PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz"

Átírás

1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM ÉPÍTŐMÉRÖKI KAR HIDAK ÉS SZERKEZETEK TASZÉKE PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz Budapest, 007

2 Szerzők: Friedman oémi Huszár Zsolt Kiss Rita Klinka Katalin Kovács Tamás Völgyi István Kézirat lezárva: 007. december 5. ISB Kiadja: BME Hidak és Szerkezetek Tanszéke

3 Tartalomjegyzék Oldalszám Gyakorlatok anyaga. Repedésmentes és berepedt vasbetontartók 4. Hajlított vasbeton keresztmetszet ellenőrzése 0 3. Hajlított vasbeton keresztmetszet tervezése 4 4. Külpontosan nyomott vasbeton keresztmetszet 3 5. Vasbeton gerendák nyírásvizsgálata Gerendák komplex vizsgálata, határnyomaték és határnyíróerő 57 számítása 7. Használhatósági határállapotok 75 Kiegészítő anyagok Kiegészítő anyag az I. gyakorlathoz 84 Kiegészítő anyag a II. gyakorlathoz 95 Kiegészítő anyag a VII. Gyakorlathoz 04

4 I. gyakorlat I. GYAKORLAT Repedésmentes és berepedt vasbeton tartók Készítették: Dr. Kiss Rita, Klinka Katalin és Völgyi István émi elméleti összefoglaló: A számításokban feltételezzük, hogy: - a rúd tengelyére merőleges keresztmetszetek a deformációk után síkok és rúd tengelyére merőlegesek maradnak és - a beton és az acél csúszásmentesen együttdolgozik Az I. feszültségi állapotot a berepedetlen vasbeton keresztmetszetre értelmezzük, a beton és a betonacél viselkedését rugalmasnak feltételezzük, az I. feszültség állapot határát a beton megrepedése jelenti. A II. feszültségi állapotot a berepedt vasbeton keresztmetszetre értelmezzük, a beton és a betonacélok viselkedését rugalmasnak feltételezzük, a II. feszültség állapot határát vagy beton képlékeny állapotba kerülése vagy akár csak egy betonacél megfolyása jelenti. A III. feszültségi állapot szerinti vizsgálat feltevése az, hogy - vagy a vasbeton keresztmetszet nyomott szélső szálában a legnagyobb keresztmetszeti összenyomódás elérte a beton törési összenyomódásának a határértékét (ε cu -t) - vagy (akár csak egy) húzott acélbetét nyúlása elérte az acél szakadónyúlásának értékét (ε su -t). Megjegyzés: Mivel majdnem mindig az első szokott bekövetkezni, ezért a III. feszültségi állapot szerinti hajlítás vizsgálatot (lásd a következő gyakorlatok anyagában) azzal a feltételezéssel indítjuk, hogy a beton nyomott szélső szálában a törési összenyomódás értéke lép fel. - A feladatok megoldása során a beton esetén a következő egyszerűsített anyagmodelleket használjuk : - Az I. feszültségi állapotban lévő beton anyagmodellje: lineárisan rugalmas anyagmodell σc f c.c εc.t f c.t εc.c εc[%0] - Az II. feszültségi állapotban lévő beton anyagmodellje: lineárisan rugalmas anyagmodell σc f c.c εc.c.εc εc[%0] - Az III. feszültségi állapotban lévő beton anyagmodellje: lineárisan rugalmas, tökéletesen képlékeny anyagmodell: téglap alakú σ(ε)-diagram: (még tovább egyszerűsített modell) c σc f c.c εc.c.εc εcu εc[%0] f c.c εc=0,7 εcu=3,5 εc[%0] - A feladat megoldások során a betonacél esetén a következő anyagmodelleket használjuk : - a betonacél rugalmassági modulusa: E s := 00 k s εs' f y.es f y εsu=5 εs[%0] Az acél σ(ε) diagramja az origóra szimmetrikus. Es -f' y 4

5 I. gyakorlat A következő példákban a betonkeresztmetszet geometriai méretei és a felhasznált beton, illetve betonacél szilárdsági jellemzői azonosak: A A-A metszet M M z A hajlítónyomaték alul okoz húzást A 300 4ϕ0 A repedésmentes beton A berepedt beton σ(ε) diagramja: σ(ε) diagramja: A betonacél σ(ε) diagramja: c[mpa] c[mpa] σs[mpa] 0,7 0,04 0,585 3,5,9 E c = 8.3 k εc[% ] 0,7 Geometria jellemzők definiálása : h := 500mm b := 300mm d := 450mm 0,585 3,5 As d εc[% ] εs' ,7 σs', εs[%0] E s = 00 k b - az alkalmazott húzott vasalás: n := 4 db ϕ := 0mm A s n ϕ π := A 4 s = 56.6 Anyagjellemzők definiálása : A beton anyagjellemzői: A beton nyomószilárdsága: f c.c := 0.7 A beton húzószilárdsága: f c.t :=.9 f c.c A nyomott szélsőszál rugalmas határához tartozó nyúlás: ε := E c ε = ε c.e := ε ε c.e = f c.t A húzott szélsőszál határnyúlása: ε := ε E = 0.04 c ε cu := 3.5 A betonacél anyagjellemzői:a betonacél folyáshatára: f y := 434 f y A betonacél folyási határához tartozó nyúlás: ε s.e := ε E s.e =.7 s Az acél határnyúlása: ε su := 5 E s A betonacél és a beton rugalmassági modulusának aránya: α E := α E E = 0.93 c 5

6 I. gyakorlat I. FESZÜLTSÉGI ÁLLAPOTBA LEVŐ (REPEDÉSMETES) VB. KM. SZÁMÍTÁSA..példa: Határozza meg az alábbi repedésmentes vasbeton keresztmetszet repesztőnyomatékát! As b d h = b = d = 500 mm 300 mm 450 mm A s = 56.6 A repedésmentes beton σ(ε) diagramja: A betonacél σ(ε) diagramja: 0,7 0,04 c[mpa] 0,585 3,5,9 E c = 8.3 k εc[% ] ε = ε c.e = f c.c = 0.7 f c.t =.9 ε = 0.04 εs' ,7 σs[mpa] σs', εs[%0] f y = 434 ε s.e =.7 E s = 00 k Megjegyzés: beton és betonacél σ(ε) diagramjánál is elegendő lenne lineárisan rugalmas szakaszt megadni, hisz a betonacél a II. feszültségi állapotban nem éri el a diagram képlékeny szakaszát. A feladat megoldása az ideális keresztmetszeti jellemzők felhasználásával: A nyomott betonzóna magasságának számítása az ideális keresztmetszeti jellemzőkkel: Az acél keresztmetszetét a beton keresztmetszetére redukáljuk: - Az ideális keresztmetszet területe: A ii := bh + A s α E A s vagyis A ii := bh + ( α E ) A s A ii = 64.8 cm - Az ideális keresztmetszet statikai nyomatéka a felső szélső szálra: h S x.i := bh + A s ( α E ) d S x.i = 435 cm 3 - A nyomott betonzóna magassága: S x.i x I := x A I = 65 mm ii - Ideális keresztmetszet inerciája a semleges tengelyre felírva: 3 bx I b I ( h x I) 3 ( ϕ) 4 π I + + A s ( d x I) := + ( α E ) I I = cm 4 - Ideális km. inerciája a semleges tengelyre felírva az acélok saját súlyponti tengelyre felírt inerciájának elhanyagolásával: 3 bx I b I I = cm 4 I ( h x I) 3 I := + + A 3 3 s ( d x I ) ( α E ) Megjegyzés: mivel az acélok saját súlyponti tengelyre felírt inerciájának elhanyagolása az eredmény pontosságát nem csorbítja, ezért a következőkben ezt mindig elhanyagoljuk A beton megrepedéséhez tartozó nyomaték: M cr f c.t I I f c.t = h x I ( I) M cr := M I h r = 9.04 k m I 6

7 I. gyakorlat II. FESZÜLTSÉGI ÁLLAPOTBA LEVŐ VB. KM. SZÁMÍTÁSA..példa: Határozza meg az alábbi berepedt vb. km. II. feszültségi állapot végét jelentő görbületét és a hozzá tartozó nyomatékot! As d h = b = 500 mm 300 mm A s = 56.6 b d = 450 mm A betonacél σ(ε) diagramja: A berepedt beton σ(ε) diagramja: c[mpa] σs[mpa] ε c.e = f y = 434 0,7 434 f εc[% ] c.c = 0.7 0,585 3,5 ε s.e =.7 εs' εs[%0] -5 -,7,7 5 E s = 00 k E c = 8.3 k -434 Megjegyzés: beton és betonacél s(e) diagramjánál is elegendõ lenne lineárisan rugalmas szakaszt megadni, hisz a betonacél a II. feszültségi állapotban nem éri el a diagram képlékeny szakaszát. A feladat megoldása: Az acél keresztmetszetét a beton keresztmetszetére redukáljuk: - Az ideális keresztmetszet területe: A i.ii = bx II + α E A s - Az ideális keresztmetszet statikai nyomatéka a felső szélső szálra: x II S x.ii = bx II + A s α E d - A nyomott betonzóna magassága: x II bx II + A s α E d x II = x bx II + α E A II := Find( x II ) x II = 6 mm A i.ii := bx II + α E A s = 64. cm s x II S x.ii := bx II + A s α E d = 03.4 cm 3 A II. feszültségi állapot határát adó κ II görbület számítása: ε A nyomott szélsõszál rugalmassági határához tartozó nyúlásához a görbület: κ := κ x = II mm f y A húzott acél rugalmassági határához tartozó nyúlásából kapott görbület: κ s := κ d x II s = mm A II. feszültségi állapot határát adó κ II görbület: (a nyomott szélsőszál eléri a rugalmassági határát) A húzott acélbetét megfolyását okozó nyomaték nagysága: 3 I II := x II b + A 3 s α E ( d x II) I II = 5648 cm 4 σs' ( ) E s κ II := min( κ, κ s ) κ II = mm M II = κ II E c I II M II = 03.3 k m 7

8 x. Vasbetonszerkezetek I. I. gyakorlat AZ II. ÉS III. FESZÜLTSÉGI ÁLLAPOT KÖZÖTTI ITERMEDIER ÁLLAPOTBA LEVŐ VB. KM. SZÁMÍTÁSA.4.példa: Határozza meg az azt a görbületet és hozzátartozó nyomatékot, amikor a betonacélok épp a rugalmas és képlékeny állapot határán van! d h = b = 500 mm 300 mm A As s = 56.6 d = 450 mm b A berepedt beton σ(ε) diagramja: A betonacél σ(ε) diagramja: 0,7 c[mpa] 0,585 3,5 E c = 8.3 k εc[% ] ε c.e = f c.c = 0.7 εs' 434 σs[mpa] εs[%0] = -5 -,7,7 5 ε su = 5 ε cu 3.5 A feladat megoldása: T.f.h. a beton képlékeny állapotban van σs' -434 f y = 434 ε s.e =.7 E s = 00 k M A A-A metszet M z A h y As εs.e b x d ε εc.e a. κ f c σ { A semleges tengely helye a vetületi egyenletből meghatározható: b ( x a) f c.c + b a f c.c A s f y = 0 Belső erők Fc.c, Fc.c, σs Fs ε c.e ε s.e a = ebből a = d x ε c.e ( d x) ε s.e b x ε c.e ε c.e ( d x) f ε c.c + s.e b ( d x) f ε c.c A s f y = 0 x := Find( x) x = 03. mm s.e ε s.e Az acélbetétek megfolyásához tartozó görbület értéke: κ εs.e := κ d x εs.e = mm Felsõ szélsõ szál összenyomódása: ε c := κ εs.e x ε c =.786 > ε c.e = a beton valóban képlékeny ε c.e a := ( d x) a = 66.5 mm ε s.e x a M := b ( x a) f c.c d + b a f c.c d x + 3 a M = 98.5 k m 8

9 . x. Vasbetonszerkezetek I. I. gyakorlat HATÁRÁLLAPOTHOZ TARTOZÓ YOMATÉKSZÁMÍTÁS.5.példa: Határozza meg a vb. km.-nek azt a görbületét és a hozzátartozó nyomatékot, amikor a nyomott, felső szélső szálban az összenyomódás eléri a beton határösszenyomódásának értékét! h = 500 mm As b d b = d = 300 mm 450 mm A s = 56.6 A berepedt beton σ(ε) diagramja: A betonacél σ(ε) diagramja: c[mpa] 0,7 εc[% ] 0,585 3,5 E c = 8.3 k ε c.e = f c.c = 0.7 εs' 434 σs[mpa] εs[%0] = -5 -,7,7 5 ε su = 5 ε cu 3.5 σs' -434 f y = 434 ε s.e =.7 E s = 00 k Megjegyzés: A példánkban szereplő a vb. keresztmetszet úgy kerül határállapotba, hogy nyomott szélső szálban az összenyomódás eléri a beton határösszenyomódásának értékét (ε c,felső =ε c,u =3,5%o). A feladat megoldása: ε σ Belső erők A A-A metszet εcu { f c { M M z A h x y As b d εc.e κ a f y Fc.c, Fc.c, Fs A semleges tengely helye a vetületi egyenletből meghatározható, feltételezve, hogy a betonacél képlékeny: b ( x III a) f c.c + b a f c.c A s f y = 0 ε c.e ε cu a = ebből a = x III ε c.e x ε III cu ε c.e b x III x ε III cu ε c.e f c.c + b x ε III f c.c A s f y = 0 x III := Find( x III ) x III = 85.4 mm cu ε cu A görbület értéke III. feszültségi állapotban: κ III := κ x III = III mm Az acélbetétek megnyúlása: ε s := κ III d x III ε s = > ε c.e = az acélbetétek valóban képlékenyek ( ) ε c.e a := x ε III a = 3 mm cu ( ) M III := b x III a f c.c d x III a + b a f c.c d x III + 3 a M III = 99 k m 9

