II. KÖZÚTI BETONHIDAK TERVEZÉSE

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "II. KÖZÚTI BETONHIDAK TERVEZÉSE"

Átírás

1 II. KÖZÚTI BETONHIDAK TERVEZÉSE A beton (a továbbiakban: vasalatlan beton), vasbeton és feszített beton anyagú közúti hidakat (a továbbiakban: betonhidak) az I. fejezet 2. szakasza szerinti terhekre és hatásokra úgy kell megtervezni, hogy az I. fejezet 3. szakasza szerinti, hidakra vonatkozó általános erőtani követelmények teljesüljenek. A beton anyagú közúti hidakhoz felhasználható agyagok jellemzőit a jelen II. fejezet 1. szakasza, a tartószerkezet erőtani számításakor figyelembe veendő szempontokat a 2. szakasz, a beton anyagú közúti hidakra vonatkozó erőtani követelményeket a 3. szakasz, a kialakítás során figyelembe veendő szerkesztési szabályokat pedig a 4. szakasz tartalmazza. 1. ANYAGOK 1.1. Betonacél Betonhidakhoz olyan betonacél tervezhető, amelyre a tervezéshez szükséges folyáshatár (f yk ) és a szakítószilárdság (f tk ) karakterisztikus értéke vagy ezek aránya k = (f t /f y ) k, továbbá a legnagyobb erőhöz tartozó nyúlás (ε uk ) karakterisztikus értéke, valamint a bordázat fajlagos felületének (f R ) jellemző értéke, továbbá ha ez szükséges, a hegeszthetőség feltétele szakintézeti véleménnyel rendelkezésre áll. A kifejezett folyáshatár nélküli betonacél esetén az f yk helyett a 0,2%-os egyezményes folyáshatár (f 0,2k ) karakterisztikus értékét kell számításba venni (1.1. ábra). Az f yk és az f 0,2k értékek 5%- os alulmaradási valószínűséghez tartozó értékek. a) Melegen hengerelt betonacél (általában) b) Hidegen alakított betonacél (általában) 1.1. ábra: A betonacélok tervezéshez szükséges anyagjellemzői Az alkalmazható betonacélok duktilitási osztályokba való besorolásának feltételi értékeit és az anyagjellemzők karakterisztikus értékeinek megfelelő alulmaradási valószínűségek értékeit az 1.1. táblázat tartalmazza. 1

2 Termék Betonacél (rúdban vagy letekercselve) 1.1. táblázat: A betonacélok duktilitási feltételei Hegesztett hálók Duktilitási osztály A B C A B C A folyáshatár f yk vagy f 0,2k karakterisztikus értéke A k = (f t /f y ) k értéke 1,05 1,08 1,15 A legnagyobb erőhöz tartozó nyúlás karakterisztikus értéke, ε uk [%] < 1,35 1,05 1,08 1,15 < 1,35 A karakterisztikus értékhez tartozó alulmaradási valószínűség [%] 2,5 5,0 7,5 2,5 5,0 7,5 10 A betonacélok minősítési követelményeit és a minősítés módszereit az MSZ EN tartalmazza. A Magyarországon leggyakrabban előforduló betonacélok fontosabb jellemzőit az F1.1. szakasz tartalmazza. A betonacél rugalmassági modulusát pontosabb adatok hiányában - E s = 200 kn/mm 2 -re lehet felvenni Feszítőacél A feszített betonhidakhoz olyan feszítőacél (huzal, pászma, rúd stb.) tervezhető, amelyre a tervezéshez szükséges 0,1%-os egyezményes folyáshatár (f p0,1k ) és a szakítószilárdság (f pk ) karakterisztikus értéke, valamint a legnagyobb erőhöz tartozó nyúlás (ε uk ) karakterisztikus értéke, továbbá a relaxációs osztály, a méret, továbbá a felületi jellemző szakintézeti véleménnyel rendelkezésre áll (1.2. ábra). Az f pk és az f p0,1k értékek 5%-os alulmaradási valószínűséghez tartozó értékek ábra: A betonacélok tervezéshez szükséges anyagjellemzői 2

3 A feszítőacél duktilitás szempontjából megfelelő, ha teljesül az f pk /f p0,1k 1,1 feltétel. A feszítőacélok minősítési követelményeit és a minősítés módszereit az MSZ EN tartalmazza.a Magyarországon leggyakrabban előforduló feszítőacélok fontosabb jellemzőit az F1.1. szakasz tartalmazza Feszítőacélok relaxációja A relaxáció mértéke szempontjából a feszítőacélokat a következő három relaxációs osztályba lehet besorolni: 1. relaxációs osztály: huzalok vagy feszítő pászmák - szokásos mértékű relaxáció 2. relaxációs osztály: huzalok vagy feszítő pászmák - alacsony mértékű relaxáció 3. relaxációs osztály: feszítőrudak A feszítőhuzalok és feszítőpászmák csak ún. stabilizált (R2 osztály, feszültség alatt megeresztett) minőségben tervezhetők (2. relaxációs osztály). Ezek relaxációja 20 0 C-on, 0,7f p kezdeti feszítési feszültségen 1000 óra alatt legfeljebb ρ 1000 = 2,5%, ahol f p a vizsgált próbatest tényleges szakítószilárdsága. Melegen hengerelt feszítőrudak esetén (3. relaxációs osztály) ρ 1000 = 4,0%, a fentiekkel megegyező hőmérsékleten és kezdeti feszítési feszültség esetén. A gyártó erre vonatkozó adata hiányában a közönséges hőmérsékleten bekövetkező ernyedés okozta feszültségcsökkenés százalékos értékét a következő módon számítható: 2. relaxációs osztály: feszítőhuzalok és pászmák esetén: σ σ pr pm0 = 0,66ρ 1000 e 9,1 µ t ,75 (1 µ) relaxációs osztály: Feszítőrudak esetén: σ σ pr pm0 = 1,98ρ 1000 e 8µ t ,75 (1 µ ) 10 5 σ pr - relaxáció miatti feszültségcsökkenés mértéke σ pm0 - a feszítőbetétben kialakuló feszültség a feszítőerő tartóra való ráengedését követően (utófeszített szerkezetnél a lehorgonyzást követően); t - a megfeszítéstől időpontjától kezdve eltelt idő [óra]-ban A relaxáció miatti feszültségcsökkenés végértékét t = óra figyelembevételével célszerű számítani. µ = σ pm0 /f pk - a feszítés fajlagos mértéke ρ az 1000 órás veszteség mértéke [%]-ban, 20 0 C-on. 3

4 Ha a beton szilárdulását hőérleléssel (pl. előregyártott szerkezetek esetén) gyorsítják, akkor a fenti összefüggésekben a t [óra] időt meg kell növelni az alábbi, a hőérlelés hatását figyelembe vevő t eq [óra] egyenértékű idővel: t eq = 1 max,14 T max ( T 20) 20 n ( T( t ) 20) i i= 1 t i T ( ti ) - a hőérlelés során t i időintervallumban működő hőmérséklet 0 C-ban T max - a hőérlelés során fellépő legmagasabb hőmérséklet [ 0 C]-ban A feszítőacélok rugalmassági modulusa A feszítőacélok rugalmassági modulusát pontosabb adatok hiányában a következőképpen lehet felvenni. feszítőhuzalok és melegen hengerelt, nyújtott és megeresztett feszítőrudak esetén általában: E p = 205 kn/mm 2 feszítőpászma esetén: E p = 195 kn/mm Beton A következő előírások legfeljebb C90/105 szilárdsági jelű betonból készült hidakra vonatkoznak A beton megnevezése és jelölése A betont az MSZ EN szerint kell jelölni. A beton megnevezésében és a kiviteli terven feltüntetett jelében minimálisan az alábbi adatoknak kell szerepelnie: a beton nyomószilárdsági osztálya (pl. C60/75) az 1.5. táblázat szerint környezeti osztály(ok) (pl. XF4) az szakasz szerint adalékanyag legnagyobb szemnagysága [mm]-ben (pl. 16) konzisztencia osztály (pl. F3) az MSZ EN szerint Az így megnevezett beton jele pl.: C60/75 XF4 16 F3 A beton megnevezésében szereplő egyéb adatok tekintetében az MSZ EN szakasza szerint kell eljárni Tartóssági követelmények Környezeti osztályok A megfelelő betont az MSZ EN előírásai szerint, a környezeti osztályok figyelembevételével kell elkészíteni és a megvalósítási tervben előírni. Az MSZ EN szerinti környezeti osztályokat az F2. függelék tartalmazza. A hidak esetén leggyakrabban előforduló környezeti osztályokat az 1.2. táblázat tartalmazza. 4

5 Jelölés Karbonátosodás okozta korrózió 1.2. táblázat: A hidak esetén leggyakrabban előforduló környezeti osztályok A környezeti hatás leírása Tájékoztató példák a környezeti osztályok előfordulására XC3 Mérsékelt nedvesség Mérsékelt, vagy nagy relatív páratartalmú épületekben lévő beton. Esőtől védett, szabadban lévő beton XC4 Váltakozva nedves és száraz Víznek kitett betonfelületek, amelyek nem tartoznak az XC2 osztályba Nem a tengervízből származó kloridok által okozott korrózió XD2 XD3 Nedves, ritkán száraz Váltakozva nedves és száraz Fagyási/olvadási korrózió jégolvasztó anyaggal vagy anélkül XF2 XF4 Mérsékelt víztelítettség jégolvasztó anyaggal Nagymérvű víztelítettség jégolvasztó anyaggal Minimális betonszilárdsági osztályok Úszómedencék. Kloridokat tartalmazó ipari vizeknek kitett, de jégolvasztó sónak ki nem tett beton Kloridot tartalmazó permetnek kitett hídelemek. Járdák és útburkolatok. Autóparkolók födémei Útépítési szerkezetek függőleges betonfelületei, amelyek ki vannak téve fagynak és a levegő által szállított jégolvasztó anyag permetének Útburkolatok és híd pályalemezek jégolvasztó anyagoknak kitéve. Jégtelenítő anyagok közvetlen permetének és fagynak kitett betonfelületek. Fagynak kitett tengeri szerkezetek a felcsapódási zónában A könyezeti hatásoknak kitett beton megfelelő tartóssága érdekében a közúti hidakba tervezett betonok szilárdsági osztálya a leggyakrabban előforduló környezeti osztályok esetén legalább a következő 1.3. táblázat szerinti legyen még akkor is, ha ez erőtanilag nem szükséges táblázat: Minimális betonszilárdsági osztályok Jelölés Minimális betonszilárdsági osztály Karbonátosodás okozta korrózió XC3 C30/37 XC4 C30/37 Nem a tengervízből származó kloridok által okozott korrózió XD2 C30/37 XD3 C35/45 Fagyási/olvadási korrózió jégolvasztó anyaggal vagy anélkül XF2 C25/30 XF4 C30/37 Az F2. függelékben lévő összes környezeti osztályhoz tartozó minimális betonszilárdsági osztályokat az F4. függelék tartalmazza. 5

