltételek): 1. lépés 2. lépés lnko(p 1, q 1) legyen kicsi és (p' 1) ill. (q' 1) mindegyike legyen osztható nagy prímekkel (p 1)-nek és (q 1)-nek egyaránt legyen nagy p' és q' prímosztója p és q ne legyen túl közel egymáshoz, e ne legyen nagyon kicsi Válasszunk két darab 1 milliónál nagyobb prímet p'' = , q'' = (p' 1 és q' 1 prímosztói) A p'' és q'' páros többszörösei + 1 alakú számokat vizsgáljuk, addig, amíg nem teljesítik a jelölt számok a pszeudoprím tesztet, majd ellenőrizzük, hogy a jelöltek valóban prímek (a próbaosztásos algoritmus megfelelő) p' = = , q' = = (p 1 és q 1 prímosztói) 3. lépés Mint az előbb, a p' és q' páros többszörösei + 1 alakú számokat vizsgáljuk p = = q = = n = p q = φ(n) = (p 1) (q 1) =

15 Az RSA titkosítás RSA példa (folyt.) Eml. (eddig): p = = q = = n = p q = φ(n) = (p 1) (q 1) = lépés (e és d) e legyen relatív prím (p 1)-hez és (q 1)-hez: e = 123 (vagy e = ) A kiterjesztett euklideszi algoritmussal kell: e d 1 (modφ(n)) (ha d negatívnak adódna, akkor hozzáadunk φ(n)-et) d = (vagy d = ) 5. lépés (kulcstárolás) Közzétesszük n-et és e-t, biztonságos helyre elzárjuk d-t Biztonsági okokból célszerű törölni p, q és φ(n) értékét 6. lépés (kódolás) Az üzenetet 16 jegyű blokkokra tördeljük (így minden darab < n) Annak esélye, hogy egy tetsz nál kisebb m egész osztható lesz p-vel vagy q-val kb. 1: (elhanyagolható) Elvégezzük a kódolást az ismert módon 15

16 Feladatok Tudjuk, hogy n = és φ(n) = , továbbá azt is, hogy n két prím szorzata. Határozzuk meg a két prímet anélkül, hogy faktorizálni kéne n-t! Minden lenti a, m párra keressük meg az a inverzét modulo m, vagy mutassuk meg, hogy ilyen inverz nem létezik (ha lnko(a, m) > 1): a = 25, m = ; a = 315, m = a = 1001, m = ; a = 2643, m = A bemutatott RSA példa forgatókönyve szerint kódoltuk a Hamlet egy részét (angolul). Állítsuk elő az eredeti szöveget, ha a kód: Találjuk meg a d rejtett kulcsot, ha n = , e = 125. Az Euler-féle φ függvény tulajdonságai alapján határozzuk meg φ(n)-t n következő értékeire: , , , , *Konstruáljunk RSA alapszámokat úgy, hogy (p' 1) ill. (q' 1) mindegyike tartalmaz 1 milliónál nagyobb prímfaktort, és p, q jegyű számok. Közöljük a szomszéddal (többiekkel) n és e értékét, d-t tartsuk titokban. Próbáljuk a többiek kódját feltörni (saját felbontó algoritmussal)! 16

17 Ajánlott irodalom David M. Bressoud: Factorization and Primality Testing, Springer, New York, 1989 Joachim Gathen, Jürgen Gerhard: Modern Computer Algebra (3rd ed.), Cambridge Univ. Press, 2013 Donald E. Knuth: A számítógép-programozás művészete 2. (2. kiadás), Műszaki Könyvkiadó, Budapest, 1994 Katona Gyula, Recski András, Szabó Csaba: A számítástudomány alapjai, Typotex Kiadó, Budapest, 2003 Iványi Antal (szerk.): Informatikai algoritmusok 1., ELTE Eötvös Kiadó, Budapest,

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek

Részletesebben

IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette:

IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette: IT BIZTONSÁGTECHNIKA Tanúsítványok Készítette: Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP Tartalom Tanúsítvány fogalma:...3 Kategóriák:...3 X.509-es szabvány:...3 X.509 V3 tanúsítvány felépítése:...3

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Modern titkosírások és a matematika