10 II. gyakorlat II. GYAKORLAT Hajlított vasbeton keresztmetszet ellenőrzése Készítették: Dr. Kiss Rita és Klinka Katalin A számításokban feltételezzük, hogy: - a rúd tengelyére merőleges keresztmetszetek a deformációk után síkok és rúd tengelyére merőlegesek maradnak és - a beton és az acél csúszásmentesen együttdolgozik Ezeken túl még azt is feltételezzük, hogy a beton III. feszültségi állapotban van és nyomott szélső szálában elérte a határösszenyomódását, azaz ε c =ε cu, - ez a feltevés biztos, hogy nem teljesül, ha a vasbeton keresztmetszet gyengén vasalt, mert az acél elszakad, mielőtt a beton szélső szálában létrejönne a határösszenyomódás - a feltevés teljesül normálisan vasalt keresztmetszet esetén, azaz az acél megfolyt és a betonban létrejön a törési összenyomódás - a feltevés teljesül túlvasalt keresztmetszet esetén is, azaz a betonban létrejön a törési összenyomódás, de az acél rugalmas állapotban van - A feladat megoldások során a beton esetén a következő anyagmodellt használjuk : - anyag modellje: merev-képékeny anyagmodell c -f ck -αf cd εc=-0,7 σck(ε) ασcd(ε) εc[%0] εcu=-3,5. ábra:a beton σ(ε) diagramja Az EC-ben javasolt beton σ(ε) diagramok közül a legegyszerűbb ε cu ε c az ábra kitöltöttsége: c = = = 0.8 ε cu 3.5 Természetesen lehetőség van, ennél pontosabb σ(ε)-diagram használatára is, de mivel a megkívánt számítási pontosságnak ez is megfelel, és a biztonság javára tér el a többi σ(ε)-diagramtól, ezért az egyszerűség kedvéért a továbbiakban ezt használjuk. (Az EC-ben javasolt többi diagramot lásd a Farkas-Huszár-Kovács-Szalai: 63 old.) - beton biztonsági tényezője: γ c :=.5 - működési tényező (kedvezőtlen hatásokat figyelembe vevő tényező): α := (Magyarországon) - beton határösszenyomodása: ε cu := A feladat megoldások során az acél esetén a következő anyagmodellt használjuk : s f yk f yd σyk(ε) σyd(ε) εs' ' σyd(ε) ' σyk(ε) f yd Es -f' yd -f' yk εs[%] εsu=,5 σs'. ábra:az acél σ(ε) diagramja - acél biztonsági tényezője: γ s :=.5 - acél határnyúlása: ε su := 5 (általában) - acél rugalmassági modulusa: E s :=

11 II. gyakorlat Annak szemléltetésére, hogy a relatív nyomott betonzónamagasság határhelyzetének képletének kényelmes, általunk használt végleges formája, nem mértékegység konzekvens, mégis fizikai tartalommal bír, álljon itt a 560 ξ c0 = képletének levezetése: f yd d. cu { x αf cd.xc=cx As b ε εs σs σ 3. ábra: A vasbeton keresztmetszet ε, σ ábrája Az x és az viszonya az. és a 3. ábra alapján belátható (hasonló háromszögek): x = = 0.8x = cx vagy x =.5 = c d x Az acélban keletkező nyúlás (aránypárból a 3. ábra alapján):ε s = ε cu x Az acél folyik, ha ε s > f yd E s cd ε s = ε cu d ( ) ( ) E s f yd > E átrendezve s c ε cu E s < = ξ f yd + ε cu c0 ahol ξ c = és d ξ c0 = c ε cu E s f yd + ε cu E s behelyettesítve ε su := 5 ; E s := ; c := 0.8 megkapjuk ξ c < ξ c0 = 560 f yd és ha ez az egyenlőtlenség teljesül, akkor a húzott acélbetétek megfolynak Megjegyzés: a képletben az f yd / -ben van, de dimenzió nélkül kell beírni Használt képletek: relatív nyomott betonzónamagasság határhelyzete a húzott acélbetétekhez: ξ c0 = f yd relatív nyomott betonzónamagasság határhelyzete a nyomott acélbetétekhez: ξ c0 = 700 f yd a rugalmas, húzott acélbetétek esetén a redukált feszültség képlete: σ s = 700 d - a rugalmas, nyomott acélbetétekben esetén a redukált feszültség képlete: σ s = d

12 II. gyakorlat EGYSZERESE VASALT ÉGYSZÖGKERESZTMETSZET HATÁRYOMATÉKA ORMÁLISA VASALT VB. KERESZTMETSZET..példa: Ellenőrizze az alábbi keresztmetszetet a megadott pozitív hajlítónyomatékra: M Ed =90 km Anyagok : 4ϕ0 Feladat definiálása: 300 Beton: C6/0 Betonacél: S500B Geometria jellemzők definiálása : h := 500mm b := 300mm d := 450mm - az alkalmazott húzott vasalás: n := 4 darab ϕ := 0mm A s n ϕ π := A 4 s = 56.6 Anyagjellemzők definiálása: beton: C6/0 - a beton nyomószilárdságának karakterisztikus értéke: f ck := 6 γ c =.5 f ck - a beton nyomószilárdságának tervezési értéke: f cd := f γ cd = 0.7 c - a beton húzószilárdságának várható értéke: acél: S500B f ctm :=.9 - az acél folyási határának karakterisztikus értéke: f yk := 500 γ s =.5 f yk - az acél folyási határának tervezési értéke: f yd := γ f s yd = relatív nyomott betonzónamagasság határhelyzete ξ c0 := ξ a húzott acélbetétekhez: f yd c0 = relatív nyomott betonzónamagasság határhelyzete a nyomott acélbetétekhez: 560 ξ c0 := 700 f ξ c0 =. yd 0 := d ξ c0 0 =. mm

13 ... Vasbetonszerkezetek I. II. gyakorlat Számítás: ε εcu { σ αf cd Belső erők h d x xc Fc=xc*b*α*f cd 4. ábra: A vasbeton keresztmetszet ε, σ ábrája és belső erői zc As b εs f yd Fs=As*f yd Tegyük fel, hogy a húzott acélbetétek folynak (σ s =f yd ) (T.f.h a km normálisan vasalt) A vetületi egyenlet: b α f cd = A s f yd = 70.7 mm ahol b = 300 mm α =.0 f cd = 0.7 A s 56.6 = f yd = A feltevés ellenőrzése (relatív nyomott betonzóna magasság határhelyzete alapján) : ξ c := ξ d c = < ξ c0 = A felt. helyes volt, az acélbetétek folyási állapotban vannak vagy = 70.7 mm < 0 =. mm Továbbá az acélbetétek megnyúlása: d c ε s := ε cu ε x s = 3.88 < ε su = 5 acélbetétek nem szakadnak el c c A nyomatéki egyenlet húzott vasak súlyvonalára: M Rd := bx c α f cd d M Rd = 99. k m ahol b = 300 mm = 70.7 mm α =.0 f cd = 0.7 d = 450 mm M Rd = 99. k m > M Ed = 90 k m a keresztmetszet hajlításra megfelel 3

14 ... Vasbetonszerkezetek I. II. gyakorlat TÚLVASALT VB. KERESZTMETSZET.. példa: Ellenőrizze az alábbi keresztmetszetet a megadott pozitív hajlítónyomatékra: M Ed := 30 k m Anyagok : 6ϕ0 300 Beton: C6/0 Betonacél: S500B Feladat definiálása: ε εcu { σ αf cd Belső erők 5. ábra: A vasbeton keresztmetszet ε, σ ábrája és belső erői x xc Fc=xc*b*α*f cd h d zc As b εs σs Fs=As*σs Geometria jellemzők definiálása : h := 500mm b := 300mm d := 450mm - az alkalmazott húzott vasalás: n := 6 darab ϕ := 0mm Anyagjellemzők: lásd.. példa Számítás: Tegyük fel, hogy a húzott acélbetétek folynak (T.f.h a km normálisan vasalt) A vetületi egyenlet: b α f cd = A s f yd A s n ϕ π := A 4 s = 885 ahol b = 300 mm α =.0 f cd = 0.7 A s 885 = f yd = A feltevés ellenőrzése : ξ c := ξ d c = > ξ c0 = = 56. mm A feltételezés nem volt helyes, az acélbetétek rugalmas állapotban vannak ( keresztmeteszet túlvasalt) 560 d A feltevés módosítása miatt a vetületi egyenlet újbóli felírása σ s = 700 képlettel : d 560 b α f cd = A s 700 (az egyenlet megoldása másodfokú egyenletre vezet, melyből a fizikai tartalommal bíró gyökét használjuk fel a feladat megoldása során) ahol b = 300 mm f cd = 0.7 A s = 885 = 30.8 mm 4

15 II. gyakorlat Acél rugalmasságának ellenőrzése: ξ c := ξ d c = 0.53 > ξ c0 = az acélbetétek rugalmas állapotban vannak 560 Az acélban keletkező feszültség: σ s := d 700 σ s = 39.8 < f yd = A nyomatéki egyenlet húzott vasak súlyvonalára: M Rd := bx c α f cd d ahol b = 300 mm = 30.8 mm f cd = 0.7 d = 450 mm M Rd = M Rd = 47. k m > M Ed = 30 k m a keresztmetszet hajlításra megfelel 47. k m 5

16 ... Vasbetonszerkezetek I. II. gyakorlat GYEGÉ VASALT VB. KERESZTMETSZET.3 példa: Ellenőrizze az alábbi keresztmetszetet a megadott pozitív hajlítónyomatékra: M Ed := 05 k m Anyagok : ϕ Megoldás: 300 Beton: C6/0 Betonacél: S500B ε σ Belső erők h d εcu { x αf cd xc zc Fc=xc*b*α*f cd Geometria jellemzők definiálása : h := 500mm b := 300mm d := 450mm As b εs f yd Fs=As*f yd 7. ábra: A vasbeton keresztmetszet ε, σ ábrája és belső erői - az alkalmazott húzott vasalás: n := darab ϕ := mm A s n ϕ π := A 4 s = 6. Anyagjellemzők: lásd a.. példában Számítás: Tegyük fel, hogy a húzott acélbetétek folynak (T.f.h a km normálisan vasalt) A vetületi egyenlet: b α f cd = A s f yd = ahol b = 300 mm α =.0 f cd = 0.7 A s 6. = f yd = A feltevés ellenőrzése (aránypárral): σ(ε)-diagram kitöltöttsége: c := 0.8 Az acélban keletkező nyúlás: ε d d s c c = átrendezve ε ε cu x s := ε cu ε c x s = c 30.7 mm c c f yd rugalmássági határ: ε E := ε E E =.74 s ε s = > ε E =.74 ezért az acél tényleg folyik ε s = > ε su = 5 de el is szakadnak A feltevés ellenőrzése (relatív nyomott betonzónamagasság határhelyzete alapján) : ξ c := ξ d c = < ξ c0 = A felt. helyes volt, az acélbetétek folyási állapotban vannak 6

17 II. gyakorlat A nyomatéki egyenlet húzott vasak súlyvonalára: M Rd := bx c α f cd d M Rd = 4.7 k m A feltevés helytelen, ezért elvileg előről kell kezdeni a feladatot de könnyen belátható, hogy a vetületi és a nyomatéki egyenletben számszerűen semmi nem változik. ahol b = 300 mm = 30.7 mm α =.0 f cd = 0.7 d = 450 mm M Rd = 4.7 k m < M Ed = 05 k m a keresztmetszet hajlításra nem felel meg!!!! Megjegyzés: az acélbetétek elszakadnak mielőtt a beton szélső szálában kialakulna határösszenyomódás (ε cu =3,5 ) c αf cd ασcd ε c < 0.8 0,7 c 3,5 εc[%0] 8. ábra: A beton σ(ε) diagramjának kitöltöttsége Az ábra kitöltöttsége: c = 0.8 x A gyengén vasalt km. határnyomatéka tehát a normálisan vasalt km.-tel azonos összefüggésekkel számítható, csak a tönkremenetel jellege és illetve x egymáshoz viszonyított aránya változik. 7