6 Minimális betonfedés Az erőtani számításban figyelembe vett legkülső acélbetéteken értelmezett, az acélbetétek megfelelő lehorgonyzódása és a tartóssági követelmények biztosítása érdekében alkalmazott és a kiviteli terven feltüntetett betonfedés minimális értékét (c min ) a következő összefüggéssel kell meghatározni: c min = max (c min,b ; c min,d ) c min,b - az acélbetétek megfelelő lehorgonyzódása miatt szükséges minimális betonfedés c min,d - a tartóssági követelmények miatt szükséges minimális betonfedés A c min,b értéke az alábbiak szerint számítható: c min,b = φ φ h = φ n b egyedi acélbetét esetén, ahol φ az acélbetét átmérője csoportos acélbetét esetén, ahol n b a csoportban lévő acélbetétek száma, de a következők figyelembevételével: n b 4 függőleges, nyomott acélbetét esetén és átfedéses toldásnál n b 3 minden egyéb esetben. Ha a legnagyobb szemcseméret 32 mm-nél nagyobb, akkor a c min,b értékét 5 mm-rel meg kell növelni. Utófeszített szerkezeteknél alkalmazott kábelcsatornák esetén c min,b értéke: kör keresztmetszetű kábelcsatornánál az átmérő, de maximum 80 mm, négyszög keresztmetszetű kábelcsatornánál a nagyobbik méret fele, illetve a kisebbik méret közül a nagyobb, de maximum 80 mm. Kábelcsatorna nélküli feszítőbetét esetén c min,b értéke: feszítőpászma és feszítőhuzal esetén az átmérő 2-szerese, rovátkolt felületű feszítőhuzal esetén az átmérő 3-szorosa. A c min,d értékeit az szakasz szerinti, leggyakrabban előforduló környezeti osztályok esetére az 1.4a., 1.4b. és 1.4c. táblázatok alapján lehet felvenni a 4. számú szerkezeti osztály (50 éves tervezési élettartam) alapulvételével. A szerkezeti osztályba való besorolás módosító körülményeit az 1.4a. táblázat tartalmazza. Az F2. függelékben lévő összes környezeti osztályhoz tartozó táblázatokat az F3. függelék tartalmazza. 6

7 1.4a. táblázat: A szerkezeti osztályba való besorolás módosító körülményei A szerkezeti osztály sorszámának módosítása Környezeti osztály Körülmény XC4, XD2, XC3, XD3, XF4 XF2 100 éves tervezési élettartam esetén -1, ha Szilárdsági osztály * C35/45 C40/50 C45/55 +2 felületszerkezet esetén -1 kiemelt szintű minőségellenőrzés esetén -1 * Megjegyzés: Ha a beton 4%-nál nagyobb légpórustartalommal készül, akkor a táblázatban megadott szilárdsági osztály eggyel csökkenthető. Szerkezeti osztály sorszáma A c min,d [mm] értéke betonacél esetén Környezeti osztály 1.4b. táblázat: A c min,d értékei betonacél esetén XC3 XC4 XD2, XF2 XD3, XF Szerkezeti osztály sorszáma c min,d [mm] értéke feszítőacél esetén Környezeti osztály 1.4c. táblázat: A c min,d értékei feszítőacél esetén XC3 XC4 XD2, XF2 XD3, XF Egymásra betonozott szerkezeti elemek esetén a csatlakozási felület mentén alkalmazott betonfedés mértékét a tapadás miatt szükséges c min,b értékig lehet csökkenteni aban az esetben, ha: az alkalmazott beton szilárdsági osztálya legalább C25/30, a csatlakozó felület az egymásra betonozást megelőzően a környezeti hatásoknak rövid ideig (legfeljebb 28 napig) van kitéve, a csatlakozási felület durvított. 7

8 Utólag érdesített betonfelület esetén a c min,d 1.4b. és 1.4c. táblázatokban szereplő értékét meg kell növelni 5 mm-rel. Koptató hatásnak kitett szerkezetek esetén c min értékét célszerű megnövelni az F2. függelék F2.3. táblázata szerinti XK1(H) környezeti osztályban 5 mm-rel XK2(H) környezeti osztályban 10 mm-rel XK3(H) és XK4(H) környezeti osztályban 15 mm-rel Talajra betonozott szerkezetek esetén c min értéke nem lehet kisebb: előkészíett talajra való betonozás esetén (a szerelőbetont is beleértve): 40 mm-nél, előkészítetlen talara való betonozás esetén: 75 mm-nél Anyagjellemzők A betonok legfontosabb anyagjellemzőit az 1.5. táblázat tartalmazza. A különböző méretű és alakú próbatestek vizsgálati eredményeinek értékelési módját és a minősítés feltételrendszerét az MSZ EN tartalmazza. A Poisson-tényezőt repedésmentes beton esetén 0,2-re, berepedt beton esetén zérusra lehet felvenni. A beton lineáris hőtágulási együtthatóját /K értékkel lehet figyelembe venni. Az 1.5. táblázatban szereplő mennyiségek megnevezését és számítási összefüggéseit az F1.2. szakasz tartalmazza. 8

9 táblázat: A betonok legfontosabb anyagjellemzői Szilárdsági jel C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 C60/75 C70/85 C80/95 C90/105 f ck [N/mm 2 ] f ck,cube [N/mm 2 ] f cm [N/mm 2 ] f ctm [N/mm 2 ] 1,6 1,9 2,2 2,6 2,9 3,2 3,5 3,8 4,1 4,2 4,4 4,6 4,8 5,0 f ctk,0,05 [N/mm 2 ] 1,1 1,3 1,5 1,8 2,0 2,2 2,5 2,7 2,9 3,0 3,1 3,2 3,4 3,5 f ctk,0,95 [N/mm 2 ] 2,0 2,5 2,9 3,3 3,8 4,2 4,6 4,9 5,3 5,5 5,7 6,0 6,3 6,6 E cm (GPa) ε c1 ( ) 1,8 1,9 2,0 2,1 2,2 2,25 2,3 2,4 2,45 2,5 2,6 2,7 2,8 2,8 ε cu1 ( ) 3,5 3,2 3,0 2,8 2,8 2,8 ε c2 ( ) 2,0 2,2 2,3 2,4 2,5 2,6 ε cu2 ( ) 3,5 3,1 2,9 2,7 2,6 2,6 ε c3 ( ) 1,75 1,8 1,9 2,0 2,2 2,3 ε cu3 ( ) 3,5 3,1 2,9 2,7 2,6 2,6 Megjegyzés: szilárdsági jelben lévő első szám a 150 mm átmérőjű és 300 mm magas hengerek, míg a törtvonal utáni szám a 150 mm élhosszúságú kockák nyomószilárdságának karakterisztikus (5% aluilmaradási valószínűséghez tartozó) értékét jelenti [N/mm 2 ]-ben. f ck a 28 napos korban meghatározott nyomószilárdság (5%-os alulmaradási valószínűséghez tartozó) karakterisztikus értéke ф150/300 mm hengeren mérve, Ha a nyomószilárdságot 28 napnál idősebb korú betonon határozzák meg, akkor a továbbiakban az utószilárdulásra való tekintettel a fenti f ck helyett f ck* = 0,85f ck értéket kell használni. f ck,cube - a 28 napos korban meghatározott nyomószilárdság (5%-os alulmaradási valószínűséghez tartozó) karakterisztikus értéke 150 mm élhosszúságú kockán mérve, f cm hengeren mért nyomószilárdság várható értéke 28 napos korban, f ctm - a húzószilárdság várható értéke 28 napos korban, f ctk,0,05 a húzószilárdság 5%-os alulmaradási valószínűséghez tartozó értéke 28 napos korban, f ctk,0,95 - a húzószilárdság 95%-os alulmaradási valószínűséghez tartozó értéke 28 napos korban, E cm - a beton rugalmassági (a σ c = 0 és σ c = 0,4f cm pontokat összekötő húrnak megfelelő) modulusa 28 napos korban (várható érték), Az összefüggés homokos kavics adalékanyag esetén érvényes. Az 1.5. táblázatban szereplő értéket mészkő adalékanyag esetén 10%-kal csökkenteni, homokkő adalékanyag esetén 30%-kal csökkenteni, bazalt adalékanyag esetén a fenti értéket 20%-kal növelni kell. ε c1, ε cu1, ε c2, ε cu2, ε c3, ε cu3 a beton σ-ε diagramjához tartozó jellegzetes alakváltozási értékek [ ]-ben a 3.1a., 3.1b., 3.1c. és 3.1d. ábrák szerint.

10 Zsugorodás A beton zsugorodásának mértéke függ a környező levegő páratartalmától, a szerkezeti elem geometriai méreteitől és a beton összetételétől. Ha nem szükséges nagy pontosság, akkor a zsugorodás ε cs, végértéke a következőképpen számítható: ε cs, = ε ca, + ε cd, Az ε ca, ülepedési (autogén) zsugorodás a beton szilárdulási folyamata során alakul ki, azaz a betonozást követő napokban a legnagyobb része lejátszódik. Végértéke az alábbi összefüggéssel számítható: ε ca, = 2,5 (f ck [N/mm 2 ] 10) 10-6 Az ε cd, száradási zsugorodás végértéke az alábbi összefüggéssel számítható: ε cd, = k h ε cd,0 ahol ε cd,0 a gátolatlan száradási zsugorodás alapértéke, mely az 1.6a. táblázatból, k h értékei az 1.6b. táblázatból vehetők. Közbenső interpoláció lehetséges. 1.6a. táblázat: A gátolatlan zsugorodás (ε cd,0 ) értékei [ ]-ben Szilárdsági Relatív páratartalom [%] osztály C20/25 0,64 0,60 0,50 0,31 0,17 0 C40/50 0,51 0,48 0,40 0,25 0,14 0 C60/75 0,41 0,38 0,32 0,20 0,11 0 C80/95 0,33 0,31 0,26 0,16 0,09 0 C90/105 0,30 0,28 0,23 0,15 0,05 0 Elméleti vastagság, h 0 [mm] k h értéke 100 1, , , ,70 1.6b. táblázat: A k h tényező értékei h 0 = 2A c /u - elméleti vastagság [mm]-ben A c - a betonkeresztmetszet területe u - a keresztmetszet külső levegővel érintkező (száradásnak kitett) kerülete, (szekrénytartóknál a belső kerület fél értékkel vehető számításba) 10

11 A zsugorodás időbeli lefolyását megadó összefüggések, valamint a gátolatlan száradási zsugorodás ε cd,0 alapértékének számítására vonatkozó összefüggés az F5. függelékben található Kúszás A beton kúszásának mértéke függ a környező levegő páratartalmától, a szerkezeti elem geometriai méreteitől, a beton összetételétől, a betonnak az első megterhelés időpontjában érvényes korától, a tehelés nagyságától és annak tartósságától. Ha nem szükséges nagy pontosság, akkor a kúszási tényező (~70 éves betonkorhoz tartozó) végértéke a következőképpen számítható: Ha a nyomófeszültség nem haladja meg a 0,45f ck (t 0 ) értéket az első terhelés időpontjában, akkor a kúszási tényező ϕ(,t 0 ) végértéke az 1.3a. és 1.3b. ábrák alapján határozható meg (lineáris interpoláció alkalmazható). A h 0 értékét az 0. szakasz szerint kell számítani. Ha az első terhelés időpontja t 0 > 100 nap, akkor a ϕ(,t 0 ) értékét t 0 = 100 nap alapulvételével (a kezdeti éritő alapján) kell számolni. 1.3a. ábra: A kúszási tényező végértéke RH = 50% relatív páratartalom (belső környezet) esetén 11