Modern titkosírások és a matematika Modern titkosírások és a matematika Az Enigma feltörése Nagy Gábor Péter Szegedi Tudományegyetem Bolyai Intézet, Geometria Tanszék Kutatók Éjszakája 2015. szeptember 25. 1 / 20 Tagolás 1 A titkosírások

Részletesebben

5.1 Környezet. 5.1.1 Hálózati topológia

5.1 Környezet. 5.1.1 Hálózati topológia 5. Biztonság A rendszer elsodleges célja a hallgatók vizsgáztatása, így nagy hangsúlyt kell fektetni a rendszert érinto biztonsági kérdésekre. Semmiképpen sem szabad arra számítani, hogy a muködo rendszert

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? AES (Advanced

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A.

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. JOGI INFORMATIKA A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Alaptechnológiák BCE 2006. E-Business - Internet Mellékszakirány 2006

Alaptechnológiák BCE 2006. E-Business - Internet Mellékszakirány 2006 Alaptechnológiák BCE 2006 Alaptechnológiák Biztonság, titkosítás, hitelesítés RSA algoritmus Digitális aláírás, CA használata PGP SSL kapcsolat Biztonságpolitika - Alapfogalmak Adatvédelem Az adatvédelem

Részletesebben

Az elektronikus aláírás és gyakorlati alkalmazása

Az elektronikus aláírás és gyakorlati alkalmazása Az elektronikus aláírás és gyakorlati alkalmazása Dr. Berta István Zsolt Microsec Kft. http://www.microsec.hu Elektronikus aláírás (e-szignó) Az elektronikus aláírás a kódolás

Részletesebben

Titkosítás NetWare környezetben

Titkosítás NetWare környezetben 1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt

Részletesebben

Webalkalmazás-biztonság. Kriptográfiai alapok

Webalkalmazás-biztonság. Kriptográfiai alapok Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):

Részletesebben

Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben

Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben Verziószám 2.0 Objektum azonosító (OID) Hatálybalépés dátuma 2013. november 6. 1 Változáskövetés Verzió Dátum Változás leírása

Részletesebben

A TITKOSÍTÁS ALKALMAZOTT MÓDSZEREI HÁLÓZATI ISMERETEK 1 GYAKORLAT BUJDOSÓ GYÖNGYI FEKETE MÁRTON. 2009 Debrecen AZ ELEKTRONIKUS KOMMUNIKÁCIÓBAN

A TITKOSÍTÁS ALKALMAZOTT MÓDSZEREI HÁLÓZATI ISMERETEK 1 GYAKORLAT BUJDOSÓ GYÖNGYI FEKETE MÁRTON. 2009 Debrecen AZ ELEKTRONIKUS KOMMUNIKÁCIÓBAN A TITKOSÍTÁS ALKALMAZOTT MÓDSZEREI AZ ELEKTRONIKUS KOMMUNIKÁCIÓBAN HÁLÓZATI ISMERETEK 1 GYAKORLAT BUJDOSÓ GYÖNGYI FEKETE MÁRTON 2009 Debrecen 2 BEVEZETİ Az Internetben rejtızı óriási lehetıségeket sokan

Részletesebben

IP alapú távközlés. Virtuális magánhálózatok (VPN)

IP alapú távközlés. Virtuális magánhálózatok (VPN) IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,

Részletesebben

Dan Brown Digitális erődje és a nyilvános kulcsú titkosítás

Dan Brown Digitális erődje és a nyilvános kulcsú titkosítás EÖTVÖS LÓRÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Dan Brown Digitális erődje és a nyilvános kulcsú titkosítás BSc Szakdolgozat Készítette: Fekete Ildikó Elemző matematika szakos hallgató Témavezető:

Részletesebben

Windows biztonsági problémák

Windows biztonsági problémák Windows biztonsági problémák Miskolci Egyetem Általános Informatikai Tanszék Miért a Windows? Mivel elterjedt, előszeretettel keresik a védelmi lyukakat könnyen lehet találni ezeket kihasználó programokat

Részletesebben

Dr. Bakonyi Péter c.docens

Dr. Bakonyi Péter c.docens Elektronikus aláírás Dr. Bakonyi Péter c.docens Mi az aláírás? Formailag valamilyen szöveg alatt, azt jelenti, hogy valamit elfogadok valamit elismerek valamirıl kötelezettséget vállalok Azonosítja az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

E mail titkosítás az üzleti életben ma már követelmény! Ön szerint ki tudja elolvasni bizalmas email leveleinket?