18 . Vasbetonszerkezetek I. II. gyakorlat KÉTSZERESE VASALT ÉGYSZÖGKERESZTMETSZET HATÁRYOMATÉKA.4. példa: Ellenőrizze az alábbi keresztmetszetet a megadott pozitív hajlítónyomatékra: M Ed := 90 k m ϕ0 500 Anyagok : 6ϕ0 300 Beton: C6/0 Betonacél: S500B Geometria jellemzők definiálása : h := 500mm b := 300mm kengyel: ϕ k := 0mm betonfedés: bf := 0mm a vasak kedvezőtlen elmozdulása: δ := 0mm alkalmazott húzott vasalás: n := 6 darab ϕ := 0mm A s n ϕ π := A 4 s = 885 Megjegyzés: Ha a keresztmetszetben az acélbetétek két vagy több sorban helyezkednek el, akkor számításban a súlypontjukban egyetlen acélkeresztmetszettel helyettesített acélbetétek hasznos magasságát a következőképpen számítjuk: ζ. ábra:acélbetétek súlyvonala vasak közötti minimális távolság: ζ := max( ϕ, 0mm) ζ = 0 mm alsó sorban levő vasak száma: n alsó := 4 felső sorban levő vasak száma: n felső := ϕ n felső hasznos magasság: d := h bf ϕ k n felső + n alsó ϕ ϕ + ζ + δ d = mm ϕ π alkalmazott nyomott vasalás: n := darab ϕ := 0mm A s := n 4 A s = 68.3 ϕ hasznos magasság: d := bf + ϕ k + + δ d = 50 mm Anyagjellemzők: lásd a.. példában Számítás: A's ε's ε εcu {.x σ's σ αf cd.xc Belső erők F's=A's*σ's Fc=xc*b*α*f cd 3. ábra:a vasbeton keresztmetszet ε, σ ábrája és a belső erők h d As b εs σs Fs=As*σs Tegyük fel, hogy a húzott acélbetétek (σ s =f yd ) is, és a nyomott acélbetétek (σ, s =f yd ) is folynak A vetületi egyenlet: b α f cd + A s f yd A s f yd = 0 = 70.7 mm ahol b = 300 mm α =.0 f cd = 0.7 A s = 68.3 A s 885 = f yd =

19 II. gyakorlat A feltevés ellenőrzése : ξ c := ξ d c = 0.39 < ξ c0 = A feltételezés helyes volt, a húzott acélbetétek folyási állapotban vannak ξ c := d ξ c = 3.45 > ξ c0 =. A feltételezése helyes volt, a nyomott acélbetétek folyási állapotban vannak A n yomatéki egyenlet húzott vasak súlyvonalára: M Rd := bx c α f cd d + A s f yd ( d d ) M Rd = 97.6 k m ahol b = 300 mm = 70.7 mm f cd = 0.7 A s = 68.3 d = mm f yd = d = 50 mm M Rd = 97.6 k m > M Ed = 90 k m a keresztmetszet hajlításra megfelel 9

20 II. gyakorlat.5. példa: Ellenőrizze az alábbi keresztmetszetet a megadott pozitív hajlítónyomatékra: ϕ0 M Ed := 00 k m 500 Anyagok : 4ϕ0 300 Beton: C6/0 Betonacél: S500B Geometria jellemzők definiálása : kengyel: ϕ k := 0mm betonfedés: bf := 0mm a vasak kedvezőtlen elmozdulása miatt: δ := 0mm alkalmazott húzott vasalás: n := 4 darab ϕ := 0mm A s n ϕ π := A 4 s = 56.6 ϕ hasznos magasság: d := h bf ϕ k δ d = 450 mm ϕ π alkalmazott nyomott vasalás: n := darab ϕ := 0mm A s := n 4 A s = 68.3 ϕ hasznos magasság: d := bf + ϕ k + + δ d = 50 mm Anyagjellemzők: lásd a.. példában Számítás: Tegyük fel, hogy a húzott acélbetétek is és a nyomott acélbetétek is folynak A vetületi egyenlet: b α f cd + A s f yd A s f yd = 0 = ahol b = 300 mm α =.0 f cd = 0.7 A s 68.3 = f yd = A s = 56.6 A feltevés ellenőrzése : 85.4 mm ξ c := ξ d c = 0.9 < ξ c0 = A felt. helyes volt, a húzott acélbetétek folyási állapotban vannak ξ c := d < ξ c0 =. A felt.nem volt helyes, a nyomott acélbetétek rugalmas állapotúak ξ c =.707 A feltevés módosítása miatt a vetületi egyenlet újbóli felírása: (húzott acélbetétek folynak, nyomottak rugalmasak) 560 b α f cd + A s 700 A x s f yd = 0 c d Megjegyzés: használatos még a redukált feszültség alábbi alakja is: σ s := 560 d 700 (az egyenlet megoldása másodfokú egyenletre vezet, melyből a fizikai tartalommal bíró gyökét használjuk fel a feladat megoldása során) = 9.6 mm Ez a forma az előbb alkalmazott képlet ellentettjét adja és egyébként formailag egyezik a húzott oldali rugalmas acélbetét feszültségét számító képlettel. Tekinthetjük ezt egy általánosan használható képletnek, ami mechanikai értelemben ad előjelhelyes eredményt, tehát húzott betonacél esetén pozitív, nyomott esetén pedig negatív eredményt ad. Mindkét formula használható, de a zárójel előtti előjel úgy választandó, hogy a kifejezés előjele nyomott betonacél esetén a nyomott beton által képviselt erővel azonos (általában pozitív) előjelet adjon. A nyomatéki egyenletben azonos megoldást kell választanunk. mivel ez az előbbi alakkal ellentétes előjelű, ezért a vetületi egyenlet a alakja a következő: 560 b α f cd + A s 700 A x s f yd = 0 c = d 9.6 mm 0

21 II. gyakorlat Feltétel ellenőrzése: ξ c := d ξ c = 0.06 < ξ c0 = a húzott acél képlékeny ξ c := d ξ c =.853 < ξ c0 =. a nyomott acél rugalmas 560 σ s := 700 nyomott acélban keletkező feszültség: σ s = d A n yomatéki egyenlet húzott vasak súlyvonalára: σ s = (< f yd = ) M Rd := bx c α f cd d + A s ( σ s ) ( d d ) M Rd = 9.6 k m ahol b = 300 mm = 9.6 mm f cd = 0.7 d = 450 mm d = 50 mm A s = 68.3 M Rd = 9.6 k m > M Ed = 00 k m a keresztmetszet hajlításra megfelel

22 . Vasbetonszerkezetek I. II. gyakorlat.6. példa: Ellenőrizze az alábbi T keresztmetszetet (együttdolgozó lemez+gerenda) a megadott pozitív hajlítónyomatékra: 400 M Ed := 50 k m Anyagok : 4ϕ5 40 Beton: C6/0 Betonacél: S400B Feladat definiálása: b As t h Geometria jellemzők definiálása : h := 500mm b := 400mm d := 460mm t := 0mm (a fejlemez vastasága) b w := 40mm (borda szélessége) bw - az alkalmazott húzott vasalás: n := 4 darab ϕ := 5mm A s n ϕ π := A s = Anyagjellemzők definiálása: beton: C6/0 f ck f ck := 6 f cd := f γ cd = 0.7 c acél: S400B f yk f yk := 400 f yd := f γ yd = s 560 ξ c0 := ξ f yd c0 = Számítás: Tegyük fel, hogy a húzott acélbetétek folynak és Tegyük fel, hogy a nyomott zóna a fejlemezben van αf cd 4 x xc Fc 7. ábra: A T-keresztmetszet ε, σ ábrája és a belső erők As ε σ Fs belső erők A vetületi egyenlet: A feltevés ellenőrzése : b α f cd = A s f yd = 60. mm ahol b = 400 mm α =.0 f cd = 0.7 A s = f yd = ξ c := ξ d c = < ξ c0 = a feltevés helyes, az acélbetétek folyási állapotban vannak = 60. mm > t = 0 mm a feltevés helytelen, a nyomott zóna a bordába nyúlik Megjegyzés: ha <t, akkor a T-keresztmetszet négyszög keresztmetszetként számolható, hisz az egyenletek felírásakor irreleváns, mi van nyomott zóna alatt

23 . Vasbetonszerkezetek I. II. gyakorlat A feltevés módosítása miatt a vetületi egyenlet újbóli felírása αf cd x xc Fc 8. ábra: T-keresztmetszet ε, σ ábrája és a belső erők As ε σ Fs belső erők ( ) t b b w α + b w f cd = A s f yd = 86.8 mm > t = 0 mm ahol b = 400 mm b w = 40 mm t = 0 mm f cd = 0.7 A s = f yd = A feltevés ellenőrzése : ξ c := ξ d c = < ξ c0 = A felt. helyes volt, az acélbetétek folyási állapotban vannak A nyomatéki egyenlet a húzott vasak súlyvonalára: t M Rd := t ( b b w ) d + b w d α f cd M Rd = 57. k m ahol b = 400 mm b w = 40 mm t = 0 mm f cd = 0.7 d = 460 mm = 86.8 mm M Rd = 57. k m > M Ed = 50 k m a keresztmetszet hajlításra megfelel 3

24 III. gyakorlat III. GYAKORLAT Hajlított vasbeton keresztmetszet tervezése Készítették: Dr. Kiss Rita és Klinka Katalin A számításokban feltételezzük, hogy: - a rúd tengelyére merőleges keresztmetszetek a deformációk után síkok és rúd tengelyére merőlegesek maradnak és - a beton és az acél csúszásmentesen együttdolgozik A tervezés lehet: - Kötött tervezés: amikor a keresztmetszet beton kontúrja adott (azaz van egy adott méret, amekkora helyre egy gerendát meg kell tervezni), és vasalást kell megtervezni - Szabad tervezés:amikor a keresztmetszet, szélessége vagy magassága adott és a másikat kell számolni, vagy semmilyen kötöttség sincs a beton keresztmetszettel szemben (azaz a szélesség és magasság is ismeretlen és ekkor, úgy tehető a feladat matematikailag határozottá, ha ezek arányát megadjuk) és a vasalás is megtervezendő Tervezési irányelvei: - A vasbeton keresztmetszetet úgy célszerű megtervezni, hogy az acélbetétek folyási állapotban legyenek (tehát normálisan vasalt legyen) - A vasbeton keresztetszetben csak akkor alkalmazzunk nyomott vasalást, ha másképp nem kerülhető el, hogy a húzot acélbetét rugalmas állapotban legyen A KÖTÖTT TERVEZÉS (VASALÁS TERVEZÉSE) 3..példa: Tervezze meg az alábbi keresztmetszet hajlítási vasalását a megadott nyomatékra: MEd M Ed := 80 k m A nyomaték alul okoz húzást. Anyagok : Beton: C0/5 Betonacél: S500B Anyagjellemzők: beton: C0/5 -beton anyag modellje: merev-képékeny anyagmodell -f ck -αf cd c σck(ε) ασcd(ε) f ck f ck := 0 f cd := f γ cd = 3.3 c acél: S500B εs' ' σyd(ε) ' σyk(ε) εc=-0,7 εc[%0] εcu=-3,5 f yk f yd s σs f yd Es -f' yd -f' yk ' A beton σ(ε) diagramja σyk(ε) σyd(ε) εsu=,5 εs[%] Az acél σ(ε) diagramja f yk f yk := 500 f yd := f γ yd = s 560 ξ c0 := ξ f yd c0 = ξ c0 := 700 f ξ c0 =. yd 4

25 ... Vasbetonszerkezetek I. III. gyakorlat A feladat megoldása: Geometria jellemzők definiálása : h := 360mm b := 50mm kengyel: ϕ k := 0mm betonfedés: bf := 0mm a vasak kedvezőtlen elmozdulása: δ := 0mm. lépés: az acélbetétek feltételezett átmérője : ϕ := 0mm és feltételezzük egy sorban elfér a vasalás feltélezett hasznos magasság: d := h bf ϕ ϕ k δ d = 30 mm. lépés: az M 0 meghatározása M 0 az a maximális nyomaték, amit keresztmetszet nyomott vasalás nélkül el tud viselni úgy, hogy a húzott acélbetétek folynak: - ha M 0 >M Ed, akkor nem kell nyomott vasalás (A s=0) - ha M 0 <M Ed, akkor nyomott vasalást is alkalmazunk (A s 0, ekkor a számítás feltevése: =0 ) 0 := ξ c0 d 0 = 53 mm húzott acélok megfolynak 0 M 0 := bx c0 α f cd d M 0 = 9. k m > M Ed = 80 k m nem kell nyomott vasalás εcu { αf cd x xc Fc=xc*b*α*f cd h d zc As b ε εs σs σ Fs=As*f yd Belső erők 3. lépés: a nyomatéki egyenletből meghatározzuk az -t M Ed = b α f cd d ahol M Ed = 80 k m b = 50 mm α =.0 f cd = 3.3 d = 30 mm = 4. lépés: Az acélbetétek állapotának ellenőrzése (elvileg ez felesleges, mert M 0 >M Ed -ből ez nyilvánvaló): ξ c := ξ d c = 0.93 < ξ c0 = az acélok megfolytak 5. lépés: a húzott acélok szükséges keresztmetszeti területe a vetületi egyenletből: 90.7 mm b α f cd A s f yd = 0 A s = 695. ahol = 90.7 mm b = 50 mm α =.0 f cd = 3.3 f yd =