12 1.3b. ábra: A kúszási tényező végértéke RH = 80% relatív páratartalom (általában szabadban) esetén Az 1.3a. és 1..3b. ábrák C és C hőmérsékletek között és 40% RH 100% közötti relatív páratartalom esetén érvényesek. Az alkalmazott cementekre vonatkozó jelölés értelmezése: R gyorsan szilárduló cement : CEM 42,5R, CEM 52,5N, CEM 52,5R N normál cement: CEM 32,5R, CEM 42,5N S lassan szilárduló cement: CEM 32,5N Ha a nyomófeszültség meghaladja a 0,45f ck (t 0 ) értéket az első terhelés időpontjában, akkor a nemlineáris kúszás hatását figyelembe kell venni. Ekkor a nemlineáris kúszás hatását figyelembe vevő ϕ k (,t 0 ) kúszási tényező végértéke az alábbi összefüggéssel számítható: ϕ k (,t 0 ) = ϕ(,t 0 ) e ( 0,45) 1,5 k σ k σ = σ c f cm ( t0 ) ( t ) 0 - az átlagos betonfeszültség/szilárdság aránya az első terhelés időpontjában. A fentiek szerint meghatározott ϕ(t,t 0 ) kúszási tényezőt az E c(28) = 1,05E cm érintőmodulussal együtt kell alkalmazni. Itt E cm a beton rugalmassági (húr)modulusa [N/mm 2 ]-ben 28 napos korban az 1.5. táblázat szerint. A kúszás időbeli lefolyását megadó összefüggések az F6. függelékben találhatók Alakváltozási tényező A tartós terhek hatására bekövetkező alakváltozást a kúszási tényező szakasz szerinti értékének és a beton F1.2. szakasz szerinti E cm (t 0 ) rugalmassági modulusának figyelembevételével kell számítani, ahol t 0 az első terhelés időpontjában érvényes betonkor. Pontosabb vizsgálat hiányában szabad a teljes kúszás hatását figyelembe vevő E c,eff alakváltozási tényezővel számolni. 12

13 E c,eff = 1,05 E cm 1+ ϕ (, t ) 0 ϕ (,t 0 ) - a kúszási tényező végértéke az szakasz szerint E cm - a rugalmassági modulus értéke 28 napos korban az 1.5. táblázat szerint. Pontosabb adatok hiányában a beton lineáris hőtágulási együtthatóját α T = / 0 C-ra lehet felvenni Többtengelyű feszültségállapot Olyan betonszerkezetek számítása során, amelyekben többtengelyű feszültségállapot uralkodik és a feszültségek nagyságára a keresztirányú alakváltozás lényeges befolyással van (pl. szerkezeti gerendákban), a vasbeton Poisson-tényezőjét repedésmentes beton esetén 0,2-re, repedezett beton esetén 0-ra kell felvenni. Olyan szerkezeteknél, ahol a keresztirányú alakváltozás befolyása az erőtani viselkedésre előreláthatólag csekély, ott annak hatása elhanyagolható Az anyagok parciális tényezői A tartós és ideiglenes, valamint a rendkívüli tervezési állapotokban a teherbírási határállapotok vizsgálata során (a fáradási vizsgálatok esetén is) az 1.7. táblázatban található anyagi parciális tényezőket kell alkalmazni táblázat: Az anyagok parciális tényezői Tervezési állapot Beton Betonacél Feszítőacél γ c γ s γ s Tartós és ideiglenes 1,5 1,15 1,15 Rendkívüli 1,2 1,0 1, Az anyagok parciális tényezőinek csökkentése A következő feltételek teljesülése esetén, tartós és ideiglenes tervezési állapotokban a teherbírási határállapotok vizsgálata során az anyagok 1.7. táblázat szerinti parciális tényezőinek értékeit csökkenteni lehet. Ennek feltételei a következők: Monolit szerkezetek a) Megfelelő minőségellenőrzési rendszer és csökkentett tűrések alkalmazása esetén a1) Megfelelő minőségellenőrzési rendszer esetén, ha a keresztmetszeti méretek és az acélbetét (feszítőbetét) elhelyezési pontossága megfelel a 1.7a. táblázat szerinti tűréseknek (lineáris interpoláció alkalmazható), akkor γ s = 1,1 és γ c = 1,5 értékek alkalmazhatók. 13

14 Keresztmetszeti méretek h vagy b [mm] 1.7a. táblázat: A keresztmetszeti méretek és az acélbetét elhelyezési tűrései Keresztmetszeti méretek ± h, b [mm] Csökkentett tűrések [mm] Acélbetét elhelyezésének tervezettől való eltérése, + c [mm] a2) Ha az a1) szerinti követelményeken túl a betonszilárdság relatív szórása 10%, akkor γ s = 1,1 és γ c = 1,4 értékek alkalmazhatók. b) Csökkentett, vagy a megvalósult geometriai méreteken alapuló számítás esetén b1) Ha az erőtani számítás az a1) szerinti tűrésekkel csökkentett, vagy a megvalósult szerkezeteken mért, valós geometriai méreteken alapul, akkor γ s = 1,05 és γ c = 1,45 értékek alkalmazhatók. b2) Ha a b1) szerinti követelményeken túl a betonszilárdság relatív szórása 10%, akkor γ s = 1,05 és γ c = 1,35 értékek alkalmazhatók. c) Megvalósult szerkezeten mért betonszilárdsági adatok esetén Ha az erőtani számításban szereplő betonszilárdsági adatok a megvalósult szerkezetből kivett próbatestek adatain alapulnak, akkor γ c értéke 0,85-szorosára csökkenthető. Ez a csökkentés a fenti a) és b) feltételekkel egyidejűleg is alkalmazható, azonban γ c értéke ez esetben sem lehet kisebb, mint 1, Előregyártott szerkezetek A monolit szerkezetekre vonatkozó, szakasz szerinti anyagi parciális tényezőket (az ott megadott feltételekkel) általában alkalmazni lehet előregyártott szerkezetek esetén is, ha az üzemben megfelelő minőségellenőrzési rendszer működik. A minőségellenőrzési rendszerrel kapcsolatos követelményeket a termékszabványok (pl. MSZ EN 13369) tartalmazzák. 14

15 2. ERŐTANI SZÁMÍTÁS Az erőtani számítás keretében a szerkezet erőjátékét idealizált geometriai méreteken és megtámasztási feltételeken alapuló statikai vázon kell vizsgálni Az erőjáték vizsgálata A teherbírási és a használhatósági határállapotok vizsgálata során a szerkezet igénybevételeit általában lineárisan rugalmas számítással célszerű meghatározni. Bizonyos feltételek teljesülése esetén lehetőség van a lineárisan rugalmas számítással meghatározott igénybevételek korlátozott mértékű átrendeződésének a figyelembevételére Lineárisan rugalmas számítás Lineárisan rugalmas számítás esetén a szerkezet igénybevételeit repedésmentes keresztmetszetek az anyagok esetében lineáris feszültség-alakváltozás függvény feltételezésével lehet meghatározni. Az alakváltozások vizsgálata során a tartós hatásokból származó lassú alakváltozások hatását általában a beton megfelelő módon felvett alakváltozási tényezőjével lehet figyelembe venni (pl. a kúszás esetén az szakasz szerint). Ha a szerkezet repedezettsége számottevően befolyásolja az igénybevételek vagy az alakváltozások mértékét és eloszlását, akkor ezt általában megfelelő mértékben csökkentett merevséggel lehet figyelembe venni (pl. a szakasz szerint) Lineárisan rugalmas számítás korlátozott igénybevétel-átrendeződés figyelembevételével Statikailag határozatlan, folytatólagos többtámaszú, döntően hajlításra igénybevett gerendák és lemezek teherbírási határállapotban történő vizsgálata során, ha a szomszédos támaszközök aránya 0,5 és 2,0 között van, akkor a hajlítónyomatékok a keresztmetszetek elfordulási képességének a számszerű ellenőrzése nélkül - az egyensúlyi, és alábbi feltételek egyidejű teljesülése mellett rendezhetők át: δ 0,44 + k 2 x u /d δ 0,54 + k 4 x u /d f ck 50 N/mm 2 esetén f ck > 50 N/mm 2 esetén δ 0,85 ha B vagy C duktilitási osztályú betonacélokat alkalmaznak (az 1.1. táblázat szerint) és a tapadásos feszítőacélokra igazolható, hogy f pk /f p0,1k 1,1 és ε uk 5% (ld. az 1.2. szakaszt). δ - az átrendezett és a lineárisan rugalmas számításaal meghatározott nyomatékok aránya x u - a semleges tengely és a nyomott szélső szál távolsága az átrendezett nyomaték hatására teherbírási határállapotban k 2 = k 4 = 1,25 (0,6 + 0,0014/ε cu2 ) ε cu2 az 1.5. táblázat szerint d - a vizsgált keresztmetszet hasznos magassága 15

16 Az 1.1. táblázat szerinti A duktilitási osztályú betonacélok alkalmazása esetén, továbbá ha az alkalmazott feszítőacélokra a megadott feltétel nem igazolnató, akkor igénybevétel-átrendeződés nem vehető figyelembe. Ugyancsak nem vehető figyelembe igénybevétel-átrendeződés olyan hidak esetén, ahol a szükséges elfordulási képesség igazolhatósága kétséges (pl. íves vagy ferde hidak), valamint oszlopok esetén, ahol minden esetben a lineárisan rugalmas számításból származó nyomatékokat kell figyelembe venni. Az igénybevétel átrendezés végrehajtása előtt a feszítésből származó hajlítónyomatékokat a külső nyomatékokkal szuperponálni kell Feszített vasbeton szerkezetekre vonatkozó előírások A jelen előírásban feszített szerkezeteken olyan vasbetonszerkezetet kell érteni, melyben a feszítésből származó alakváltozást mechanikailag megfeszített feszítőbetétekkel hozzák létre. A szakasz szerinti feszültségveszteségekkel csökkentett hatásos (effektív) feszítőerőt az erőtani számítás során várható értéknek P m,t (x) kell tekinteni, ahol t a vizsgálat időpontja a betonozáshoz képest, x a feszítőbetét hossza mentén mért távolság a lehorgonyzástól kezdve. Egyéb előírás hiányában az e feszítőerő által a szerkezeten előidézett hatást teherírási határállapotban a feszítési hatás karakterisztikus értékének (P k,t (x) = P m,t (x), ld. az I. fejezet szakaszát) kell tekinteni Feszített vasbeton szerkezetek feszültségveszteségei Hőérlelési veszteség Ha az előfeszített szerkezetek gyártása során a betont hevítéssel olyan módon érlelik, hogy ezzel egyidejűleg a lehorgonyzási pontok távolsága nem változik, az ebből származó σ T feszültségveszteséget a tényleges hőmérsékleti viszonyoknak megfelelően az alábbiak szerint kell figyelembe venni. σ T = 0,5 E p α c (T max T 0 ) E p - a feszítőbetét rugalmassági modulusa α c - a beton lineáris hőtágulási együtthatója az szakasz szerint T max T 0 - a hőérlelés során a feszítőbetétek magasságában elért maximális hőmérséklet, és a hőérlelés kezdetén ugyanott fellépő hőmérséklet különbsége [ 0 C]- ban A beton rugalmas összenyomódásából származó veszteség Utófeszített szerkezetek esetén ha a feszítőbetéteket a betonozástól számított t időpontban nem egyidejűleg, hanem egymás után, több lépcsőben feszítik meg, akkor a beton rugalmas alakváltozásából származó σ el feszültségveszteséget a következő módon lehet figyelembe venni: 16