E mail titkosítás az üzleti életben ma már követelmény! Ön szerint ki tudja elolvasni bizalmas email leveleinket? E mail titkosítás az üzleti életben ma már követelmény! Ön szerint ki tudja elolvasni bizalmas email leveleinket? Egy email szövegében elhelyezet információ annyira biztonságos, mintha ugyanazt az információt

Részletesebben

TUDOMÁNYOS DIÁKKÖRI DOLGOZAT. A nyílt kulcsú titkosítás és a digitális aláírás

TUDOMÁNYOS DIÁKKÖRI DOLGOZAT. A nyílt kulcsú titkosítás és a digitális aláírás Budapesti Műszaki Főiskola Kandó Kálmán Villamosmérnöki Főiskolai Kar Műszertechnikai és Automatizálási Intézet TUDOMÁNYOS DIÁKKÖRI DOLGOZAT A nyílt kulcsú titkosítás és a digitális aláírás Szerző: Fuszenecker

Részletesebben

ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS

ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS B uttyán Levente PhD, egyetemi adjunktus, BME Híradástechnikai Tanszék buttyan@hit.bme.hu G yörfi László az MTA rendes tagja, egyetemi tanár BME

Részletesebben

Az adatfeldolgozás és adatátvitel biztonsága. Az adatfeldolgozás biztonsága. Adatbiztonság. Automatikus adatazonosítás, adattovábbítás, adatbiztonság

Az adatfeldolgozás és adatátvitel biztonsága. Az adatfeldolgozás biztonsága. Adatbiztonság. Automatikus adatazonosítás, adattovábbítás, adatbiztonság Az adatfeldolgozás és adatátvitel biztonsága Automatikus adatazonosítás, adattovábbítás, adatbiztonság Az adatfeldolgozás biztonsága A védekezés célja Védelem a hamisítás és megszemélyesítés ellen Biztosított

Részletesebben

Adatbiztonság PPZH 2011. május 20.

Adatbiztonság PPZH 2011. május 20. Adatbiztonság PPZH 2011. május 20. 1. Mutassa meg, hogy a CBC-MAC kulcsolt hashing nem teljesíti az egyirányúság követelményét egy a k kulcsot ismerő fél számára, azaz tetszőleges MAC ellenőrzőösszeghez

Részletesebben

Az SSH működése 1.Az alapok SSH SSH2 SSH1 SSH1 SSH2 RSA/DSA SSH SSH1 SSH2 SSH2 SSH SSH1 SSH2 A kapcsolódás menete Man-In-The-Middle 3DES Blowfish

Az SSH működése 1.Az alapok SSH SSH2 SSH1 SSH1 SSH2 RSA/DSA SSH SSH1 SSH2 SSH2 SSH SSH1 SSH2 A kapcsolódás menete Man-In-The-Middle 3DES Blowfish Alapok Az SSH működése 1.Az alapok Manapság az SSH egyike a legfontosabb biztonsági eszközöknek. Leggyakrabban távoli shell eléréshez használják, de alkalmas fájlok átvitelére, távoli X alkalmazások helyi

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Adatbiztonság 1. KisZH (2010/11 tavaszi félév)

Adatbiztonság 1. KisZH (2010/11 tavaszi félév) Adatbiztonság 1. KisZH (2010/11 tavaszi félév) Ez a dokumentum a Vajda Tanár úr által közzétett fogalomlista teljes kidolgozása az első kiszárthelyire. A tartalomért felelősséget nem vállalok, mindenki

Részletesebben

TESZ INTERNET ÉS KOMMUNIKÁCIÓ M7

TESZ INTERNET ÉS KOMMUNIKÁCIÓ M7 TESZ INTERNET ÉS KOMMUNIKÁCIÓ M7 1. FELADAT 1. Továbbküldés esetén milyen előtaggal egészül ki az e-mail tárgysora? Jelölje a helyes választ (válaszokat)! [1 pont] a) From: b) Fw: c) To: d) Vá: 2. Melyik