26 III. gyakorlat 6. lépés: a szerkeztési szabályok a hosszvasalás mennyiségére [Farkas-Huszár-Kovács-Szalai: 08 old.]: f ctm - minimális vasmennyiség: A s.min := max0.6 b d,.3 b d f yk A s.min = 00.8 f ctm ahol 0.6 b d = 88.7 f yk.3 b d = maximális vasmennyiség: A s.max := 4% b d A s.max = 300 A s.min = 00.8 < A s = 695. < A s.max = 300 megfelelő 7. lépés: az alkalmazott vasalás A leggyakrabban használt vasátmérőkkel a következő lehetősegeink vannak: 4 db φ6mm acélbetétek esetén A s =804, 3db φ0mm acélbetétek esetén A s =94,5 db φ5mm acélbetétek esetén A s =98,7 legyen n := 4 db ϕ := 6mm A s.alk n ϕ π := A 4 s.alk = 804. > A s = lépés: a vasak elhelyezése: vasak közötti minimális távolság: ζ := max( ϕ, 0mm) ζ = 0 mm ( ) n ϕ ( ) b req := bf + ϕ k + + ( n ) ζ + bf + ϕ k b req = 84 mm < b = 50 mm elfér egy sorban 9. lépés: A vasbeton keresztmetszet ellenőrzése: a feltételezett helyett az alkalmazott méretekkel! ϕ a hasznos magasság: d alk := h bf ϕ k δ d alk = 3 mm Tegyük fel, hogy a húzott acélok folynak A vetületi egyenlet: b α f cd = A s.alk f yd = 04.9 mm ahol b = 50 mm α =.0 f cd = 3.3 A s.alk = 804. f yd = Feltevés ellenőrzése : ξ c := d A nyomatéki egyenlet: ξ c = 0.93 < ξ c0 = A felt. jó volt, az acél folyási állapotban van M Rd := bx c α f cd d alk M Rd = 90.8 k m ahol b = 50 mm = 04.9 mm α =.0 f cd = 3.3 d alk = mm M Rd = 90.8 k m > M Ed = 80 k m a keresztmetszet hajlításra megfelel 6

27 III. gyakorlat 3..példa: Tervezze meg az alábbi keresztmetszet hajlítási vasalását a megadott nyomatékra: M Ed := 50 k m 360 MEd Anyagok : Beton: C0/5 Betonacél: S500B 50 A feladat megoldása: Anyagjellemzők: lásd 3.. példa Geometria jellemzők definiálása : lásd 3.. példa. lépés: az acélbetétek feltételezett átmérője: ϕ := 0mm és feltételezzük, hogy egy sorban elfér a ϕ := 0mm vasalás hasznos magasságok: d := h bf ϕ ϕ k δ d = 30 mm ϕ d := bf + ϕ k + + δ d = 50 mm. lépés: az M 0 meghatározása (előzővel azonos) 0 := ξ c0 d 0 = 53 mm 0 M 0 := bx c0 α f cd d A's ε's ε εcu {.x M 0 = 9. k m < M Ed = 50 k m kell nyomott vasalás σ's σ αf cd.xc Belső erők F's=A's*f yd Fc=xc*b*α*f cd h d As b εs σs Fs=As*f yd Ha nyomott acélbetét kell a keresztmetszetbe, akkor: := 0 = 53 mm 3. lépés: A nyomott acélbetétek állapotának ellenőrzése: ξ c := d ξ c = 3.06 > ξ c0 =. a nyomott acélok megfolynak 4. lépés: a nyomatéki egyenletből meghatározzuk az A s-t M Ed = M 0 + A s f yd ( d d ) A s = 73.6 ahol M Ed = 50 k m M 0 = k m f yd = d = 30 mm d = 50 mm 5. lépés: a húzott acélok szükséges keresztmetszeti területe a vetületi egyenletből: b α f cd + A s f yd A s f yd = 0 A s = ahol = 53 mm b = 50 mm α =.0 f cd = 3.3 A s = 73.6 f yd = lépés: a szerkeztési szabályok a hosszvaslás mennyiségére (lásd 3.. példa) A s.min = 00.8 < A s + A s = 70 < A s.max = 300 megfelelő 7

28 III. gyakorlat 7. lépés: az alkalmazott vasalás A leggyakrabban használt vasátmérőkkel a következő lehetősegeink vannak: 7 db φ6mm acélbetétek esetén A s = db φ0mm acélbetétek esetén A s = db φ5mm acélbetétek esetén A s = 47.6 n := 5 darab ϕ := 0mm A s.alk n ϕ π := A 4 s.alk = > A s = Megjegyzés: az alkalmazott acélbetéteknél hasonló vasalakok esetén egy átmérő maradjon ki, hogy a vasszerelésnél a kivitelezők nehogy összekeverjék őket n := darab ϕ := 6mm ϕ π A s.alk := n 4 A s.alk = 40. > A s = lépés: a vasak elhelyezése: vasak közötti minimális távolság: ζ := max( ϕ, 0mm) ζ = 0 mm ( ) n ϕ ( ) b rec := bf + ϕ k + + ( n ) ζ + bf + ϕ k b rec = 40 mm < b = 50 mm elfér egy sorban a húzott vasalás nyomott vasakat a keresztmetszet két sarkában helyezzük el 9. lépés: A vasbeton keresztmetszet ellenőrzés: a feltételezett helyett az alkalmazott méretekkel! ϕ hasznos magasság: d alk := h bf ϕ k δ d alk = 30 mm Tegyük fel, hogy a húzott acélok folynak A vetületi egyenlet: ϕ d alk := bf + ϕ k + + δ d alk = 48 mm b α f cd + A s.alk f yd A s.alk f yd = 0 = 5.4 mm ahol b = 50 mm f cd = 3.3 A s.alk = A s.alk = 40. f yd = A feltevés ellenőrzése : ξ c := ξ d c = < ξ c0 = A felt. jó volt, a húzott acél folyási állapotban van alk ξ c := ξ c = 3.76 > ξ c0 =. A felt. jó volt, a nyomott acél folyási állapotban van d alk A nyomatéki egyenlet: M Rd := bx c α f cd d alk + A s.alk f yd ( d alk d alk) M Rd = 64.6 k m ahol b = 50 mm d alk = 30 mm f cd = 3.3 A s.alk = 40. f yd = x c = 5.4 mm d alk = 48 mm M Rd = 64.6 k m > M Ed = 50 k m a keresztmetszet hajlításra megfele 8

29 ... Vasbetonszerkezetek I. III. gyakorlat A SZABAD TERVEZÉS (KERESZTMETSZET ÉS VASALÁS TERVEZÉSE) 3.3.példa: Tervezze meg a vasbeton keresztmetszetet a megadott nyomatékra: M Ed := 000 k m A nyomaték alul okoz húzást. h MEd Anyagok : Beton: C5/30 Betonacél: S500B As b Anyagjellemzők: beton: C5/30 f ck f ck := 5 f cd := f γ cd = 6.7 c acél: S500B f yk f yk := 500 f yd := f γ yd = s 560 ξ c0 := ξ f yd c0 = A feladat kitűzése: Ismeretlenek: b, d, A s, ( A s), Egyenletek: vetületi egyenlet és nyomatéki egyenlet 560 ξ c0 := 700 f ξ c0 =. yd Mivel négy (ill. 5) ismeretlent egyenletből nem lehet meghatározni, további feltételeket kell állítanunk:. em alkalmazunk nyomott vasalást: A s=0. -t úgy érdemes felvenni, hogy a betonacél folyási állapotban legyen például legyen a feladat megoldása során: ξ c =0.4 < ξ c0 =0.493 (S500B esetén), de ne legyen ξ c < < ξ c0 3. Felvehetjük szabadon - a keresztmetszet szélességét és számolhatjuk a magasságát vagy - a keresztmetsze magasságát (d hasznos magasságát) és számolhatjuk szélességét, - a kettő arányát, például legyen ez az arány a feladat megoldása során: d η = =.5 b Ezekkel a feltevéssekkel a feladat egyértelműen megoldható! A feladat megoldása: εcu { αf cd x xc Fc=xc*b*α*f cd h d zc As b ε εs σs σ Fs=As*f yd Belső erők 9

30 III. gyakorlat. lépés: a nyomatéki egyenlet felírása M Ed = b α f cd d d 3 ξ c M Ed = η α f cd ξ c a feltevéseket behelyettesítve: ahol η =.5 α = f cd = 6.7 ξ c = 0.4 M Ed = 000 k m ebből d-t kifejezve: 3 η M Ed d := ξ c α f cd ξ c. lépés: a keresztmetszet szélességének meghatározása: d b :=.5 d = b = 655. mm mm 3. lépés: a húzott acélok keresztmetszeti területe a vetületi egyenletbõl: := ξ c d = 6. mm b α f cd A s f yd = 0 ahol b = mm α =.0 f cd = 6.7 f yd = A s = lépés: a szerkeztési szabályok a vasmennyiségre [., Farkas-Huszár-Kovács-Szalai: 08 old.]: f ctm - minimális vasmennyiség: A s.min := max0.6 b d,.3 b d f yk A s.min = 37 - maximális vasmennyiség: A s.max := 4% b d f ctm ahol 0.6 b d = 37.4 f yk.3 b d = 37 A s.min = 37 < A s = < A s.max = 447. megfelelő A s.max = lépés: az alkalmazott vasalás kengyel: ϕ k := mm betonfedés: bf := 0mm a vasak kedvezőtlen elmozdulása miatt: δ := 0mm A leggyakrabban használt vasátmérőkkel a következő lehetősegeink vannak: db φ6mm acélbetétek esetén A s = db φ0mm acélbetétek esetén A s = db φ5mm acélbetétek esetén A s = n := 4 darab ϕ := 0mm A s.alk n ϕ π := A 4 s.alk = > A s =

31 III. gyakorlat 6. lépés: a vasak elhelyezése: A vasak közötti minimális távolság: ζ := max( ϕ, 0mm) ζ = 0 mm felső sorban levő vasak száma: n f := 5 alsó sorban levő vasak száma: n a := n n f n a = 9 ( ) n a ϕ b req := bf + ϕ k ( ) ζ ( ) + + n a + bf + ϕ k b req = 404 mm < b = mm tehát így elférnek két sorban, ezért b alk := 440mm 7. lépés: a tartó magassága ϕ n f ϕ ϕ h rec := bf + δ + ϕ k ζ + + d h n f + n a rec = 7.5 mm h alk := 70mm 8. lépés: A vasbeton keresztmetszet ellenőrzés: a feltételezett helyett az alkalmazott méretekkel! ϕ n f hasznos magasság: d alk := h alk bf δ ϕ k n f + n a Tegyük fel, hogy a húzott acélok folynak A vetületi egyenlet: ϕ ϕ + ζ + d alk = b alk α f cd = A s.alk f yd := = 60.8 mm ahol b alk = 440 mm α =.0 f cd = 6.7 A s.alk = f yd = Feltevés ellenőrzése : ξ c := ξ d c = < ξ c0 = A felt. jó volt, az acél folyási állapotban van alk A nyomatéki egyenlet: M Rd := b alk α f cd d alk M Rd = k m ahol b alk = 440 mm = 60.8 mm α =.0 f cd = 6.7 d alk = mm mm Find( ) M Rd = k m > M Ed = 000 k m a keresztmetszet hajlításra megfelel 3

32 d Vasbetonszerkezetek I. IV. gyakorlat IV. GYAKORLAT Külpontosan nyomott vasbeton keresztmetszet (égyszög keresztmetszet teherbírási vonala) Készítették: Dr. Kiss Rita, Klinka Katalin és Völgyi István YOMOTT-HAJLÍTOTT KM. ELLEŐRZÉSE "POTOS" MÓDSZERREL 4.. példa: Határozza meg a keresztmetszet határkülpontosságát a geometriai középponttól, ha a normálerő tervezési értéke: Ed =600 k! Ed =600 k 300 Beton: C0/5 Betonacél: S400B Anyagjellemzők: beton: C0/5 3ϕ6 5ϕ0 f ck f ck := 0 f cd := f γ cd = 3.3 c f ctm :=. acél: S400B f yk f yk := 400 f yd := f γ yd = s 560 ξ c0 := ξ f yd c0 = ξ c0 := 700 f ξ c0 =.59 yd Geometria jellemzők definiálása : h := 500mm b := 300mm A keresztmetszet úgy van külpontos nyomással igénybevéve, hogy az egyik oldali acélbetétek nyomottak,míg a másik oldalon pedig húzottak lesznek. d' d - a z alkalmazott húzott vasalás: n := 5 darab ϕ := 0mm A s n ϕ π := A 4 s = Ed A's As b d := 450mm alkalmazott nyomott vasalás: n := 3 darab ϕ := 6mm Ed erd ϕ π A s := n 4 A s = 603. d := 50mm Számítás: Tegyük fel, hogy a húzott acélbetétek is és a nyomott acélbetétek is húzásra ill. nyomásra folynak A vetületi egyenlet: b α f cd + A s f yd A s f yd = Ed = 34. mm ahol b = 300 mm α =.0 f cd = 3.3 A s = 603. f yd = A s =