17 σ el = n 1 σ 2n E c cm ( t) E p () t n a t időpontban megfeszített feszítőbetétek száma σ c (t) a t időpontban megfeszített összes feszítőbetétből származó, a feszítőbetétek hossza mentén átlagosított betonfeszültség a feszítőbetétek súlypontjának magasságában E cm (t) a beton rugalmassági modulusa a t időpontban az 1.5. táblázat vagy az F1.2. szakasz szerint Előfeszített szerkezetek esetén, a feszítőerőnek a szerkezetre való ráengedése következtében, a szerkezet alakváltozásának eredményeként a feszítőbetétben létrejövő feszültségcsökkenést megfelelő módon figyelembe kell venni Súrlódási veszteség Utófeszített szerkezetek esetén a feszítőbetétben, a feszítőbetét és a kábelcsatorna fala közti súrlódásból származó σ s veszteséget a feszítési helytől, a feszítőbetét hossza mentén mért x távolságban lévő keresztmetszetben az alábbi értékkel lehet figyelembe venni: σ s = σ max (1-e -µ (α + k x) ) σ max - a feszítőbetétben lévő feszültség a feszítőberendezésnél, lehorgonyzás pillanatát megelőzően k - az egységnyi hosszra eső véletlen jellegű irányváltozási szög értéke, [1/m] µ - a súrlódási tényező a feszítőbetét és a kábelcsatorna fala között α - a feszítőbetét íves szakaszaihoz tartozó középponti szögek abszolút értékeinek összege [rad]-ban a feszítés helyétől a vizsgált keresztmetszetig. A súrlódási tényező értékét a kábel és a kábelcsatorna kialakításától, a kábelcsatorna anyagától, a beton bedolgozásának módjától stb. függően esetenként kísérletekkel, ennek hiányában a rendelkezésre álló (pl. irodalom vagy a gyártó által megadott) adatok alapján kell megállapítani. Pontosabb adatok hiányában a következő tájékoztató értékeket szabad figyelembe venni: A k értékét a kivitelezés pontosságától és gondosságától függően kell megállapítani. Értéke általában 0,005 < k < 0,01 között van, pontosabb adat hiányában k = 0,007/m-rel szabad számolni. Külső kábelek esetén k = 0 alkalmazható. A µ értéke - pontosabb adat hiányában a következő 1.8. táblázat szerint vehető fel. 17

18 Belső feszítőbetét Nem olajozott, (zsírzott) acél kábelcsatorna 1.8. táblázat: A µ súrlódási tényező értékei Külső, tapadásmentes feszítőbetét Nem olajozott, Olajozott, (zsírzott) KPE (zsírzott) acél kábelcsatorna kábelcsatorna Olajozott, (zsírzott) KPE kábelcsatorna Hidegen húzott feszítőhuzal 0,17 0,25 0,14 0,18 0,12 Feszítőpászma 0,19 0,24 0,12 0,16 0,10 Hidegen alakított feszítőrúd 0,65 Sima, körszelvényű feszítőrúd 0,33 Másként kialakított kábelek (pl. nagy köteg) súrlódási értékei irodalmi adatok vagy a gyártó cég hitelesített adatai alapján vehetők fel Lehorgonyzási veszteség Utófeszített szerkezetek esetén, a feszítőkábelek ékes lehorgonyzásánál a lehorgonyzási veszteség mértékét a lehorgonyzás módjától és mérési eredményektől függően kell figyelembe venni. Kísérleti adatok hiányában a huzal (pászma) megcsúszását 10 mm-rel kell számításba venni. A terven a számításba vett veszteséget és a mozgások értékét közölni kell. A tényleges mozgás mérését és az esetleges eltérés esetén szükséges teendőket elő kell írni. Előfeszített szerkezetek esetén a feszítőbetéteknek a feszítőpadon való lehorgonyzása következtében a feszítőbetétekben létrejövő feszültségcsökkenést figyelembe kell venni Rövid idejű relaxációs veszteség Előfeszített szerkezetek esetén, a feszítőbetétek feszítőpadon való megfeszítésének időpontja és a feszítőerő szerkezetre való ráengedése között eltelt időtartam hosszától függően bizonyos esetekben indokolt lehet a rövid idejű relaxáció miatti feszültségcsökkenés figyelembevétele feszítőbetétekben. Ez esetben a feszítőbetétek rövid idejű relaxációjának mértékét a gyártó adatai alapján, ennek hiányában az szakaszban szereplő összefüggéssel (a megfelelő időtartam figyelembevételével) kell meghatározni Időtől függő veszteségek A beton zsugorodása, valamint a tartós terhek következtében a beton kúszása és a feszítőbetét relaxációja miatt létrejövő időtől függő feszültségveszteségek együttes mértéke a szerkezet vizsgált keresztmetszetében az alábbi összefüggéssel számítható, mely tartalmazza a beton zsugorodásának és kúszásának a relaxációs veszteség mértékére gyakorolt kedvező hatását is: σ p,c+s+r = ε cs p () t E + 0,8 σ () t + ϕ( t, t ) E 1 + E p p cm pr Ap Ac 1 z A + c I c 2 cp E E cm c, QP [ 1+ 0,8ϕ( t, t )] 0 σ 0 18

19 t - a beton kora a vizsgálat időpontjában σ p,c+s+r - a beton kúszása, zsugorodása és a feszítőbetét relaxációja miatt, a feszítőberendezéstől a feszítőbetét hossza mentén mért x távolságban, a t időpontban létrejövő feszültségveszteségek összege ε cs (t)- a zsugorodás mértéke (abszolút értékkel) a t időpontban az szakasz szerint E p - a feszítőacél rugalmassági modulusa az szakasz szerint E cm - a beton rugalmassági modulusa az 1.5. táblázat szerint σ pr - a feszítőbetét relaxációja miatti feszültségcsökkenés mértéke az szakasz szerint ϕ(t,t 0 ) - a beton kúszási tényezője a t időpontban az szakasz szerint σ c,qp - betonfeszültség a feszítőbetétek magasságában a kvázi-állandó terhek hatására (a nyomófeszültség pozitív előjellel) A p - a feszítőbetétek keresztmetszeti területe A c - a betonkeresztmetszet területe I c - a betonkeresztmetszet inercianyomatéka z cp - a feszítőbetétek súlypontja és a betonkeresztmetszet súlypontja közötti távolság. A fenti összefüggés alkalmazása során a feszítőbetétben létrejövő feszültségek számításakor a feszítőbetét tapadásos, vagy tapadásmentes voltára tekintettel kell lenni. Tapadásmentes feszítőbetétek esetén a fenti összefüggéésel meghatározott feszültségveszteséget a feszítőbetét (vagy a szerkezet) vizsgált hossza mentén állandó értéknek kell tekinteni. Tapadásos feszítőbetétek esetén a fenti összefüggéssel meghatározott feszültségveszteséget a feszítőbetét egy adott pontjában kell értelmezni A feszítés hatásainak figyelembevétele a határállapotok vizsgálata során A tapadásmentes feszítés hatásainak figyelembevétele teherbírási határállapotban Tapadásmentes feszítés esetén a keresztmetszet alakváltozásából a feszítőbetétben nem jön létre többlet-alakváltozás. A teljes szerkezet alakváltozásából a feszítőbetétben többlet-alakváltozás (ennek hatására σ p többletfeszültség) keletkezhet, melyet az esetek döntő többségében a biztonság javára történő közelítéssel - el lehet hanyagolni. Ha a σ p értékét részletes (nemlineáris) vizsgálattal meghatározzák, akkor az ebből származó hatásokat teherbírási határállapotban egy γ P parciális tényezővel kell figyelembe venni, melynek értéke (a hatás kedvező vagy kedvezőtlen voltától függően) γ P,inf =0,8 vagy γ P,sup =1,2 lehet. A teljes szerkezet alakváltozásából a tapadásmentes feszítőbetétekben fellépő többletfeszültség teherbírási határállapotban figyelembe veendő értéke ( σ p,uls ) így a következő: σ p,uls = (γ P,inf vagy γ P,sup ) σ p 100 N/mm 2. Ha a teljes szerkezet alakváltozásából származó σ p többletfeszültséget repedésmentes keresztmetszet feltételezésével végrehajtott lineáris vizsgálattal határozzák meg, akkor γ P,inf = γ P,sup = 1,0 értékeket lehet figyelembe venni. 19

20 A feszítési hatás alsó és felső karakterisztikus értéke használhatósági határállapotban A használhatósági határállapotok vizsgálata során a feszítőerő esetleges bizonytalanságaira a szerkezet üzemeltetése keretében folyamatosan végrehajtott feszítőerő-mérések hiányában bizonyos esetekben célszerű tekintettel lenni. Ez a feszítőerő alábbiak szerint meghatározott alsó (P k,inf ), vagy felső (P k,sup ) karakterisztikus értékei közül az adott vizsgálat szempontjából kedvezőtlenebbik alkalmazásával lehetséges. P k,sup = r sup P m,t (x) P k,inf = r inf P m,t (x) P m,t (x) - a feszítőerő várható értéke a t időpontban (a betonozás időpontjától számítva) a vizsgált helyen (a feszítés helyétől mért x távolságban) r k,sup = 1,05 és r k,inf = 0,95 előfeszítés, vagy tapadásmentes feszítés esetén r k,sup = 1,10 és r k,inf = 0,90 tapadásos utófeszítés esetén. Ha az adott szerkezet üzemszerű működése során a feszítőerőt közvetlenül mérni lehet, akkor r k,sup = r k,inf = 1,0 alkalmazható A szerkezet statikai modellje A szerkezet statikai modelljének felvételekor a geometriai méreteket és azok méreteltéréseit a következő szakaszok szerint kell figyelembe venni. A rúdszerkezetek elméleti tengelye általában a betonkeresztmetszetnek az esetleges kiékelések elhanyagolásával a keresztmetszetek súlypontjait összekötő vonal. Felületszerkezetek elméleti modellfelülete a középfelület lehet. A méretezés során az erők külpontosságát az elméleti tengelyre, illetve a középfelületre kell értelmezni. Egy szerkezeti elem akkor tekinthető gerendának, ha a hossza legalább 3-szorosa a magasságának. Egyéb esetekben a szerkezeti elemet faltartónak kell tekinteni. Egy szerkezeti elem akkor tekinthető lemeznek, ha a kisebbik alaprajzi mérete legalább 5- szöröse a vastagságának. Egy lemez akkor tekinthető egyirányban teherviselőnek, ha kettő, egymással közel párhuzamos, szabad (megtámasztás nélküli) pereme van, vagy négy oldalán megtámasztott lemez olyan közbenső szakasza, mely esetén a figyelembe vett hosszabb és rövidebb oldalak aránya nagyobb, mint 2. Egy szerkezeti elem akkor tekinthető oszlopnak, ha a keresztmetszetének a nagyobbik mérete nem haladja meg a kisebbik méret 4-szeresét, továbbá ha a hossza legalább 3-szorosa a keresztmetszet nagyobbik méretének. Egyéb esetekben a szerkezeti elemet falnak kell tekinteni Támaszköz Szabadon felfekvő, valamint az alátámasztó szerkezetekkel monolitikusan összeépített, de független elemként számított vasbeton tartók elméleti támaszközét a következőképpen lehet meghatározni: 20