Részletesebben

XII. Bolyai Konferencia. Bodnár József Eötvös Collegium II. matematikus, ELTE TTK

XII. Bolyai Konferencia. Bodnár József Eötvös Collegium II. matematikus, ELTE TTK XII. Bolyai Konferencia Bodnár József Eötvös Collegium II. matematikus, ELTE TTK A legegyszerűbb titkosírás: a betűcsere A B C D E... C A B E D... AD --> CE Állandó helyettesítési séma Váltogatott kulcs:

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Hálózati biztonság (772-775) Kriptográfia (775-782)

Hálózati biztonság (772-775) Kriptográfia (775-782) Területei: titkosság (secrecy/ confidentality) hitelesség (authentication) letagadhatatlanság (nonrepudiation) sértetlenség (integrity control) Hálózati biztonság (772-775) Melyik protokoll réteg jöhet

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

A HITELESÍTÉS- SZOLGÁLTATÓKKAL SZEMBENI BIZALOM ERŐSÍTÉSE

A HITELESÍTÉS- SZOLGÁLTATÓKKAL SZEMBENI BIZALOM ERŐSÍTÉSE GÁBOR DÉNES FŐISKOLA A HITELESÍTÉS- SZOLGÁLTATÓKKAL SZEMBENI BIZALOM ERŐSÍTÉSE sorszám: 732/2001 VÁRNAI RÓBERT BUDAPEST 2001 KÖSZÖNETNYILVÁNÍTÁS Ezúton szeretnék köszönetet mondani azoknak a személyeknek,

Részletesebben

Titkosítási rendszerek CCA-biztonsága

Titkosítási rendszerek CCA-biztonsága Titkosítási rendszerek CCA-biztonsága Doktori (PhD) értekezés szerző: MÁRTON Gyöngyvér témavezető: Dr. Pethő Attila Debreceni Egyetem Természettudományi Doktori Tanács Informatikai Tudományok Doktori Iskola

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Biztonság a glite-ban

Biztonság a glite-ban Biztonság a glite-ban www.eu-egee.org INFSO-RI-222667 Mi a Grid biztonság? A Grid probléma lehetővé tenni koordinált erőforrás megosztást és probléma megoldást dinamikus több szervezeti egységből álló

Részletesebben

Szabó Zoltán PKI termékmenedzser szabo.zoltan@netlock.hu

Szabó Zoltán PKI termékmenedzser szabo.zoltan@netlock.hu Elektronikus számlázás Szabó Zoltán PKI termékmenedzser szabo.zoltan@netlock.hu TARTALOM A NetLock-ról röviden Magyarország első hitelesítés-szolgáltatója Az ealáírásról általában Hogyan, mivel, mit lehet

Részletesebben

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

TANÚSÍTVÁNY. tanúsítja, hogy a Utimaco Safeware AG által kifejlesztett és forgalmazott

TANÚSÍTVÁNY. tanúsítja, hogy a Utimaco Safeware AG által kifejlesztett és forgalmazott TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 15/2001.(VIII. 27.) MeHVM rendelet alapján, mint a Magyar Köztársaság Informatikai és Hírközlési

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

A kriptográfia története tömören a szkütalétól az SSL-ig

A kriptográfia története tömören a szkütalétól az SSL-ig Budapest University of Technology and Economics A kriptográfia története tömören a szkütalétól az SSL-ig Dr. Buttyán Levente (CrySyS) Department of Telecommunications Budapest University of Technology

Részletesebben

Távközlési informatika Kriptográfia. Dr. Beinschróth József

Távközlési informatika Kriptográfia. Dr. Beinschróth József Távközlési informatika Kriptográfia Dr. Beinschróth József Fogalmak, alapelvek A biztonság összetevőinek egy része kriptográfián alapul de a kriptográfia önmagában nem oldja meg a biztonság problémáját

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

Elektronikus hitelesítés a gyakorlatban

Elektronikus hitelesítés a gyakorlatban Elektronikus hitelesítés a gyakorlatban Tapasztó Balázs Vezető termékmenedzser Matáv Üzleti Szolgáltatások Üzletág 2005. április 1. 1 Elektronikus hitelesítés a gyakorlatban 1. Az elektronikus aláírás

Részletesebben

A kommunikáció biztonsága. A kriptográfia története tömören a szkütalétól az SSL-ig. A (szimmetrikus) rejtjelezés klasszikus modellje