33 IV. gyakorlat A feltevés ellenőrzése : ξ c := d ξ c = 0.5 < ξ c0 = A felt. helyes volt, a húzott acélbetétek folyási állapotban vannak ξ c := d ξ c = > ξ c0 =.59 A felt. helyes volt, a nyomott acélbetétek folyási állapotban vannak A n yomatéki egyenlet a geometriai középpontra: h M Rd bx c α f cd A s f h yd d h := + + A s f yd d M Rd = 75.7 k m ahol b = 300 mm = 34. mm f cd = 3.3 A s = d = 450 mm f yd = h = 500 mm A s = 603. d = 50 mm M Rd A határkülpontosság: e Rd := e Rd = mm Ed (az erő támadáspontja keresztmetszeten kívül esik) 4.. példa: Határozza meg a km. határerejét, ha a mértékadó külpontosság a geometriai középponttól mérve: e Ed =700m (az ábra és az adatok u.a. mint 4..feladatnál!) Számítás: Tegyük fel, hogy a húzott acélbetétek is és a nyomott acélbetétek is húzásra ill. nyomásra folynak. lehetőség: a nyomatéki egyenletbe behelyettesítjük a vetületi egyenletből kifejezett határerőt ( egyenlet, ismeretlen) Rd := b α f cd + A s f yd A s f yd Rd e Ed = bx c α f cd h h h + A s f yd d + A s f yd d (az egyenlet megoldása másodfokú egyenletre vezet, melyből a fizikai tartalommal bíró gyökét használjuk fel a feladat megoldása során). lehetőség: a nyomatéki egyenletet a határerő helyére írjuk fel = 79. mm h 0 b α f cd e Ed + A s f h yd e Ed + d h = + A s f yd e Ed + d (az egyenlet megoldása másodfokú egyenletre vezet, melyből a fizikai tartalommal bíró gyökét használjuk fel a feladat megoldása során) Feltevés ellenőrzése: = 79. mm ξ c := d ξ c = < ξ c0 = a feltevés helyes, húzott acélbetétek megfolynak ξ c := d ξ c = > ξ c0 =.59 a feltevés helyes,nyomott acélbetétek megfolynak Így vetületi egyenletből az e Ed -hez tartozó határerő értékét megkapjuk: Rd := b α f cd + A s f yd A s f yd Rd = k ahol b = 300 mm α =.0 f cd = 3.3 A s = 603. A s = f yd =

34 . Vasbetonszerkezetek I. IV. gyakorlat YOMOTT-HAJLÍTOTT KM. ELLEŐRZÉSE TEHERBÍRÁSI VOALLAL ÉS A KÖZELÍTŐ TEHERBÍRÁSI VOALLAL "KÖZELÍTŐ MÓDSZERREL" 4.3. Példa: Határozza meg a négyszögkeresztmetszet teherbírási vonalának a 0 jellemző pontját úgy, hogy a nyomatékokat a geometriai középpontra írja fel! 500 3ϕ ϕ0 Anyagjellemzők definálása: (lásd 4.3. példa) Geometria jellemzők definiálása : (lásd 4.3. példa) - a z alkalmazott húzott vasalás: n := 5 darab ϕ := 0mm d := 450mm a := 50mm Beton: C0/5 Betonacél: S400B ϕ π A s := n A 4 s = ϕ π - az alkalmazott nyomott vasalás: n := 3 darab ϕ := 6mm A s := n A 4 s = 603. d := 50mm a := 50mm Megoldás: Megjegyzés: a feladatban a nyomatéki egyenleteket a geometriai középpontra írjuk fel A teherbírási vonal és a közelítő teherbírási vonal. pontja: a maximális nyomóerőhöz tartozó pont (központos nyomás) ε σ Belső erők %0 αf cd h As d εs σs xc Fs=As*σs Fc=xc*b*α*f cd Központos nyomás esetén a beton összenyomódása nem lehet több -nél. As b εs σs Fs=As*σs A -es összenyomódáshoz tartozó acélfeszültségek: σ s := E s σ s = 400 > f yd = az acélbetétek megfolynak, így σ s =σ s =f yd Megjegyzés: S500B esetén rugalmas lenne! Rd. := bh α f cd + A s f yd + A s f yd Rd. = 756. k M Rd. A s f h yd d h := A s f yd d M Rd. = 67.3 k m A teherbírási vonal. pontja: az A s jelű húzott acélbetét nyúlása zérus (nyomott acélbetétek az A s ) h As As d=x ε εs σ εsu=3.5%0 αf cd σs xc=0.8x. Belső erők Fs=As*σs Fc=xc*b*α*f cd x := d x = 450 mm := 0.8 x = 360 mm εs=0 b A nyomott acélbetétek állapotának ellenőrzése: ξ c := d ξ c = 7. > ξ c0 =.59 megfolynak, így σ s =f yd Rd. := bx c α f cd + A s f yd Rd. = k M Rd. A s f h yd d h := + bx c α f cd M Rd. = 4.8 k m 34

35 . Vasbetonszerkezetek I. IV. gyakorlat A teherbírási vonal 3. pontja és a közelítő teherbírási vonal. pontja : A maximális nyomatékhoz tartozó pont (az A s jelű húzott acélbetétek és nyomottak az A s ) A maximális nyomaték helye közel esik, ahhoz a keresztmetszeti erőjátékhoz, ahol ξ c =ξ c0, (azaz a húzott acél a képlékeny és a rugalmas állapot határán van) As ε εs σ εsu=3.5%0 αf cd σs xc=xc0 Belső erők Fs=As*σs Fc=xc*b*α*f cd As b εs= f yd Es A nyomott acélbetétek állapotának ellenőrzése: σs Fs=As*σs ahol σ s =f yd 0 := ξ c0 d 0 = 40.5 mm := 0 = 40.5 mm ξ c := d ξ c = 4.8 > ξ c0 =.59 nyomott acélbetétek megfolynak, így σ s =f yd Rd.3 := bx c0 α f cd + A s f yd A s f yd Rd.3 = 65.4 k M Rd.3 := bx c0 α f cd h 0 h h + A s f yd d + A s f yd d A teherbírási vonal 4.pontja és a közelítő teherbírási vonal 3. pontja : : Tiszta hajlítás (=0) (az A s jelű húzott acélbetétek és nyomottak az A s ) As ε εs σ εsu=3.5%0 αf cd σs. xc Belső erők Fs=As*σs Fc=xc*b*α*f cd M Rd.3 = 76. k m As b εs σs Fs=As*σs Tegyük fel, hogy a húzott acélbetétek is és a nyomott acélbetétek is húzásra ill. nyomásra folynak A vetületi egyensúlyi egyenlet: 0 = b α f cd + A s f yd A s f yd = 84. mm Az acélbetétek állapotának ellenőrzése: ξ c := ξ d c = 0.87 < ξ c0 = a húzott acélbetétek megfolynak, így σ s =f yd ξ c := d ξ c =.683 > ξ c0 =.59 a nyomott acélbetétek megfolynak, így σ s =f yd (ellenőrzés) Rd.4 := bx c α f cd + A s f yd A s f yd Rd.4 = 0k h M Rd.4 bx c α f cd A s f h yd d h := + + A s f yd d M Rd.4 =. k m Egyszerűsített (közelíto) teherbírási vonal (a keresztmetszet geometriai középpontjára): [k] M [km] 35

36 IV. gyakorlat A teherbírási vonal 5. pontja:.a húzott acélbetét eléri a határnyúlása értékét (az A s jelű húzott acélbetétek és nyomottak az A s ) As ε εs σ εsu=3.5%0 αf cd σs. xc Belső erők Fc=xc*b*α*f cd Fs=As*σs As b εsu=5%0 σs Fs=As*σs ahol σ s =f yd Az ε-ábrából aránypár segítségével megkapjuk: d =.5 5 Acélbetétek állapotának ellenőrzése: = 44. mm ξ c := ξ d c = < ξ c0 = a húzott acélbetétek megfolynak, így σ s =f yd ξ c := d ξ c = < ξ c0 =.59 a nyomott acélbetétek rugalmasak, így σ s =σ' s 560 σ s := 700 a nyomott acélban keletkező feszültség: ξ c σ s = (< f yd = ) Rd.5 := bx c α f cd + A s σ s A s f yd Rd.5 = 39.3 k (húzás) h M Rd.5 bx c α f cd A s h σ s d h := + + A s f yd d A teherbírási vonal 6. pontja: Mindkét oldali acélbetétek húzottak és folynak As ε 5%0 εs=εsu σ σs Belső erők Fs=As*σs M Rd.5 = 57.6 k m Megjegyzés: a teljes beton km húzott, nem vesz fel erőt ahol σ s =f yd h As b εsu=5%0 σs Fs=As*σs ahol σ s =f yd ( ) f yd Rd.6 := A s + A s Rd.6 = 756. k M Rd.6 A s f h yd d h := + A s f yd d M Rd.6 = 67.3 k m 36

37 . Vasbetonszerkezetek I. IV. gyakorlat A teherbírási vonal 7. pontja: A s jelű acélbetétek nyúlása zérus, az alsó szélső szál összemorzsolódik (az A s jelű nyomott acélbetétek) h As As b x=h-d ε εs=0 εs σ εsu=3.5%0 αf cd σs xc=0.8x. Belső erők Fc=xc*b*α*f cd Fs=As*σs A nyomott (A s jelű) acélbetétek állapotának ellenőrzése: ξ c := a ξ c = 7. > ξ c0 =.59 x := h d = 44. mm := 0.8 x = 360 mm a húzott acélbetétek megfolynak, így σ s =f yd Rd.7 := bx c α f cd + A s f yd Rd.7 = k M Rd.7 A s f h yd a h := bx c α f cd M Rd.7 = 0. A teherbírási vonal 8. pontja: A maximális negatív nyomatékhoz tartozó pont (az A s jelű nyomott acélbetétek és húzottak lesznek az A s ) A maximális nyomaték helye közel esik, ahhoz a keresztmetszeti erőjátékhoz, ahol ξ c =ξ c0, azaz A s jelű acélbetét a rugalmas és a képlékeny állapot határán van, (ugyanaz az eljárás, mint a teherbírási vonal 3. pontjánál) ε σ Belső erők Es εs= σs Fs=As*σs ahol σ s =f yd 0 := ξ c0 ( h d ) 0 = 40.5 mm As As f yd xc=xc0 Fc=xc*b*α*f cd εs σs Fs=As*σs b εsu=3.5%0 αf cd A nyomott (A s jelű) acélbetétek állapotának ellenőrzése: ξ c := a ξ c = 4.8 > ξ c0 =.59 a nyomott acélbetétek megfolynak, így σ s =f yd Rd.8 := bx c0 α f cd A s f yd + A s f yd Rd.8 = 98.6 k k m := 0 = 40.5 mm h 0 M Rd.8 b 0 α f cd A s f h yd ( h d ) h := A s f yd d M Rd.8 = 76. k m 37

38 IV. gyakorlat A teherbírási vonal 9.pontja: Tiszta hajlítás (=0) (az A s jelű nyomott acélbetétek és húzottak lesznek az A s ) Ebben az esetben a keresztmetszet úgy megy tönkre, hogy - nyomott acélbetétek rugalmasak maradnak, - húzott acélbetétek pedig elszakadnak és - betonban nem jön létre a törési összenyomódás As ε εs σ σs Belső erők Fs=As*σs h As b εs εsu=3.5%0 αf cd σs. xc Fc=xc*b*α*f cd Fs=As*σs Tegyük fel, hogy a nyomott acélbetétek rugalmasak és a húzott acélbetétek megfolynak! A vetületi egyensúlyi egyenlet: = b α f cd + A s 700 A x s f yd c d Az acélbetétek állapotának ellenőrzése: (az egyenlet megoldása másodfokú egyenletre vezet, melyből a fizikai tartalommal bíró gyökét használjuk fel a feladat megoldása során) = 4.6 mm ξ c := ξ h a c = < ξ c0 = a húzott acélbetétek megfolynak, így σ s =f yd ξ c := a ξ c = < ξ c0 =.59 a nyomott acélbetétek rugalmasak, így σ s =σ' s 560 σ s := 700 nyomott acélban keletkező feszültség: ξ c σ s = 7.54 (< f yd = ) (ellenőrzés) Rd.9 := bx c α f cd + A s σ s A s f yd Rd.9 = 0 k h M Rd.9 b α f cd A s f h yd d h := A s σ s d M Rd.9 = 88.8 k m Az adott keresztmetszet teherbírási vonala (a keresztmetszet geometriai középpontjára): [k] Megjegyzés: a keresztmetszet teherbírási vonala bizonyítottan konvex, így a biztonság javára közelítünk, ha a meghatározott pontokat egyenesekkel kötjük össze, és mivel elég sok pontot határoztunk meg, így nem durva a közelítés M [km] 38