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János VASBETON SZERKEZETEK TERVEZÉSE 2 Szabvány A tartószerkezetek tervezése jelenleg Magyarországon és az EU államaiban az Euronorm szabványsorozat alapján

Részletesebben

BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE SZERINT Farkas György 1 Kovács Tamás 2 Szalai Kálmán 3

BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE SZERINT Farkas György 1 Kovács Tamás 2 Szalai Kálmán 3 BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE SZERINT Farkas György 1 Kovács Tamás 2 Szalai Kálmán 3 A betonszerkezetek Eurocode szerinti tervezését az épületekre vonatkozó MSZ EN 1992-1- 1 [1] és a hidakra vonatkozó

Részletesebben

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági 1. - Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági vizsgálatát. - Jellemezze a vasbeton három feszültségi

Részletesebben

Strength. Performance. Passion. Ismertető az új európai beton szabvány MSZ 4798-1:2004 (MSZ EN 206-1:2002) alkalmazásáról

Strength. Performance. Passion. Ismertető az új európai beton szabvány MSZ 4798-1:2004 (MSZ EN 206-1:2002) alkalmazásáról Strength. Performance. Passion. Ismertető az új európai beton szabvány MSZ 798-:200 (MSZ EN 206-:2002) alkalmazásáról Monolit ház. A biztos megoldás. A Holcim Hungária Zrt., mint Magyarország egyik vezető

Részletesebben

PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz

PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM ÉPÍTŐMÉRÖKI KAR HIDAK ÉS SZERKEZETEK TASZÉKE PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz Budapest, 007 Szerzők: Friedman oémi Huszár Zsolt Kiss Rita

Részletesebben

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6. statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok Dr. Szalai József Főiskolai adjunktus Tartalom Acélszerkezetek kapcsolatai Csavarozott kapcsolatok kialakítása Csavarozott kapcsolatok

Részletesebben

CONSTEEL 8 ÚJDONSÁGOK

CONSTEEL 8 ÚJDONSÁGOK CONSTEEL 8 ÚJDONSÁGOK Verzió 8.0 2013.11.20 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új szelvénykatalógusok... 2 1.2 Diafragma elem... 2 1.3 Merev test... 2 1.4 Rúdelemek

Részletesebben

Útmutató az. AxisVM rapido 2. használatához

Útmutató az. AxisVM rapido 2. használatához 2011-2013 Inter-CAD Kft. Minden jog fenntartva Útmutató az AxisVM rapido 2 használatához A program célja a tervezési munka megkönnyítése. Használata nem csökkenti felhasználójának felelősségét, hogy a

Részletesebben

"FP" jelű előfeszített vasbeton hídgerendák ALKALMAZÁSI SEGÉDLETE

FP jelű előfeszített vasbeton hídgerendák ALKALMAZÁSI SEGÉDLETE "FP" jelű előfeszített vasbeton hídgerendák ALKALMAZÁSI SEGÉDLETE Gyártás, forgalmazás: Tervezés, tanácsadás: Pont TERV MÉRNÖKI TERVEZŐ ÉS TANÁCSADÓ Zrt. H-1119 Budapest, Thán Károly u. 3-5. E-mail: hidak@pont-terv.hu

Részletesebben

El hormigón estructural y el transcurso del tiempo Structural concrete and time A szerkezeti beton és az idő

El hormigón estructural y el transcurso del tiempo Structural concrete and time A szerkezeti beton és az idő El hormigón estructural y el transcurso del tiempo Structural concrete and time A szerkezeti beton és az idő fib Szimpózium La Plata, Argentina, 2005. Szeptember 28.-30. 1 El hormigón estructural y el

Részletesebben

Beton nyomószilárdságának MEGFELELŐSÉGE ÉS elfogadása (nem csak) szerint

Beton nyomószilárdságának MEGFELELŐSÉGE ÉS elfogadása (nem csak) szerint Beton nyomószilárdságának MEGFELELŐSÉGE ÉS elfogadása (nem csak) az MSZ EN 206-1 1 és MSZ 4798-1 1 szabványok szerint A beton igénybevételként jelentkező nyomófeszültségének (elvárt legkisebb szilárdságának)

Részletesebben

FASZERKEZETŰ CSARNOK MSZ EN SZABVÁNY SZERINTI ELLENŐRZŐ ERŐTANI SZÁMÍTÁSA. Magyar Mérnöki Kamara Tartószerkezeti Tagozat - Budapest, 2010

FASZERKEZETŰ CSARNOK MSZ EN SZABVÁNY SZERINTI ELLENŐRZŐ ERŐTANI SZÁMÍTÁSA. Magyar Mérnöki Kamara Tartószerkezeti Tagozat - Budapest, 2010 FASZERKEZETŰ CSARNOK MSZ EN SZABVÁNY SZERINTI ELLENŐRZŐ ERŐTANI SZÁMÍTÁSA Magyar Mérnöki Kamara Tartószerkezeti Tagozat - Budapest, 2010 FASZERKEZETŰ CSARNOK MSZ EN SZABVÁNY SZERINTI ELLENŐRZŐ ERŐTANI

Részletesebben

ÉPKO, Csíksomlyó, 2011. június 4. A beton nyomószilárdsági osztályának értelmezése és változása 1949-től napjainkig Dr.

ÉPKO, Csíksomlyó, 2011. június 4. A beton nyomószilárdsági osztályának értelmezése és változása 1949-től napjainkig Dr. ÉPKO, Csíksomlyó, 2011. június 4. A beton nyomószilárdsági osztályának értelmezése és változása 1949-től napjainkig Dr. Kausay Tibor 1 Tisztelt Elnök Úr, tisztelt Konferencia! Számtalanszor kerülünk abba

Részletesebben

Tájékoztató. az Építőmérnöki szak Magasépítési (statikus) szakirányú BSc-s hallgatók záróvizsgájáról

Tájékoztató. az Építőmérnöki szak Magasépítési (statikus) szakirányú BSc-s hallgatók záróvizsgájáról Tájékoztató az Építőmérnöki szak Magasépítési (statikus) szakirányú BSc-s hallgatók záróvizsgájáról Záróvizsga lebonyolítása magasépítési (statikus) szakirányú hallgatók részére A záróvizsga két fő részből

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

Tipikus fa kapcsolatok

Tipikus fa kapcsolatok Tipikus fa kapcsolatok Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék 1 Gerenda fal kapcsolatok Gerenda feltámaszkodás 1 Vízszintes és (lefelé vagy fölfelé irányuló) függőleges terhek

Részletesebben

ÜVEG FIZIKAI TULAJDONSÁGAI,

ÜVEG FIZIKAI TULAJDONSÁGAI, ÜVEG FIZIKAI TULAJDONSÁGAI, ÜVEGTERMÉKEK Erdélyi Tamás egyetemi tanársegéd BME Építészmérnöki é kar Szilárdságtani és Tartószerkezeti Tanszék 2013. február 28. Tematika alkal om 1. 2. 3. 4. 5. nap 02.28.

Részletesebben

ÉPÜLETEK HASZNOS ÉS METEOROLÓGIAI TERHEI AZ EUROCODE SZERINT

ÉPÜLETEK HASZNOS ÉS METEOROLÓGIAI TERHEI AZ EUROCODE SZERINT ÉPÜLETEK HASZNOS ÉS METEOROLÓGIAI TERHEI AZ EUROCODE SZERINT Eurocode 1 MSZ EN 1991-1-1 Eurocode 1: A tartószerkezeteket terhelő hatások. 1-1. rész: Általános hatások Sűrűség, önsúly és az épületek hasznos

Részletesebben

Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései

Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései VII. Városi Villamos Vasúti Pálya Napra Budapest, 2014. április 17. Major Zoltán egyetemi tanársegéd Széchenyi István Egyetem, Győr

Részletesebben

A FERIHEGYI IRÁNYÍTÓTORONY ÚJ RADARKUPOLÁJA LEERÕSÍTÉSÉNEK STATIKAI VIZSGÁLATA TARTALOM

A FERIHEGYI IRÁNYÍTÓTORONY ÚJ RADARKUPOLÁJA LEERÕSÍTÉSÉNEK STATIKAI VIZSGÁLATA TARTALOM A FERIHEGYI IRÁYÍTÓTOROY ÚJ RADARKUPOLÁJA LEERÕSÍTÉSÉEK STATIKAI VIZSGÁLATA TARTALOM 1. KIIDULÁSI ADATOK 3. 2. TERHEK 6. 3. A teherbírás igazolása 9. 2 / 23 A ferihegyi irányítótorony tetején elhelyezett

Részletesebben

MÓDOSÍTOTT RÉSZLETEZÕ OKIRAT (1)

MÓDOSÍTOTT RÉSZLETEZÕ OKIRAT (1) Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZÕ OKIRAT (1) a NAT-1-1151/2010 nyilvántartási számú akkreditált státuszhoz A KTI Közlekedéstudományi Intézet Nonprofit Kft. Út- és Hídügyi Tagozat Aszfalt-,

Részletesebben

DICHTOMATIK. Beépítési tér és konstrukciós javaslatok. Statikus tömítés

DICHTOMATIK. Beépítési tér és konstrukciós javaslatok. Statikus tömítés Beépítési tér és konstrukciós javaslatok Az O-gyűrűk beépítési terét (hornyot) lehetőség szerint merőlegesen beszúrva kell kialakítani. A szükséges horonymélység és horonyszélesség méretei a mindenkori

Részletesebben

A BETONTERVEZÉS LÉNYEGES PONTJAI AZ ÚJ BETONSZABVÁNY ALAPJÁN

A BETONTERVEZÉS LÉNYEGES PONTJAI AZ ÚJ BETONSZABVÁNY ALAPJÁN A BETONTERVEZÉS LÉNYEGES PONTJAI AZ ÚJ BETONSZABVÁNY ALAPJÁN Dr. Kausay Tibor Budapesti Műszaki és Gazdaságtudományi Egyetem Építőanyagok és Mérnökgeológia Tanszék A Magyar Mérnöki Kamara tanfolyama Budapest,