A kommunikáció biztonsága. A kriptográfia története tömören a szkütalétól az SSL-ig. A (szimmetrikus) rejtjelezés klasszikus modellje Budapest University of Technology and Economics A kommunikáció biztonsága A kriptográfia története tömören a szkütalétól az SSL-ig főbb biztonsági követelmények adatok titkossága adatok integritásának

Részletesebben

Adat és információvédelem Informatikai biztonság. Dr. Beinschróth József CISA

Adat és információvédelem Informatikai biztonság. Dr. Beinschróth József CISA Adat és információvédelem Informatikai biztonság Dr. Beinschróth József CISA Tematika Hol tartunk? Alapfogalmak, az IT biztonság problematikái Nemzetközi és hazai ajánlások Az IT rendszerek fenyegetettsége

Részletesebben

Algoritmusok és adatszerkezetek II.

Algoritmusok és adatszerkezetek II. Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék - Németh Tamás Algoritmusok és adatszerkezetek

Részletesebben

Adatbiztonság a gazdaságinformatikában ZH 2015. december 7. Név: Neptun kód:

Adatbiztonság a gazdaságinformatikában ZH 2015. december 7. Név: Neptun kód: Adatbiztonság a gazdaságinformatikában ZH 015. december 7. Név: Neptun kód: 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek almaza {a,b}, kulcsok almaza {K1,K,K3,K4,K5}, rejtett üzenetek almaza

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Áttekintés a GPG/PGP-ről Mohácsi János NIIF Intézet

Áttekintés a GPG/PGP-ről Mohácsi János NIIF Intézet Áttekintés a GPG/PGP-ről Mohácsi János NIIF Intézet 2007.10.07. Tartalomjegyzék Bevezetés Technikai háttér Web of trust GPG/PGP használata Kulcs aláírási est NIIF http://www.niif.hu 2 Történelem 1991:

Részletesebben

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2012 Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód

Részletesebben

Informatikai alapismeretek Földtudományi BSC számára

Informatikai alapismeretek Földtudományi BSC számára Informatikai alapismeretek Földtudományi BSC számára 2010-2011 Őszi félév Heizlerné Bakonyi Viktória HBV@ludens.elte.hu Titkosítás,hitelesítés Szimmetrikus DES 56 bites kulcs (kb. 1000 év) felcserél, helyettesít

Részletesebben

Elektronikus levelek. Az informatikai biztonság alapjai II.

Elektronikus levelek. Az informatikai biztonság alapjai II. Elektronikus levelek Az informatikai biztonság alapjai II. Készítette: Póserné Oláh Valéria poserne.valeria@nik.bmf.hu Miről lesz szó? Elektronikus levelek felépítése egyszerű szövegű levél felépítése

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Titkosírás Biztos, hogy titkos? Biztonság növelése véletlennel Wettl Ferenc előadása 2010 december 7.

Titkosírás Biztos, hogy titkos? Biztonság növelése véletlennel Wettl Ferenc előadása 2010 december 7. Wettl Ferenc Biztos, hogy biztos? - 1 - Szerkesztette: Kiss Eszter Titkosírás Biztos, hogy titkos? Biztonság növelése véletlennel Wettl Ferenc előadása 2010 december 7. Szabó Tanár Úr két héttel ezelőtti

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

GoWebeye Monitor Release 1.6.4 Üzenetküldés

GoWebeye Monitor Release 1.6.4 Üzenetküldés GoWebeye Monitor Release 1.6.4 Üzenetküldés 1/10 Tartalom AZ ÜZENETVÁLTÁS MODUL... 3 AZ ÜZENETVÁLTÁS MODUL FUNKCIÓI... 3 AZ ÜZENETVÁLTÁS FOLYAMATA... 4 AZ ÜZENETVÁLTÁS MODUL FELÉPÍTÉSE ÉS HASZNÁLATA...

Részletesebben

A kiptográfia alapjai. Történet és alapfogalmak

A kiptográfia alapjai. Történet és alapfogalmak A kiptográfia alapjai Dr. Tóth Mihály http://arek.uni-obuda.hu/~tothm/ Kutatók-Éjszakaja-2012 Történet és alapfogalmak Mióta írások léteznek, azóta vannak titkos írások is. Kezdetben, amíg kevesen tudtak

Részletesebben

24. szakkör (Csoportelméleti alapfogalmak 3.)