39 .. Vasbetonszerkezetek I. IV. gyakorlat 4.4. Példa: Határozza meg a négyszögkeresztmetszet közelítő teherbírási vonalának pontjait úgy, hogy a nyomatékokat a nyomási teherbírási középpontra írja fel! ϕ6 5ϕ0 Anyagjellemzők definálása: (lásd 4.3. példa) Geometria jellemzők definiálása : (lásd 4.3. példa) Megoldás: M=c As M T h c d=x Beton: C0/5 Betonacél: S400B As b Ekkor a normálerő külpontosságát a nyomási teherbírási középpontból mérjük. Ha normálerő a teherbírási középpontban hat a keresztmetszetre, akkor a keresztmetszet minden pontjában a beton törési összenyomódásával megegyező értékű lesz a megnyúlás. [Kollár, 04. old] A teherbírási vonal. pontja: a maximális nyomóerőhöz tartozó pont (központos nyomás) As ε εs σs σ %0 αf cd Belső erők Fs=As*σs h d xc Fc=xc*b*α*f cd As b εs σs Fs=As*σs A -es összenyomódáshoz tartozó acélfeszültségek: σ s := E s σ s = 400 < f yd = az acélbetétek megfolynak, így σ s =σ s =f yd Rd. := bh α f cd + A s f yd + A s f yd Rd. = 756. k A nyomatéki teherbírás a geometriai középpontban: M Rd. A s f h yd d h := A s f yd d M Rd. = 67.3 k m Teherbírási középpontnak a geometriai középponttól mért távolsága: c := M Rd. Rd. c = 4.4 mm A nyomatéki teherbírás a teherbírási középpontban: M Rd. := M Rd. Rd. c M Rd. = 0km A teherbírási vonal. pontja : A maximális nyomatékhoz tartozó pont (az A s jelű húzott acélbetétek és nyomottak az A s ) A maximális nyomaték helye közel esik, ahhoz a keresztmetszeti erőjátékhoz, ahol ξ c =ξ c0, (azaz a húzott acél a képlékeny és a rugalmas állapot határán van) As ε εs σ εsu=3.5%0 αf cd σs xc=xc0 Belső erők Fs=As*σs Fc=xc*b*α*f cd As b εs= f yd Es σs Fs=As*σs ahol σ s =f yd 0 := ξ c0 d 0 = 40.5 mm := 0 = 40.5 mm 39

40 IV. gyakorlat A nyomott acélbetétek állapotának ellenőrzése: ξ c := d ξ c = 4.8 > ξ c0 =.59 nyomott acélbetétek megfolynak, így σ s =f yd Rd. := bx c0 α f cd + A s f yd A s f yd Rd. = 65.4 k A nyomatéki teherbírás a geometriai középpontra: h 0 M Rd. bx c0 α f cd A s f h yd d h := + + A s f yd d M Rd. = 76. k m A nyomatéki teherbírás a teherbírási középpontban: M Rd. := M Rd. Rd. c M Rd. = 9.3 k m A teherbírási vonal 3. pontja: Tiszta hajlítás (=0) (az A s jelű húzott acélbetétek és nyomottak az A s ) As ε εs σ εsu=3.5%0 αf cd σs. xc Belső erők Fs=As*σs Fc=xc*b*α*f cd As εs σs Fs=As*σs b Tegyük fel, hogy a húzott acélbetétek is és a nyomott acélbetétek is húzásra ill. nyomásra folynak A vetületi egyensúlyi egyenlet: 0 = b α f cd + A s f yd A s f yd = 84. mm Az acélbetétek állapotának ellenőrzése: ξ c := ξ d c = 0.87 < ξ c0 = a húzott acélbetétek megfolynak, így σ s =f yd ξ c := d ξ c =.683 > ξ c0 =.59 a nyomott acélbetétek megfolynak, így σ s =f yd ellenőrzés: Rd.3 := bx c α f cd + A s f yd A s f yd Rd.3 = 0k A nyomatéki teherbírás geometriai középpontra: h M Rd.3 bx c α f cd A s f h yd d h := + + A s f yd d M Rd.3 =. k m A nyomatéki teherbírás a teherbírási középpontban: M Rd.3 := M Rd.3 Rd.3 c M Rd.3 =. k m Egyszerűsített teherbírási vonal a keresztmetszet teherbírási középpontjára: [k] geometriai kp.-ra teherbírási kp.-ra M [km] 40

41 90 60 Vasbetonszerkezetek I. IV. gyakorlat 4.5. Példa:. Ellenőrizze az alábbi keresztmetszetet a megadott ferde külpontos nyomóerőre a közelítő teherbírási vonallal! Ed := 750k y x eed.y e Ed.x := 90mm e Ed.y := 60mm Ed.x Ha az egyszerűsített teherbírási vonal az x-z síkban: x [k] Ed Rd.x. := 950k M Rd.x. := 0k m Rd.x. := 760.3k M Rd.x. := 7.k m Rd.x.3 := 0k M Rd.x.3 := 36.36k m 3 MR.x Mx [km] 00 Ha az egyszerűsített teherbírási vonal az y-z síkban: y [k] Ed Rd.y. := 950k M Rd.y. := 0k m Rd.y. := 78.7k M Rd.y. := 77.4k m Rd.y.3 := 0k M Rd.y.3 := 7.8k m MR.y My [km] 00 Megoldás: M Ed.x := Ed e Ed.x M Ed.x = 67.5 k m M Ed.y := Ed e Ed.y M Ed.y = 45 k m A határnyomaték az x-z síkban: M Rd.x. M R.x M Rd.x. M Rd.x.3 = Rd.x. Ed Rd.x. Rd.x.3 M R.x = 6. k m > M Ed.x = 67.5 k m A határnyomaték az y-z síkban: M Rd.y. M R.y M Rd.y. M Rd.y. = Ed Rd.y. Rd.y. Rd.y. M R.y = 76. k m > M Ed.y = 45 k m megfelel, hiszen az igénybevételi pár a teherbírási vonalon belül esik megfelel, hiszen az igénybevételi pár a teherbírási vonalon belül esik 4

42 IV. gyakorlat Megjegyzés: Ha a vb. keresztmetszet ferde külpontos nyomóerővel van terhelve, akkor M Ed.x. és M Ed.y kétirányú hajlítónyomatékkal van igénybevéve. Azt, hogy ( Ed, M Ed.x ). és ( Ed, M Ed.y ) az igénybevételpárokat képes-e viselni a közelítő térbeli teherbírási felülettel dönthetjük el. Ha az igénybevételpárok a teherbírási felületen belül esnek, akkor a vb. keresztmetszet ferde hajlításra megfelel. M y M x Ferde külpontos nyomásnál a két nyomatéki igénybevétel egyszerre hat, így a keresztmetszetnek ki kell elégítenie a következő feltételt is [Farkas-Huszár-Kovács-Szalai, 6. oldal]: Tehát a teherbírási felület az Ed =750k síkkal való metszeténél kell vizsgálni, hogy a nyomaték pár a teherbírási vonalon belül esik-e: M x.ed ( ) M x.rd ( ) a a M y.ed ( ) +.0 M y.rd ( ) négyszög keresztmetszet esetén: ahol M x.ed ( ) = M Ed..x M x.rd ( ) = M R.x M y.ed ( ) = M Ed.y M y.rd ( ) = M R.y - a teljes betonkeresztmetszet: A c := bh A c = a hosszvasalás mennyisége: A s := A s + A s A s = 74 -az elméletileg központos normálerő-teherbírás tervezési értéke: Rd := A c f cd + A s f yd Rd = 756. k Ed = 750 k Ed = 0.7 Rd - az a meghatározásához a táblázat szerint interpolálni kell: Mx 45 76, M Ed.x M R.x My a=,0 a=,5 Ed / Rd 0, 0,7,0 a=,0 a,0,5,0 a így: a =.43 Ed 0.7 Rd =.5 a a M Ed.y + =.087 > tehát a keresztmetszet a ferde hajlításra nem felel meg! M R.y 67,56, My [km] Mx [km] 4

43 V. gyakorlat anyaga V. GYAKORLAT Vasbeton gerendák nyírásvizsgálata Készítették: Friedman oémi, Dr. Huszár Zsolt, Völgyi István A nyírási teherbírás megfelelő, ha a következő követelmények mindegyike egyidejűleg teljesül: a keresztmeszet nyírási teherbírására vonatkozóan: min(v Ed, V Ed,red ) V Rd,s a beton (nyírásból származó) ferde nyomási teherbírására vonatkozóan: V Ed V Rd,max A fenti összefüggésekben: V Ed a külső terhekből és terhelő hatásokból a statikai vázon meghatározott nyíróerő tervezési értéke V Ed,red a külső terhekből és terhelő hatásokból meghatározott nyíróerő tervezési értéke, mely tartalmazza: az axiális igénybevételek tangenciális összetevőinek nyíróerőt módosító hatását, a tartószerkezet ellentétes oldalán működő terhelés és megtámasztás közötti ívhatást. V Rd,s a méretezett nyírási vasalással ellátott keresztmetszet nyírási teherbírása a beton ferde nyomási teherbírása alapján számított nyírási teherbírás. V Rd,max A keresztmetszetben csak minimális (nem méretezett) nyírási vasalást kell elhelyezni ha: ahol: min(v Ed, V Ed,red ) V Rd,c V Rd,c - a méretezett nyírási vasalás nélküli keresztmetszet nyírási teherbírása. A megtámasztás környezetében kialakuló közvetlen teherátadás (redukció) p F d 0,5d d d V Ed,max V Ed,red F V Ed. ábra: Az a v < d szakaszon belül csak megoszló teher működik 43

44 V. gyakorlat anyaga Amennyiben a teher a szerkezetnek az alátámasztással ellentétes oldalán működik, továbbá a támasz szélétől a v d távolságon belül csak megoszló teher hat, akkor megengedett, hogy a támasz tengelyétől d távolságon belül a V Ed,red redukált nyíróerő diagrammját az. ábra szerint vegyük fel. Ez az eljárás csak akkor alkalmazható, ha a vizsgált keresztmetszetben lévő hosszvasalás a támasz mögött megfelelően le van horgonyozva. Ha a támasz közelében koncentrált erők is hatnak, akkor a redukció részleteit az MSZ E 99-- taglalja. Méretezett nyírási vasalást nem tartalmazó keresztmetszetek nyírási teherbírása A méretezett nyírási vasalást nem tartalmazó keresztmetszet nyírási teherbírását (V Rd.c ) a nyomott zóna nyírási teherbírása biztosítja. A keresztmeszet nyírási teherbírása ha hajlítási repedések lépnek fel a következőképpen számítható: ahol:, 8 γ c 0 / 3 ρ ck + σ cp l ( vmin + 05, σ cp ) bwd V Rd,c = k ( 00 f ) 05, b d f ck [/ ]-ben értendő w 00 k = +,0 d melyben d mm-ben értendő Asl ρ? = bwd 0,0 A sl - a vizsgált keresztmetszeten (lehorgonyzási hossz + d) távolsággal túlvezetett húzott oldali hosszvasalás keresztmetszeti területe, melybe a tapadásos feszítőbetét is beszámítható, b w - a keresztmetszet legkisebb szélessége a húzott zónában, σ cp - σ cp = Ed /A c 0,f cd, σ cp értékét [/ ]-ben kell számítani (nyomás pozitív), Ed - a vizsgált keresztmetszetben a külső terhekből és a feszítésből származó normálerő tervezési értéke (nyomás esetén pozitív). A terhelő mozgásokból származó normálerő figyelmen kívül hagyható, A c - a betonkeresztmetszet területe, v min - értéke a következő: v min = 0,035 k 3/ / f ck Méretezett nyírási vasalást tartalmazó keresztmetszetek nyírási teherbírása A méretezett nyírási vasalást tartalmazó keresztmetszetek nyírási teherbírásának számítását a rácsostartó modellen alapuló, változó dőlésű rácsrúd módszere alapján kell végezni az alábbi ábrán látható modell alapján. a b V(cotθ cotα) d α d s θ c F cd V ½ z ½ z F td z = 0,9d a nyomott öv b ferde nyomott betonrúd c húzott öv d nyírási vasalás. ábra: A változó dőlésű rácsrúd-módszer modellje A ferde nyomott betonrudaknak a tartó hossztengelyével bezárt θ szögét a következő korlátok betartásával úgy célszerű felvenni, hogy a vasalás kialakítása optimális legyen. V M 44