Részletesebben

Rákóczi híd próbaterhelése

Rákóczi híd próbaterhelése Rákóczi híd próbaterhelése Dr. Kövesdi Balázs egyetemi docens, BME Dr. Dunai László egyetemi tanár, BME Próbaterhelés célja - programja Cél: Villamos forgalom elindítása előtti teherbírás ellenőrzése helyszíni

Részletesebben

PECSÉTNYOMÁSSAL TERHELT PRIZMATIKUS BETONOSZLOPOK VISELKEDÉSÉNEK NUMERIKUS VIZSGÁLATA

PECSÉTNYOMÁSSAL TERHELT PRIZMATIKUS BETONOSZLOPOK VISELKEDÉSÉNEK NUMERIKUS VIZSGÁLATA PECSÉTNYOMÁSSAL TERHELT PRIZMATIKUS BETONOSZLOPOK VISELKEDÉSÉNEK NUMERIKUS VIZSGÁLATA Verók Krisztián * RÖVID KIVONAT Az építőiparral kapcsolatos kutatási területeknek egy még ma is viszonylag fejlődő

Részletesebben

horonycsapos fugaképzés ipari padlószerkezetekhez

horonycsapos fugaképzés ipari padlószerkezetekhez BAUTEC FUGAFORM horonycsapos fugaképzés ipari padlószerkezetekhez BAUTEC FUGAFORM horonycsapos fugaképzés ipari padlószerkezetekhez BAUTEC FUGAFORM - XL, FUGAFORM - XDL Ipari padlók tervezése, kivitelezése

Részletesebben

STNB 320 segédlet a PTE Polláck Mihály Műszaki Kar hallgatóinak. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

STNB 320 segédlet a PTE Polláck Mihály Műszaki Kar hallgatóinak. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése HEFOP/004/3.3.1/0001.01 M A G A S É P Í T É S I V A S B E T O N S Z E R K E Z E T E K STNB 30 segédlet

Részletesebben

Tevékenység: Olvassa el a bekezdést! Gyűjtse ki és tanulja meg a lemezalakító technológiák jellemzőit!

Tevékenység: Olvassa el a bekezdést! Gyűjtse ki és tanulja meg a lemezalakító technológiák jellemzőit! Olvassa el a bekezdést! Gyűjtse ki és tanulja meg a lemezalakító technológiák jellemzőit! 2.1. Lemezalakító technológiák A lemezalakító technológiák az alkatrészgyártás nagyon jelentős területét képviselik

Részletesebben

A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából

A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából Dr SZABÓ Imre SZABÓ Attila GEOSZABÓ Bt IMRE Sándor TRELLEBORG Kft XVII. Országos Környezetvédelmi Konferencia

Részletesebben

fischer Injektáló rendszer FIS EM

fischer Injektáló rendszer FIS EM fischer Injektáló rendszer FIS EM Ideális beton csatlakozásokhoz ETA-10/0012 ETAG 001-5 ETA-09/0089 ETAG 001-5 Option 1 for cracked concrete Post-installed rebar connection (TR2 fischer injektáló rendszer

Részletesebben

Betonok környezeti osztályai

Betonok környezeti osztályai Frissítve: 2011. január ok környezeti osztályai Dr. KAUSAY Tibor okl. vasbetonépítési szakmérnök, címzetes egyetemi tanár Budapesti Műszaki Egyetem, Építőanyagok és Mérnökgeológia Tanszék H-1111 Budapest,

Részletesebben

Újdonságok 2013 Budapest

Újdonságok 2013 Budapest Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget

Részletesebben

Megerősített rézsűk vizsgálata Adatbev.

Megerősített rézsűk vizsgálata Adatbev. Megerősített rézsűk vizsgálata Adatbev. Projekt Dátu : 21.10.2011 Szerkezet geoetriája Töltés agasság Töltés hossza Takarás vastagsága h n l n t c 8,00 2,00 0,20 Név : Geoetria Fázis : 1 8,00 Anyag Takarás

Részletesebben

Betontermékek és szolgáltatások árlistája

Betontermékek és szolgáltatások árlistája Holcim Magyarország Kft. 1138 Budapest Madarász Viktor u. 47-49. Betontermékek és szolgáltatások árlistája Az üzem nevére kattintva megtekintheti az aktuális üzem árlistáját. Budaörsi Betonüzem Debreceni

Részletesebben

MSZ EN 1610. Zárt csatornák fektetése és vizsgálata. Dr.Dulovics Dezső Ph.D. egyetemi docens. Dulovics Dezsőné dr főiskolai tanár

MSZ EN 1610. Zárt csatornák fektetése és vizsgálata. Dr.Dulovics Dezső Ph.D. egyetemi docens. Dulovics Dezsőné dr főiskolai tanár MSZ EN 1610 Zárt csatornák fektetése és vizsgálata Dr. Dulovics Dezső Ph.D. egyetemi docens, Dulovics Dezsőné dr. főiskolai tanár, Az előadás témakörei: -alkalmazási terület, fogalom meghatározások, általános

Részletesebben

Thermax távtartó szerelési rendszer

Thermax távtartó szerelési rendszer Engedélyezett hőhídmentes távtartószerelés külső szigeteléseknél (ETICS) Árnyékolók ANYAGMINŐSÉG cinkkel galvanizált acél korrózióálló acél Antennák és klímaberendezések ENGEDÉLYEK ÉPÍTŐANYAGOK ELŐNYÖK

Részletesebben

A friss beton konzisztenciájának mérése a roskadási mérték meghatározásával MSZ 4714-3:1986 MSZ EN 12350-2:2000

A friss beton konzisztenciájának mérése a roskadási mérték meghatározásával MSZ 4714-3:1986 MSZ EN 12350-2:2000 A friss beton konzisztenciájának mérése a roskadási mérték meghatározásával MSZ 4714-3:1986 MSZ EN 12350-2:2000 A betonkeverék és a friss beton vizsgálata. A konzisztencia meghatározása 2. fejezet: A roskadás

Részletesebben

A.. rendelete az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról

A.. rendelete az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról A.. rendelete az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról 3.sz Melléklet Követelményértékek 1 1. A határoló-és

Részletesebben

MAGYAG ELŐSZABVÁNY SOROZAT EUROCODE MSZ ENV. EC0 MSZ EN 1990 A tartószerkezetek tervezésének alapjai

MAGYAG ELŐSZABVÁNY SOROZAT EUROCODE MSZ ENV. EC0 MSZ EN 1990 A tartószerkezetek tervezésének alapjai MAGYAG ELŐSZABVÁNY SOROZAT EUROCODE MSZ ENV EC0 MSZ EN 1990 A tartószerkezetek tervezésének alapjai EC1 MSZ EN 1991 A tartószerkezeteket érő hatások +(teherszabvány) MSZ EN 1991-1-1 Sűrűség, önsúly és

Részletesebben

A NIF Zrt. beruházásában megvalósítandó közúti hidak

A NIF Zrt. beruházásában megvalósítandó közúti hidak A NIF Zrt. beruházásában megvalósítandó közúti hidak Hidász Napok, 2015. Visegrád Kardos Gábor Műszaki igazgató BEVEZETŐ, TARTALOM Keretek, források Megvalósuló gyorsforgalmi kivitelezési projektek Megvalósuló

Részletesebben

Építőmérnöki Kft. A SPECIÁLTERV KFT. HÍD TERVEZÉSI MUNKÁI A KÖZELMÚLTBAN. 49. HÍDMÉRNÖKI KONFERENCIA Balatonfüred, 2008. október 8.

Építőmérnöki Kft. A SPECIÁLTERV KFT. HÍD TERVEZÉSI MUNKÁI A KÖZELMÚLTBAN. 49. HÍDMÉRNÖKI KONFERENCIA Balatonfüred, 2008. október 8. Építőmérnöki Kft. 49. HÍDMÉRNÖKI KONFERENCIA Balatonfüred, 2008. október 8. ALAPÍTVA: 1999 ALKALMAZOTTAK: 25 TEVÉKENYSÉG: HÍD- ÉS SZERKEZET-TERVEZÉS FELÚJÍTÁSOK, ERŐSÍTÉSEK TERVEZÉSE HIDAK, SZERKEZETEK

Részletesebben

A betonok környezeti osztályainak áttekintése az MSZ 4798-1:2004 szabvány alapján

A betonok környezeti osztályainak áttekintése az MSZ 4798-1:2004 szabvány alapján -1 Kérem tekintsék meg a 2011. januári dolgozatot is: http://www.betonopus.hu/notesz/kornyezeti-oszt-csiksomlyo.pdf A betonok környezeti osztályainak áttekintése az MSZ 4798-1:2004 szabvány alapján A MSZ

Részletesebben

Géprajz gépelemek II. II. Konzultáció (2014.03.22.)

Géprajz gépelemek II. II. Konzultáció (2014.03.22.) Géprajz gépelemek II. II. Konzultáció (2014.03.22.) Forgó alkatrészek oldható kötőelemei (a nem oldható tengelykötéseket a tk.-ből tanulni) Ékkötés Az ék horonyszélességének illesztése laza D10 A tengely

Részletesebben

Költségvetés f összesít. Megnevezés Anyagköltség Díjköltség. 1. Építmény közvetlen költsége... 1.1 Közvetlen önköltség összesen...