24. szakkör (Csoportelméleti alapfogalmak 3.) 24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,

Részletesebben

Üzenetek titkosítása az óra-aritmetika alkalmazásával Catherine A. Gorini 1

Üzenetek titkosítása az óra-aritmetika alkalmazásával Catherine A. Gorini 1 Üzenetek titkosítása az óra-aritmetika alkalmazásával Catherine A. Gorini 1 Aszámítógépek és más elektronikus kommunikációs eszközök befolyással vannak életünk szinte minden területére az áruházi vásárlástól

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 1. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016 Követelmények, osztályozás Jelenlét: A laborgyakorlat

Részletesebben

Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p)

Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p) Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}.

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

Informatika Biztonság Alapjai

Informatika Biztonság Alapjai Informatika Biztonság Alapjai Tételek 1. Történeti titkosítási módszerek. 2. Szimmetrikus titkosítási módszerek. Vigenere módszer és törése 3. Véletlen átkulcsolás módszere. 4. Transzpozíciós módszer és

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Bankkártya elfogadás a kereskedelmi POS terminálokon

Bankkártya elfogadás a kereskedelmi POS terminálokon Bankkártya elfogadás a kereskedelmi POS terminálokon Költségcsökkentés egy integrált megoldással 2004. február 18. Analóg-Digitál Kft. 1 Banki POS terminál elemei Kliens gép processzor, memória, kijelző,

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

2008.04.17. SZÁMÍTÁSTCHNIKA. Facskó Ferenc http://ffacsko.emk.nyme.hu/ Számítástechnika Informatika

2008.04.17. SZÁMÍTÁSTCHNIKA. Facskó Ferenc http://ffacsko.emk.nyme.hu/ Számítástechnika Informatika SZÁMÍTÁSTCHNIKA INFORMÁCIÓS RENDSZEREK INFORMATIKA Facskó Ferenc http://ffacsko.emk.nyme.hu/ Számítástechnika Informatika 1 Információs rendszerek A technológiák befogadásának Nolan modellje Gibsonlappangás

Részletesebben

A digitális aláírás elterjedésének lehetőségei és korlátai 1

A digitális aláírás elterjedésének lehetőségei és korlátai 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar A digitális aláírás elterjedésének lehetőségei és korlátai 1 Szerzők: Szabó Áron, Krasznay Csaba Konzulensek: Horányi

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 5 (2012.04.09) Programozás alapok Eddig amit láttunk: Programozás lépései o Feladat leírása (specifikáció) o Algoritmizálás, tervezés (folyamatábra, pszeudokód) o Programozás

Részletesebben

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek

Részletesebben

A SecMS üzenetküldő fizetési rendszere

A SecMS üzenetküldő fizetési rendszere Eötvös Loránd Tudományegyetem Informatikai Kar A SecMS üzenetküldő fizetési rendszere Témavezető: Nagy Dániel ELTECrypt kutatócsoport vezető szakértő Készítette: Riskó Gergely nappali tagozat programtervező

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Kolozsvár 2008 május 23-24

Kolozsvár 2008 május 23-24 ZÉRUSOSZTÓK TANULMÁNYOZÁSA A MARADÉKOSZTÁLYOK GYŰRŰJÉBEN Horobeţ Emil, Babeş Bolyai Tudományegyetem, Matematika-Informatika szak, I év Témavezető: prof.dr.mǎrcuş Andrei, Babeş Bolyai Tudományegyetem, Algebra

Részletesebben

TANÚSÍTVÁNY. tanúsítja, hogy a. Giesecke & Devrient GmbH, Germany által előállított és forgalmazott

TANÚSÍTVÁNY. tanúsítja, hogy a. Giesecke & Devrient GmbH, Germany által előállított és forgalmazott TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 15/2001.(VIII. 27.) MeHVM rendelet alapján, mint a Magyar Köztársaság Informatikai és Hírközlési

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Elektronikus aláírás. Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Hitelesít szervezetek.