45 V. gyakorlat anyaga A készülő AD a következő utasítást adja *: Alacsonyabb minőség-ellenőrzési szint esetén (monolit, feszítetlen szerkezetek),0 cotθ,3 korlátok betartása szükséges. Általában, pontosabb számítás hiányában cotθ=,3 alkalmazható. Ha húzás vagy számottevő csavarás működik, cotθ=,0! Magasabb minőség-ellenőrzés esetén (pl előregyártott vagy feszített tartók): V c σ 3 = β ct η 0, f ck +, f,0 cot b σ, +,4 f Vc V cd θ,0 z Ed, red cd w, ahol β ct =,4 ; η = normálbeton esetén cd A beton ferde nyomási teherbírása a következő összefüggéssel számítható: cotθ + cotα V Rd,max = α cw b w z ν f cd + cot θ ahol: α cw értéke:,0 feszítés nélküli szerkezetek esetén σ cp + ha 0 < σ cp 0,5f cd f cd,5 ha 0,5f cd < σ cp 0,5f cd σ cp, 5 ha 0,5f cd < σ cp < f cd f cd σ cp - átlagos nyomófeszültség az ideális keresztmetszeten meghatározva. A támasz szélétől 0,5dcotθ távolságon belül értékét zérusnak lehet tekinteni. b w - a húzott és nyomott öv közötti legkisebb keresztmetszeti szélesség, z - a belső kar, normálerő (feszítés) nélküli elemek esetén általános esetben z = 0,9d érték alkalmazható. f ν - hatékonysági tényező, általában: ν = 0,6 ck 50 α - a nyírási vasalás síkjának a tartó hossztengelyével bezárt szöge (kengyel esetén α = 90, felhajlítás esetén α = 45. )**. A méretezett nyírási vasalást tartalmazó keresztmetszet nyírási teherbírása általános esetben a következő összefüggéssel határozható meg: V Rd = V Rd,s = cd A sw z fywd (cotθ + cotα) sinα s ahol: A sw -a nyírási vasalás keresztmetszeti területe f ywd - a nyírási vasalás szilárdságának tervezési értéke. s - kengyeltávolság a tartó hossztengelye mentén mérve. Fontos: Laposabb nyomott beton rácsrúd felvételével a számított nyírási vas mennyisége csökkenthető,de a ferde nyomott beton rácsrúd vízszintes komponense ezzel párhuzamosan gyorsan nő. E többlet húzóerő felvételéről megfelelő húzott hosszvasalás elhelyezésével és lehorgonyzásával gondoskodni kell. Ez főleg a tartóvégen jelenthet számottevő többletvasalást. *Feszítés illetve normálerő nélküli esetekben az V. és VI. gyakorlat példáiban, a felkészülést segítő példákban, valamint a tervezési segédletben az egyszerűség kedvéért cotθ =,3-mal számoltunk. ormálerő nélküli esetben is megfontolandó a fenti képlet alkalmazása. **Amennyiben függőleges kengyelek és felhajlított acélbetétek is részt vesznek a nyírási teherbírásban, javasolt a biztonság javára történő közelítésként V Rd,max fenti képletében α= 90 fokkal számolni. Vagy megengedett a Dulácska Endre és Kollár László (Deák György Draskóczy András Dulácska Endre Koollár László Visnovitz György: Vasbetonszerkezetek című könyve) által ajánlott (ctgθ + ctgα) / (+ ctg θ) = 0.75 (θ=45 fok esetén) pontosabb értékkel számolni. 45

46 V. gyakorlat anyaga 5.. Koncentrált erővel tehelt konzol ellenőrzése nyírásra Anyagok : Beton: C5/30 Betonacél: S400B Betonfedés:0 mm Kedv.elm.: 0 mm Kengy.táv: s = 50mm 5... Kiindulási adatok a.) Geometriai jellemzők: 4 ϕ π A sl := A 4 sl = 57 ϕ k π A sw := A 4 sw = 57 0 d := h mm d = 300 mm b.) Anyagjellemzők: Beton: C5/30 γ c :=.5 f ck 5 f ck := f cd := f.5 cd = 6.67 Betonacél: S400B γ s :=.5 f yk 400 f yk := f yd := f.5 yd = Ellenőrzés nyírásra a.) Mértékadó nyíróerő meghatározása -A nyíróerő tervezési értéke: V Ed := 0k ( V Ed = -A redukált nyíróerő: V) Mivel a befogás d = 600 mm hosszú környezetében nem hat a gerendára teher, a nyíróerő redukciója nem okoz változást. V Ed.red := V Ed V Ed.red = 0 k 46

47 V. gyakorlat anyaga b.) A beton által felvehető nyíróerő (V Rd.c ) meghatározása A (normálerővel nem terhelt) méretezett nyírási vasalás nélküli kersztmetszet nyírási teherbírása (V Rd.c ): 0.8 V Rd.c := max γ c k 00 3 ( ρ l f ck ) ν min b w d ahol k: k := min +,.0 k := + k =.86 d 300 A sl ρ l : ρ l min :=, 0.0 ahol: b w d A sl b w d = = 0.07 ρ l = 0.07 ν min : 3 3 ν min := k f ck = 0.48 V Rd.c max :=.86 ( ), ahol ( ) = V Rd.c = 57.0 k < V Ed.red = 0 k szükség van nyírási vasalásra c.) A nyomott beton tönkremenetele nélkül felvehető legnagyobb nyíróerő (V Rd.max ) meghatározása V Rd.max := ahol: α cw b w cot( θ) + cot( α) z ν f cd + ( cot( θ) ) α cw := feszítés illetve nyomóerő nélküli keresztmetszet esetén; z := 0.9 d z = 70 mm f ck ν := 0.6 ahol f 50 ck := 5 ν = α := 90 fok a nyírási vasalásnak (a kengyelnek) a tartó tengelyével bezárt szöge θ a ferde nyomott beton rácsrúdnak a tartó hossztengelyével bezárt szöge V Rd.max := cotθ=.3 (az egyszerű számítás kedvéért) V Rd.max = 93.6 k > V Ed = 0 k A beton keresztmetszet geometriai méretei megfelelőek, a gerenda nyírásra vasalható. 47

48 V. gyakorlat anyaga d) A méretezett nyírási vasalással ellátott vb keresztmetszet nyírási teherbírásának(v Rd ) meghatározása (A V Rd.c értékét, azaz a beton által felvehető nyíróerőt, az MSZ E 99-- nem veszi figyelembe a V Rd számításánál.) A kengyelek által felvehető nyíróerő (V Rd.s ) meghatározása: A sw f yd V Rd.s := 0.9 d cot( θ) = s mm mm.3 = 7.8 k V Rd := V Rd.s V Rd = 7.8 k e.) Teherbírás ellenőrzése V Ed.red = 0 k < V Rd = 7.8 k A gerenda nyírási teherbírása megfelel. f.) Szerkesztési szabályok ellenőrzése A sw A nyírási vasalás fajlagos mennyisége: ρ w := ρ s b w sin( α) w = 0.49 % 0.08 f ck [] A fajlagos mennyiség minimális értéke: ρ w.min := = f yk = 0.00 % ρ w.min = 0.00 % < ρ w = 0.49 % Megfelel [] A fajlagos mennyiség maximális értéke: α c ν f cd ρ w.max := = cos( α) f yd =.94 % ρ w.max =.94 % > ρ w = 0.49 % Megfelel [3] A nyírási acélbetétek maximális távolsága: s max := 0.75 d = mm s max = 5 mm > s = 50 mm Megfelel [4] A gerendában felhajlított betét nincs, teljesül az a feltétel, hogy a nyíróerő legalább 50% -át kengyelekkel kell felvenni, ugyanis a nyíróerőt 00%-ban a kengyelek veszik fel. 48

49 V. gyakorlat anyaga 5.. Határozza meg az adott keret A-B keresztmetszetek közötti szakaszán az alkalmazott kengyelek szükséges távolságát! P=00 k Q=50k Q=30 k B C q=8 k/m g=4 k/m φ4 φ0 4φ0 Anyagok : Beton: C5/30 Betonacél: S500B Biztonsági tényezők: A γ g :=.35 γ q :=.5 γ P :=.5 Egyidejűségi tényezők egységesen: ψ := Kiindulási adatok a.) Geometriai jellemzők: 4 ϕ π A sl := A 4 sl = 57 ϕ' π A' sl := 4 A' sl = 308 ϕ k π A sw := 4 A sw = 57 d := 00mm d' := 50mm b.) Anyagjellemzők: Beton: C5/30 γ c :=.5 f ck 5 f ck := f cd := f.5 cd = 6.67 Betonacél: S500B γ s :=.5 f yk 500 f yk := f yd := f.5 yd = Szükséges kengyeltávolság meghatározása a.) Mértékadó igénybevételek meghatározása A mértékadó nyíróerő az A-B szakaszon a kiemelt vízszintes Q teherből keletkezik: V A := γ P Q =.5 50 k Q P V Ed.red := V A V Ed.red = 75 k Ax VA ( ) A mértékadó nyíróerővel egyidejű normálerő: Ed := γ g g + ψ γ q q Ed = 89 k L Q γ P L H + ψ γ P P 49

50 V. gyakorlat anyaga b.) A nyomott beton által felvehető nyíróerő (V Rd.c ) meghatározása A méretezett nyírási vasalás nélküli kersztmetszet nyírási teherbírása (V Rd.c ): 0.8 V Rd.c := max γ c k 00 3 ( ρ l f ck ) ν min σ cp A sl min :=, 0.0 ahol: b w d b w d ahol k: k := min +,.0 k := + k = d 00 ρ l : ρ l A sl = b w d = 0.05 ρ l = 0.00 σ cp : ν min : Ed σ cp := = b h 3 ν min := k f ck k 50mm = mm 3 5 = ahol V Rd.c max := ( ), ( ) = V Rd.c = 66.9 k < V Ed.red = 75 k szükség van nyírási vasalásra c.) A nyomott beton tönkremenetele nélkül felvehető legnagyobb nyíróerő (V Rd.max ) meghatározása: Kengyel, azaz α := 90 fok esetén a nyíróerő felső korlátja: cot( θ) + cot( α) V Rd.max := α cw b w z ν f cd Mivel tan( θ) + cot( θ) α := 90 fok + ( cot( θ) ) = tan( θ) + cot( θ) esetén: ahol: σ cp α cw := + mivel σ cp = 3.04 < 0.5 f cd f cd = 4.67 α cw =.8 z := 0.9 d z = 80 mm f ck ν := 0.6 ahol f 50 ck = 5 ν = θ A ferde nyomott beton rácsrúdnak a tartó hossztengelyével bezárt szöge 3 σ V c 0.4 f ck cp +. := b f cd w z V c = k σ cp f * cd 6.67 θ := acot ctg(θ)= =.98 >.0 θ := acot(.0) V c V 75 θ = 6.6 deg Ed.red * ctg(θ) értéke nem lehet,0-nél nagyobb. Ha a számításból ennél nagyobb érték adódik, ctg(θ)=,0. 50

51 V. gyakorlat anyaga V Rd.max := V Rd.max = 90.7 k> V Ed := 75k d.) A szükséges kengyeltávolság ( s max ) meghatározása: A megengedhető legnagyobb kengyeltávolság számításához a V Ed.red V Rd egyenlőtlenségre egyenlőséget feltételezve: V Rd := V Ed.red V Rd = 75 k V Rd.s := V Rd A gerenda nyírásra bevasalható A sw f yd A sw f yd V Rd.s := 0.9 d cot( θ) s s max := 0.9 d.0 s min V max = 38 mm Rd.s Az alkalmazott kengyeltávolság legyen: s alk := 30mm A sw f yd Ekkor a kengyelek által felvehető nyíróerő: V Rd.s := 0.9 d.0 V s Rd.s = 76.8 k alk e.) A szerkesztési szabályok ellenőrzése A sw A nyírási vasalás fajlagos mennyisége: ρ w := ρ s alk b w sin( α) w = 0.96 % 0.08 f ck [] A fajlagos mennyiség minimális értéke: ρ w.min := = f yk = % ρ w.min = % < ρ w = 0.96 % Megfelel [] A fajlagos mennyiség maximális értéke: α c ν f cd ρ w.max := = =.035 % cos( α) f yd ρ w.max =.035 % > ρ w = 0.96 % Megfelel [3] A nyírási acélbetétek maximális távolsága: s max.d := 0.75 d = mm s max.d = 50 mm < s alk = 30 mm em felel meg!!!! [4] A mértékadó nyíróerőt 00%-ban a kengyelek veszik fel > 50% Megfelel A szerkesztési szabályok miatt módosított kengyeltávolság: s alk := 50mm A sw f yd Ekkor a kengyelek által felvehető nyíróerő: V Rd.s := 0.9 d.0 V Rd.s = 63.9 k s alk e'.) A szerkesztési szabályok ellenőrzése a módosított kengyeltávolság esetén A sw ρ w := ρ s alk b w sin( α) w = 0.49 % [] ρ w.min = % < ρ w = 0.49 % Megfelel [] ρ w.max =.035 % > ρ w = 0.49 % Megfelel [3] s max.d = 50 mm = s alk = 50 mm Megfelel [4] 00% > 50% Megfelel Az A-B szakaszon a s zükséges kengyeltávolság a nyírási teherbírás szempontjából 30mm, azonban a szerkesztési szabályok miatt legalább 50mm sűrűségű kengyeleket kell alkalmazni. A javasolt kengyeltávolság 50mm. 5