Költségvetés f összesít. Megnevezés Anyagköltség Díjköltség. 1. Építmény közvetlen költsége... 1.1 Közvetlen önköltség összesen... Név : Bels kerítés Cím : Csengersima, külterület Kelt: 20.. év...hó...nap 0138/88 hrsz Szám :... KSH besorolás:... Teljesítés:20.. év...hó...nap A munka leírása: Készítette :... Készült: Költségvetés f

Részletesebben

Schöck Isokorb Alapfogalmak. Vasbeton/Vasbeton. Épületfizika. Schöck Isokorb Alapfogalmak. Schöck Isokorb Alapfogalmak

Schöck Isokorb Alapfogalmak. Vasbeton/Vasbeton. Épületfizika. Schöck Isokorb Alapfogalmak. Schöck Isokorb Alapfogalmak Vasbeton/Vasbeton Épületfizika 9 Hőhidak A hőhidak definíciója A hőhidak olyan lokális helyek az épület külső hőszigetelő burkán, amelyeknél megnövekedett hőveszteség lép fel. A megnövekedett hőveszteség

Részletesebben

Acélszerkezeti kapcsolatok SC1 modul

Acélszerkezeti kapcsolatok SC1 modul Acélszerkezeti kapcsolatok SC1 modul 2 SC1 Acélszerkezeti kapcsolatok modul Tartalom 1. ACÉLSZERKEZETI KAPCSOLATOK (SC1) MODUL MŰKÖDÉSE... 3 1.1. A MODULRÓL ÁLTALÁNOSSÁGBAN... 3 1.2. KAPCSOLAT MEGADÁSÁNAK

Részletesebben

Héjak a világban Hunyadi Mátyás

Héjak a világban Hunyadi Mátyás Héjak a világban Hunyadi Mátyás 2015.05.05. Héjak típusai Elliptikus Parabolikus Hiperbolikus 1 Hiperbolikus paraboloid(hypar) Székesfehérvári Könnyűfémmű (Menyhárd István, 1959) 11 30 m-es felületelemek

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

Útügyi Akadémia: Útbiztonság Budapest, 28 February 2007

Útügyi Akadémia: Útbiztonság Budapest, 28 February 2007 Útügyi Akadémia: Útbiztonság Budapest, 28 February 07 EN 1317 : Hidakon alkalmazott visszatartó rendszerekre vonatkozó szabályozás Ütközéseknél felmerülő erők mérése, töréspróbák eredményei és F.E.M. Analízis

Részletesebben

Kétkomponensű oldószermentes epoxi ragasztó munkahézagokhoz és repedt esztrichek monolitikus összeragasztására

Kétkomponensű oldószermentes epoxi ragasztó munkahézagokhoz és repedt esztrichek monolitikus összeragasztására [Mapei logo] Eporip Kétkomponensű oldószermentes epoxi ragasztó munkahézagokhoz és repedt esztrichek monolitikus összeragasztására ALKALMAZÁSI TERÜLET Monolitikus munkahézagoknál kötőhíd friss és megszilárdult

Részletesebben

Acéllemezbe sajtolt nyírt kapcsolat kísérleti vizsgálata és numerikus modellezése

Acéllemezbe sajtolt nyírt kapcsolat kísérleti vizsgálata és numerikus modellezése Acéllemezbe sajtolt nyírt kapcsolat kísérleti vizsgálata és numerikus modellezése Seres Noémi Doktorandusz BME Tartalom Téma: öszvérfödémek együttdolgoztató kapcsolatának numerikus modellezése, nyírt együttdolgoztató

Részletesebben

Dr. Dulácska Endre- Dr. Korda János- Dr. Körmöczi Ernő TSZ 01-2013

Dr. Dulácska Endre- Dr. Korda János- Dr. Körmöczi Ernő TSZ 01-2013 MAGYAR MÉRNÖKI KAMARA TARTÓSZERKEZETI TAGOZAT Dr. Dulácska Endre- Dr. Korda János- Dr. Körmöczi Ernő TSZ 01-2013 MŰSZAKI SZABÁLYZAT ÉPÜLETEK MEGÉPÜLT TEHERHORDÓ SZERKEZETEINEK ERŐTANI VIZSGÁLATA ÉS TERVEZÉSI

Részletesebben

Paksi Atomerőmű üzemidő hosszabbítása. 4. melléklet

Paksi Atomerőmű üzemidő hosszabbítása. 4. melléklet 4. melléklet A Paksi Atomerőmű Rt. területén található dízel-generátorok levegőtisztaság-védelmi hatásterületének meghatározása, a terjedés számítógépes modellezésével 4. melléklet 2004.11.15. TARTALOMJEGYZÉK

Részletesebben

A DEBRECENBEN ÉPÜLŐ EDF FÜVES VÁGÁNY MŰSZAKI MEGFELELŐSÉGÉNEK VIZSGÁLATA

A DEBRECENBEN ÉPÜLŐ EDF FÜVES VÁGÁNY MŰSZAKI MEGFELELŐSÉGÉNEK VIZSGÁLATA V. VÁROSI VILLAMOS VASÚTI PÁLYA NAP Debrecen, 2012. 04. 03. A DEBRECENBEN ÉPÜLŐ EDF FÜVES VÁGÁNY MŰSZAKI MEGFELELŐSÉGÉNEK VIZSGÁLATA SZÉCHENYI ISTVÁN EGYETEM Dr. Horvát Ferenc főiskolai tanár 1. BEVEZETÉS

Részletesebben

Fa- és Acélszerkezetek I. 10. Előadás Faszerkezetek I. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 10. Előadás Faszerkezetek I. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 10. Előadás Faszerkezetek I. Dr. Szalai József Főiskolai adjunktus Tartalom Fa, mint anyag általános tulajdonságai Előnyök-hátrányok Faipari termékek Faszerkezetek jellemző alkalmazási

Részletesebben

Kiváló minőségű ragasztott kötés létrehozásának feltételei

Kiváló minőségű ragasztott kötés létrehozásának feltételei AKTUALITÁSOK A FARAGASZTÁSBAN Kiváló minőségű ragasztott kötés létrehozásának feltételei Dr. habil Csiha Csilla tanszékvezető, egyetemi docens Sopron 2014 szeptember 11. Faanyagok ragasztása a faipari

Részletesebben

Síndilatációs szerkezetetek titkai

Síndilatációs szerkezetetek titkai Dr. Kormos Gyula: (BME Út és Vasútépítési Tanszék) Síndilatációs szerkezetetek titkai XV. Nemzetközi Építéstudományi Konferencia ÉPKO 2011 Csíksomlyó, 2011. júnis 2-5. Síndilat ndilatáci avagy ciós szerkezetek

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU HÁLÓZATOK MÉRETEZÉSE

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU HÁLÓZATOK MÉRETEZÉSE SZÉCHENY STÁN EGYETEM HTT://N.SZE.H HÁLÓZATOK MÉRETEZÉSE Marcsa Dániel illamos gépek és energetika 2013/2014 - őszi szemeszter Kisfeszültségű hálózatok méretezése A leggyakrabban kisfeszültségű vezetékek

Részletesebben

2. Kötőelemek mechanikai tulajdonságai

2. Kötőelemek mechanikai tulajdonságai 800 Tatabánya, Búzavirág út 9. Tel.: +36-34/309-404 Fax.:+36-34/511-55. Kötőelemek mechanikai tulajdonságai.1. Csavarok szilárdsági jellemzői (ISO 898-1) A csavarok szilárdsági csoportjainak jelölése az

Részletesebben

Tartószerkezetek Megerısítése

Tartószerkezetek Megerısítése Tartószerkezetek Megerısítése Tartalom Az épületdiagnosztika fogalma Épületdiagnosztikai vizsgálatok lépései Erıtani követelmények és azok igazolása Anyagvizsgálatok A szerkezet megerısítés fogalmai Üllıi

Részletesebben

Előadó: Dr. Bukovics Ádám 11. ELŐADÁS

Előadó: Dr. Bukovics Ádám 11. ELŐADÁS SZÉCHNYI ISTVÁN GYTM TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az ábrák forrása:. LŐADÁS [1] Dr. Németh György: Tartószerkezetek III., Acélszerkezetek méretezésének alapjai [2] Halász Ottó Platthy Pál:

Részletesebben

Újdonságok 2015 Budapest

Újdonságok 2015 Budapest Újdonságok 2015 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 10 4. Terhek 12 5. Számítás 15 6. Méretezés és eredmények 16 7. Dokumentáció 20 2. oldal 1. Általános Új lehetőségek a Forgatás

Részletesebben

Kémiai összetétel (%) SiO 2 6,0 Al 2 O 3 50 53 Fe 2 O 3 3,0 CaO 40,0 MgO 1,5 SO 3 0,4

Kémiai összetétel (%) SiO 2 6,0 Al 2 O 3 50 53 Fe 2 O 3 3,0 CaO 40,0 MgO 1,5 SO 3 0,4 Általános Az normál dermedésű, de gyorsan kikeményedő, magas korai szilárdsággal rendelkező bauxitcement. Gyártási eljárásának, kémiai összetételének és szilárdulási képességének köszönhetően lényegesen

Részletesebben

Felvonók méretezése. Üzemi viszonyok. (villamos felvonók) Hlatky Endre

Felvonók méretezése. Üzemi viszonyok. (villamos felvonók) Hlatky Endre Felvonók méretezése Üzemi viszonyok (villmos felvonók) Hltky Endre Trtlom A felvonó üzemviszonyi Cél: felvonó működése során előforduló üzemállpotokbn kilkuló erők és nyomtékok meghtározás, berendezés

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

Útépítési akadémia 4. Aszfalthálók a magyar útépítésben. (2006. május 11. MAKADÁM Klub) Dr. Pallós Imre: Az aszfalthálók alkalmazásának egyes kérdései

Útépítési akadémia 4. Aszfalthálók a magyar útépítésben. (2006. május 11. MAKADÁM Klub) Dr. Pallós Imre: Az aszfalthálók alkalmazásának egyes kérdései Útépítési akadémia 4. Aszfalthálók a magyar útépítésben (2006. május 11. MAKADÁM Klub) Dr. Pallós Imre: Az aszfalthálók alkalmazásának egyes kérdései dr.pallós: Aszfalthálók 1 dr.pallós: Aszfalthálók 2

Részletesebben

PONIX-R RAKLAPOS ÁLLVÁNY Elemkatalógus és árjegyzék Érvényes: 2015.01.01 től visszavonásig

PONIX-R RAKLAPOS ÁLLVÁNY Elemkatalógus és árjegyzék Érvényes: 2015.01.01 től visszavonásig PONIX-R RAKLAPOS ÁLLVÁNY Elemkatalógus és árjegyzék Érvényes: 2015.01.01 től visszavonásig Rakodólapon elhelyezett termékekből képzett egységrakományok gazdaságos elhelyezése megfelelően kialakított állványrendszerben.

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

AZ ACÉL HÚZÓSZILÁRDSÁGA, ALAKVÁLTOZÁSA ÉS JELÖLÉSE

AZ ACÉL HÚZÓSZILÁRDSÁGA, ALAKVÁLTOZÁSA ÉS JELÖLÉSE 1 AZ ACÉL HÚZÓSZILÁRDSÁGA, ALAKVÁLTOZÁSA ÉS JELÖLÉSE Az acél széntartalma Acéloknak azokat a nyersvas feldolgozásával nyert kis széntartalmú vas-szén ötvözeteket tekintjük, amelyek széntartalma kevesebb,

Részletesebben

Acélszerkezeti csomópontok méretezése az EC3 szerint

Acélszerkezeti csomópontok méretezése az EC3 szerint Acélszerkezeti csomópontok méretezése az EC3 szerint 1. A csomópontok méretezésének alapelvei a komponens módszer Az EC3-1-8-ban alkalmazott u.n. komponens módszer egyszerőbb csomóponti kialakítások esetében

Részletesebben

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA Három követelményszint: az épületek összesített energetikai jellemzője E p = összesített energetikai jellemző a geometriai viszonyok függvénye (kwh/m

Részletesebben

3. előadás: Épületszerkezettani ismeretek (alapozás, építési módok, falszerkezetek, áthidalások, födémek)

3. előadás: Épületszerkezettani ismeretek (alapozás, építési módok, falszerkezetek, áthidalások, födémek) 3. előadás: Épületszerkezettani ismeretek 3. előadás: Épületszerkezettani ismeretek (alapozás, építési módok, falszerkezetek, áthidalások, födémek) Alapozási módok a) sík alapozás; b) mély alapozás. Síkalapozásnak

Részletesebben

ÚJ FEJLESZTÉSEK ÉS TECHNOLÓGIÁK A FENNTARTHATÓ FEJLŐDÉS JEGYÉBEN

ÚJ FEJLESZTÉSEK ÉS TECHNOLÓGIÁK A FENNTARTHATÓ FEJLŐDÉS JEGYÉBEN ÚJ FEJLESZTÉSEK ÉS TECHNOLÓGIÁK A FENNTARTHATÓ FEJLŐDÉS JEGYÉBEN KIÖNTŐHABARCSOK ÉS PÁLYALEMEZ SZIGETELÉSI RENDSZEREK LEGÚJABB GENERÁCIÓI 2014.03.25. BERECZ ANDRÁS SIKA HUNGÁRIA KFT./ ÉPÍTŐIPARI ÜZLETÁG

Részletesebben

Balazs_beton_impr 6/8/07 2:23 PM Page 1 KÜLÖNLEGES BETONOK ÉS BETONTECHNOLÓGIÁK I.