Elektronikus aláírás. Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Hitelesít szervezetek. Elektronikus aláírás Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Jogi háttér Hitelesít szervezetek. Miért van szükség elektronikus aláírásra? Elektronikus

Részletesebben

REJTJELZŐ MÓDSZEREK VIZSGÁLATA

REJTJELZŐ MÓDSZEREK VIZSGÁLATA Póserné Oláh Valéria PÓSERNÉ Oláh Valéria REJTJELZŐ MÓDSZEREK VIZSGÁLATA (EXAMINATION OF THE METHODS OF CRYPTOGRAPHY) Mindennapjaink szerves részévé vált az információ elektronikus tárolása, továbbítása,

Részletesebben

TANÚSÍTVÁNY. Időbélyegzés szolgáltatás keretén belül: Időbélyegző aláíró kulcsok generálására, tárolására, időbélyegző aláírására;

TANÚSÍTVÁNY. Időbélyegzés szolgáltatás keretén belül: Időbélyegző aláíró kulcsok generálására, tárolására, időbélyegző aláírására; TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 9/2005. (VII.21.) IHM rendelet alapján, mint a Nemzeti Fejlesztési Minisztérium IKF/19519-2/2012-NFM

Részletesebben

A házifeladatban alkalmazandó XML struktúra

A házifeladatban alkalmazandó XML struktúra A házifeladatban alkalmazandó XML struktúra Absztrakt: A feladat egy fájl, vagy szövegkódoló készítése. Parancssorból indítható (a helyes szintaxis megadása mellett (http://www.linfo.org/standard_input.html)),

Részletesebben

Prímszámkódolás Applet fejlesztése Java nyelven. Kaczur Sándor Gábor Dénes Főiskola Informatikai Intézet kaczur@gdf.hu

Prímszámkódolás Applet fejlesztése Java nyelven. Kaczur Sándor Gábor Dénes Főiskola Informatikai Intézet kaczur@gdf.hu Prímszámkódolás Applet fejlesztése Java nyelven Kaczur Sándor Gábor Dénes Főiskola Informatikai Intézet kaczur@gdf.hu Absztrakt A titkosírással foglalkozó algoritmusok népszerűsége töretlen. A főiskolai

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

A NYILVÁNOS KULCSÚ INFRASTRUKTÚRA ALAPJAI ÉS ÖSSZETEVŐI BASICS AND COMPONENTS OF PUBLIC KEY INFRASTRUCTURE SPISÁK ANDOR

A NYILVÁNOS KULCSÚ INFRASTRUKTÚRA ALAPJAI ÉS ÖSSZETEVŐI BASICS AND COMPONENTS OF PUBLIC KEY INFRASTRUCTURE SPISÁK ANDOR SPISÁK ANDOR A NYILVÁNOS KULCSÚ INFRASTRUKTÚRA ALAPJAI ÉS ÖSSZETEVŐI BASICS AND COMPONENTS OF PUBLIC KEY INFRASTRUCTURE A cikk bevezetést nyújt a Nyilvános Kulcsú Infrastruktúrába és kriptográfiába, valamint

Részletesebben

MÁRTON GYÖNGYVÉR KRIPTOGRÁFIAI ALAPISMERETEK

MÁRTON GYÖNGYVÉR KRIPTOGRÁFIAI ALAPISMERETEK MÁRTON GYÖNGYVÉR KRIPTOGRÁFIAI ALAPISMERETEK SAPIENTIA ERDÉLYI MAGYAR TUDOMÁNYEGYETEM M SZAKI ÉS HUMÁNTUDOMÁNYOK KAR MATEMATIKAINFORMATIKA TANSZÉK MÁRTON GYÖNGYVÉR KRIPTOGRÁFIAI ALAPISMERETEK Scientia

Részletesebben

Adatbiztonság. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013 1 / 22

Adatbiztonság. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013 1 / 22 Adatbiztonság Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013 1 / 22 Tartalomjegyzék 1 Bevezetés 2 Titkosítás 3 Security Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

A szteganográfia és annak relevanciája a privátszféra védelmében

A szteganográfia és annak relevanciája a privátszféra védelmében A szteganográfia és annak relevanciája a privátszféra védelmében Földes Ádám Máté foldesa@pet-portal.eu Hacktivity 2008 Budai Fonó Zeneház, 2008. szeptember 21. Tartalom Bevezető Alapfogalmak, rövid történeti

Részletesebben