Balazs_beton_impr 6/8/07 2:23 PM Page 1 KÜLÖNLEGES BETONOK ÉS BETONTECHNOLÓGIÁK I. Balazs_beton_impr 6/8/07 2:23 PM Page 1 KÜLÖNLEGES BETONOK ÉS BETONTECHNOLÓGIÁK I. Balazs_beton_impr 6/8/07 2:23 PM Page 2 Balazs_beton_impr 6/8/07 2:23 PM Page 3 KÜLÖNLEGES BETONOK ÉS BETONTECHNOLÓGIÁK

Részletesebben

A keverővíz-mennyiséget nagymértékben csökkenteni képes finomszemcseméret-pótló, kötésgyorsító folyósítószer nagy kezdeti szilárdságú betonokhoz

A keverővíz-mennyiséget nagymértékben csökkenteni képes finomszemcseméret-pótló, kötésgyorsító folyósítószer nagy kezdeti szilárdságú betonokhoz Dynamon SX 18 [CE logo] A keverővíz-mennyiséget nagymértékben csökkenteni képes finomszemcseméret-pótló, kötésgyorsító folyósítószer nagy kezdeti szilárdságú betonokhoz LEÍRÁS A Dynamon SX 18 folyékony

Részletesebben

Firestone TPO tetőszigetelési rendszerek

Firestone TPO tetőszigetelési rendszerek 1 Annak érdekében, hogy tartós és megbízható tetőszigetelés készülhessen, nem elegendő csak egy jó szigetelőlemezt gyártani. A tapasztalat azt bizonyítja, hogy a szigetelőlemeznek más termékekkel összeférhetőnek

Részletesebben

1. Könnyűszerkezetes Ruukki szelemenek. Tartalom. Z C Szigma Kalap A keresztmetszeti méreteket lásd az 1.6 fejezetben.

1. Könnyűszerkezetes Ruukki szelemenek. Tartalom. Z C Szigma Kalap A keresztmetszeti méreteket lásd az 1.6 fejezetben. Tartalom 1 Könnyűszerkezetes Ruukki szelemenek...3 1.1 A könnyűszerkezetes szelemenek előnyei...3 1.2 A könnyűszerkezetes szelemenek anyagai...3 1.3 A könnyűszerkezetes Ruukki szelemenek gyártása...3 1.4

Részletesebben

Termékek. Vázlatrajzok BETONMEGOLDÁSOK

Termékek. Vázlatrajzok BETONMEGOLDÁSOK Termékek Vázlatrajzok BETONMEGOLDÁSOK Betonszerkezetek vízszigetelése kristályos technológiával Betonszerkezetek vízszigetelése kristályos technológiával Tartalomjegyzék BETONMEGOLDÁSOK Szabványos szerkezeti

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr.

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr. Anyagismeret I. A töréssel szembeni ellenállás vizsgálata Összeállította: Csizmazia Ferencné dr. Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. Szívós vagy

Részletesebben

A 12., a 13., a 14., a 15. és a 16. tételek C részénél a különböző vasalási terveket a vizsgaszervező intézmény bocsátja a vizsgázók rendelkezésére.

A 12., a 13., a 14., a 15. és a 16. tételek C részénél a különböző vasalási terveket a vizsgaszervező intézmény bocsátja a vizsgázók rendelkezésére. A vizsgafeladat ismertetése: A központilag összeállított szóbeli vizsga kérdései a szakmai és vizsgakövetelmények 4. Szakmai követelmények fejezetében megadott témakörök közül az alábbiakat tartalmazzák:

Részletesebben

Rövidített szabadalmi leírás. Szélkerék pneumatikus erőátvitelű szélgéphez

Rövidített szabadalmi leírás. Szélkerék pneumatikus erőátvitelű szélgéphez Rövidített szabadalmi leírás Szélkerék pneumatikus erőátvitelű szélgéphez A találmány tárgya szélkerék pneumatikus erőátvitelű szélgéphez, amely egy vízszintes tengely körül elforgathatóan ágyazott agyával

Részletesebben

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére Csepeli Zsolt Bereczki Péter Kardos Ibolya Verő Balázs Workshop Miskolc, 2013.09.06. Előadás vázlata Bevezetés Vizsgálat célja,

Részletesebben

Európai Műszaki Engedély ETA-05/0093

Európai Műszaki Engedély ETA-05/0093 Német Építéstechnikai Intézet Közintézet Kolonnenstr. 30 L 10829 Berlin Németország Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de Az 1988. december 21-i tanácsi

Részletesebben

Betonburkolatú körforgalom A leromlási modell

Betonburkolatú körforgalom A leromlási modell Betonburkolatú körforgalom A leromlási modell Bencze Zsolt KTI Nonprofit Kft. Betonburkolat Egyesület Éves Konferenciája 2012 szeptember 12. A burkolat leromlásának meghatározása: Valamely paraméter változása,

Részletesebben

Kőzetanker szétfeszítő elem 15,0

Kőzetanker szétfeszítő elem 15,0 08/2011 eépítési útmutató 999415019 hu Kőzetanker szétfeszítő elem 15,0 ikkszám 581120000 Termékleírás kőzetanker szétfeszítő elem 15,0 egyoldali zsalu betonban történő ankerozására szolgál. feszítőegység

Részletesebben

Dermesztett teherhordó homokbeton szerkezetek roncsolásmentes szilárdságbecslővizsgálatai

Dermesztett teherhordó homokbeton szerkezetek roncsolásmentes szilárdságbecslővizsgálatai Dermesztett teherhordó homokbeton szerkezetek roncsolásmentes szilárdságbecslővizsgálatai Nondestructive testing (NDT) and compressive strength estimation of gypsum board and cured, thin, no-coarses concrete

Részletesebben

Könnyített / áttört gerincű tartók optimális kialakítása és alkalmazása

Könnyített / áttört gerincű tartók optimális kialakítása és alkalmazása repülőgép hangár terve Könnyített / áttört gerincű tartók optimális kialakítása és alkalmazása A szellemi termék felhasználásával jelentős anyag- és költségmegtakarítást lehet elérni. Az eljárás folyamán

Részletesebben

Környezetbarát, energiahatékony külső falszerkezetek. YTONG és YTONG MULTIPOR

Környezetbarát, energiahatékony külső falszerkezetek. YTONG és YTONG MULTIPOR Környezetbarát, energiahatékony külső falszerkezetek YTONG és YTONG MULTIPOR anyagok használatával Környezetbarát, energiahatékony külső falszerkezetek Tartalomjegyzék: 1) Környezetbarát termék 2) Hőtechnika:

Részletesebben

Előadó neve Xella Magyarország Kft.

Előadó neve Xella Magyarország Kft. ORSZÁGOS KONFERENCIASOROZAT Főtámogató Szervezők Homlokzati falszerkezetek belső oldali hőszigetelése ásványi hőszigetelő lapokkal Előadó neve Xella Magyarország Kft. hőszigetelő lapok anyag jellemzők

Részletesebben

ALKALMAZÁSI ÚTMUTATÓ

ALKALMAZÁSI ÚTMUTATÓ Lapszám: 1/6 ALKALMAZÁSI ÚTMUTATÓ Termék: Összecsukható gyümölcsszedő állványok Állványmagasság: 2000 mm (L=2000) Cikkszám: 92110013 Állványmagasság: 1650 mm (L=1650) Cikkszám: 92110014 Állványmagasság:

Részletesebben

Porrobbanás elleni védelem. Villamos berendezések kiválasztása

Porrobbanás elleni védelem. Villamos berendezések kiválasztása Porrobbanás elleni védelem Villamos berendezések kiválasztása Villamos berendezések kiválasztása Por fajtája Robbanásveszélyes atmoszféra fellépésének valószínűsége 31 Por fajtája Por minimális gyújtási

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben

A gumiabroncsok szerepe a közlekedésbiztonságban

A gumiabroncsok szerepe a közlekedésbiztonságban A gumiabroncsok szerepe a közlekedésbiztonságban A MICHELIN Csoport A kezdetek 1889: Michelin cég alapítása 1891: leszerelhető kerékpár abroncs 1895: először szerel a Michelin levegővel fújt gumiabroncsot

Részletesebben

KÖZÉPNEHÉZ ECONOMY. Economy kapcsolható, csavar nélkül összeállítható polcos állványrendszer

KÖZÉPNEHÉZ ECONOMY. Economy kapcsolható, csavar nélkül összeállítható polcos állványrendszer KÖZÉPNEHÉZ ECONOMY Economy kapcsolható, csavar nélkül összeállítható polcos állványrendszer Kiválóan alkalmas viszonylag nagy tömegű anyagok tárolására, melyek normál polcos állványokban már nem tárolhatók,

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

Kötőanyagpépek kötési idejének vizsgálata. Vizsgálóeszközök

Kötőanyagpépek kötési idejének vizsgálata. Vizsgálóeszközök Kötőanyagpépek kötési idejének vizsgálata MSZ EN 196-3:1990 Cementvizsgálati módszerek. 3. rész: A kötési idő és a térfogatállandóság meghatározása MSZ 57:1977 Gipsz kötőanyagok 3.4.4.-3.4.6. fejezetek:

Részletesebben

LEÍRÁS A WEBINSULATION SZIGETELÉSI RENDSZERHEZ KETTŐS HÉJALÁSÚ LAPOSTETŐK PROFESSZIONÁLIS HŐSZIGETELÉSE KŐZETGYAPOT GRANULÁTUMMAL

LEÍRÁS A WEBINSULATION SZIGETELÉSI RENDSZERHEZ KETTŐS HÉJALÁSÚ LAPOSTETŐK PROFESSZIONÁLIS HŐSZIGETELÉSE KŐZETGYAPOT GRANULÁTUMMAL LEÍRÁS A WEBINSULATION SZIGETELÉSI RENDSZERHEZ KETTŐS HÉJALÁSÚ LAPOSTETŐK PROFESSZIONÁLIS HŐSZIGETELÉSE KŐZETGYAPOT GRANULÁTUMMAL Tartalom 1. Üzemi adatok..3 2. Tervezési tanácsok, a., a befújás vastagsága..4

Részletesebben