52 V. gyakorlat anyaga 5.3. Határozza meg a szükséges kengyeltávolságot (felhajlított vasat nem alkalmazunk)! p = 5 k/m d L=.50 V [k] V Ed.red V Ed d Anyagok : Kiindulási adatok a.) Geometriai jellemzők: a := 60mm h := 450mm b := 50mm Beton: C5/30 Betonacél: S500B Betonfedés:0 mm Kedv.elm.: 0 mm d := ( h a) d = 390 mm L :=.5m 6 ϕ π A sl := A 4 sl = 945 ϕ' π A' sl := A' 4 sl = 40 ϕ k π A sw := A 4 sw = 57 b.) Anyagjellemzők: Beton: C5/30 γ c :=.5 f ck 5 f ck := f cd := f.5 cd = 6.67 Betonacél: S500B γ s :=.5 f yk 500 f yk := f yd := f.5 yd = A Szükséges kengyeltávolságok meghatározása a.) Mértékadó igénybevételek meghatározása A mértékadó nyíróerő és a redukált nyíróerő a függőleges megoszló p teherből: p d := 5 k V Ed := p d L V Ed = 3.5 k V Ed.red := V Ed p d d V Ed.red = 63.8 k m 5

53 V. gyakorlat anyaga b.) A beton által felvehető nyíróerő (V Rd.c ) meghatározása A (normálerővel nem terhelt) méretezett nyírási vasalás nélküli keresztmetszet nyírási teherbírása ( V Rd.c ): 0.8 V Rd.c := max γ c k 00 3 ( ρ l f ck ) ν min b w d ρ l A sl : ρ l min :=, 0.0 b w d ahol: 00 ahol k: k := min +,.0 k d ν min : Figyelem! Az egyes keresztmetszetekben csak azt a hosszvasalást vehetjük számításba, amit a difinició szerint megfelelően túlvezettünk. A konzol szabad vége környezetében ilyen hosszvas nincs, ezért ott ρ l =0. A tartó további szakaszán már figyelembe vehető lenne, de ott a mértékadó nyíróerő ezzel együtt is biztosan maghaladja V Rd.c értékét. := k =.76 A sl b w d 3 3 ν min := k f ck = = = 0 ρ l = 0.00 V Rd.c := max ( ), ahol ( ) = V Rd.c = 38.3 k < V Ed.red = k szükség van nyírási vasalásra c.) A nyomott beton tönkremenetele nélkül felvehető legnagyobb nyíróerő (V Rd.max ) meghatározása: V Rd.max := α cw b w z ν f cd (α = 90 esetén) tan( θ) + cot( θ) ahol: α cw := (mivel a tartót nem terheli nomálerő) z := 0.9 d z = 35 mm f ck ν := 0.6 ahol f 50 ck = 5 ν = θ A ferde nyomott beton rácsrúdnak a tartó hossztengelyével bezárt szöge cot( θ) =.3 V Rd.max := (.3 + 0) +.3 V Rd.max = 38.7 k V Ed = 3.5 k > A gerenda nyírásra bevasalható 53

54 V. gyakorlat anyaga d.) A szükséges kengyeltávolságok meghatározása: A nyírásra vasalandó szakasz hosszának meghatározása: Ott szükséges nyírási vasalás, ahol: V Rd.c < V Ed.red Az ábra alapján: ( ) t n := V Ed V Rd.c t n = 93 mm L V Ed yírási vasalás számítása: "A-A' " szakaszon: A sw f yd 0.9 d s AA := V Ed.red cot( θ) s AA = 8. mmaz alkalmazott kengyeltávolság ezen a szakaszon legyen: s AA := 00mm A "C-D" szakaszon V Rd.c > V Ed, tehát itt nem szükséges méretezett nyírási vasalás, a kengyelkiosztást a szerkesztési szabályok határozzák meg: 0.08 f ck [] A fajlagos mennyiség minimális értéke: ρ w.min := = f yk = % A sw ρ w.min = % s max := s ρ w.min b max = 785 mm w [] A fajlagos mennyiség maximális értéke: α c ν f cd ρ w.max := = =.035 % cos( α) f yd A sw ρ w.max =.035 % s min := s ρ w.max b min = 6 mm w [3] A nyírási acélbetétek maximális távolsága: s max := 0.75 d= mm s max = 93 mm Legyen ezen a szakaszon az alkalmazott kengyeltávolság: s CD := 80mm ( ) = 93 mm < min s max, s max > s min = 6 mm Az AA' szakaszra meghatározott kengyelezést az A'B szakaszra is kiterjesztjük: s AB := 00mm Tehát legyen: A - B: s AB = 00 mm B - C: s BC := 60mm* C - D: s CD = 80 mm *(Az s BC kengyeltávolság az s AB és az s CD értékek között tetszőlegesen felvehető. Javasolt ezt az értéket úgy felvenni, hogy a határnyíróerő ábra minnél szorosabban kövesse a mértékadó nyíróerőábrát. 54

55 V. gyakorlat anyaga e.) A szerkesztési szabályok ellenőrzése, határnyíróerő ábra meghatározása: A - B szakasz: A sw f yd A határnyíróerő értéke: V Rd.AB := 0.9 d cot( θ) s AB V Rd.AB = 3.6 k > V Ed.red = 63.8 k Szerkesztési szabályok ellenőrzése: A sw A nyírási vasalás fajlagos mennyisége: ρ w := ρ s AB b w = 0.68 % w [] A fajlagos mennyiség minimális értéke: ρ w.min = % < ρ w = 0.68 % Megfelel [] A fajlagos mennyiség maximális értéke: ρ w.max =.035 % > ρ w = 0.68 % Megfelel [3] A nyírási acélbetétek maximális távolsága: s max := 0.75 d s max = 9.5 mm > s AB = 00 mm Megfelel B-C szakasz: A sw f yd s BC = 60 mm A határnyíróerő értéke: V Rd.BC := 0.9 d cot( θ) V s Rd.BC = 94.8 k BC B -C szakasz (és a C -D szakasz) hosszának számítása: t CD := L t n t CD = 307 mm L t BD := V V Rd.BC t BD = 558 mm Ed t BC := t BD t CD t BC = 5 mm A B-C szakaszon a szerkesztési szabályok ellenőrzése: A sw A nyírási vasalás fajlagos mennyisége: ρ w := ρ s BC b w = % w [] A fajlagos mennyiség minimális értéke: ρ w.min = % < ρ w = % Megfelel [] A fajlagos mennyiség maximális értéke: ρ w.max =.035 % > ρ w = % Megfelel [3] A nyírási acélbetétek maximális távolsága: s max = 9.5 mm > s BC = 60 mm Megfelel C-D szakasz: A C-D szakaszon elméletileg nem kell méretezett nyírási vasalás. A szakasz rövidsége miatt azonban ezen a szakaszon is kiszámoljuk a határnyíróerő értékét a szerkesztési szabályok alapján felvett kengyelkiosztásból, és ez alapján a CD szakaszt kitoljuk, amennyire lehet, C' pontig. A határnyíróerő A sw f yd s C'D := s CD = 80 mm V értéke: Rd.C'D := 0.9 d cot( θ) V s Rd.C'D =.3 k C'D Mivel a C-D szakaszon a szerkesztési szabályok alapján vettük fel a kengyelkiosztást, ezek mind teljesülnek. 55

56 V. gyakorlat anyaga Kengyelkiosztási vázlat és a határnyíróerő ábra 56

57 Vasbetonszerkezetek I VI. gyakorlat VI. GYAKORLAT Gerendák komplex vizsgálata; határnyomaték, határnyíróerõ számítása, vaselhagyás tervezése készítette: Friedman oémi, Dr. Huszár Zsolt, Dr. Kiss Rita, Völgyi István A hosszvasalásban a ferde nyírási repedések miatti többleterő számítása A nyírás miatt a hosszvasalásban keletkező többlet-húzóerő felvételéről gondoskodni kell. Általános esetben ehhez az M Ed nyomatéki ábrát a kedvezőtlenebb irányba a l távolsággal el kell csúsztatni, ahol az elcsúszatás mértéke: - Méretezett nyírási vasalást nem tartalmazó elemek esetén: a l = d - Méretezett nyírási vasalást tartalmazó elemek esetén: a l = z (cotθ - cotα) () Méretezett nyírási vasalást tartalmazó szerkezetek esetén a nyírás miatti többlet-húzóerő figyelembevétele a fenti elcsúsztatási szabály helyett történhet a hosszvasalásban keletkező többlethúzóerő ( F td ) közvetlen meghatározásával, és a hosszvasalásban keletkező teljes erőre vonatkozó feltétel egyidejű kielégítésével is, az alábbiak szerint: F td = 0,5 V Ed (cotθ - cotα) és M Ed M + Ftd Ed, max z z ahol: V Ed, M Ed - a nyíróerő és a hajlítónyomaték tervezési értéke a vizsgált helyen M Ed,max - a hajlítónyomaték tervezési értéke a nyomatéki maximum helyén. (Kengyelezés és felhajlítás együttes alkalmazásánál is használható α = 90 fok, mivel a kengyelezés tekinthető az elsődleges jelentőségű nyírási vasalásnak.) A fenti módszerek a tartó közbenső szakasza mentén alkalmazandók. A tartó feltámaszkodásának környezete külön vizsgálandó a következő eljárásnak megfelelően. A rácsos tartó modell szélső ferde nyomott rácsrúderejének vízszintes komponensét fel kell venni. A szabályzat szerint ez R*cotθ nagyságú erő. A tartó z*cotθ távolságon belüli tartórészéről az erők θ- nál meredekebb szögben érkeznek a támaszra, tehát a rácsrudak vízszintes komponense kisebb. Ennek megfelelően a lehorgonyzandó húzóerőt egyenletesen megoszló teher esetén VEdred*cotθ értékkel közelíthetjük. A felhajlított betétek hatástávolsága Manapság felhajlított vasalást új szerkezet tervezésénél ritkán alkalmaznak, mert szerelése nehézkesebb és nagyobb az (egyre drágább) élőmunka igénye. A mérnöki gyakorlatban azonban gyakrabban találkozhatunk felhajlított vasalással meglévő szerkezetek ellenőrző statikai számításánál (felülvizsgálatánál). A felhajlított betétek hatástávolsága az alábbi ábrák segítségével értelmezhető. A felhajlított acélbetéteket α=45 fokos szögben szokás elhelyezni. Hatástávolságának meghatározásakor elsõ lépésként a felsõ és alsó szegletébõl 45 fokos vetítést végzünk a tartótengelyig. Elméleti támaszvonal 45 α 45 α ábra Ha két egymás mögötti felhajlított betét hatástávolsága átfed, akkor a tényleges hatástávolságokat a tartó középvonalának magasságában kijelölhető felezőpont (C pont) határolja (.ábra). Elméleti támaszvonal c α α. ábra 57

58 Vasbetonszerkezetek I VI. gyakorlat A támasz melletti elsõ felhajlított betétet úgy kell elhelyezni, hogy az. ábra szerinti (bal oldali) segédvonal a tartó tengelyét az elméleti támasz mögött messe (3. ábra). Ez szintén csökkenti a tényleges hatástávolságot. α α A felhajlított vasak egymástól mért távolsága a tartótengely mentén 45 fok esetén nem haladhatja meg az smax=,d értéket*. Ez a szabályozás azt hivatott megakadályozni, hogy a ferde nyírási repedés a két felhajlított vas között átszaladhasson. Tehát az. ábrán vázolt kialakítás nem felel meg a szerkesztési szabálynak, a felhajlított vasak túl távol vannak egymástól. Ugyanilyen megfontolás miatt az elsõ felhajlított vasat minél közelebb kell elhelyezni a támasz széléhez. Ennek általában a vasvezetés szabályai és a lehorgonyzás szükségessége szabnak határt. A vas továbbvezetésével, kampózásával gondoskodni kell arról, hogy a felhajlított vas lehorgonyzása biztosított legyen. Elméleti támaszvonal Elméleti támaszvonal α 3. ábra 4. ábra A betonacélok csak akkor vehetõk számításba, ha lehorgonyzásuk biztosított. Elõször ki kell számolni a lehorgonyzási hossz alapértékét. A betonacél tényleges lehorgonyzási hossza az alapérték különbözõ körülményeket (betonacél végének kialakítása, egyéb vasakkal való kapcsolat, acélbetétre merõleges normálerõ) figyelembe vevõ tényezõkkel történõ módosítása után kapható. Esetünkben αés α5 értéke fontos. α a betonacél végének kialakítását veszi figyelembe. Értéke, ha egyes végû az acélbetét, 0,7, ha kampózott. α5=-0,04p, de nem kisebb, mint 0,7. Az összefüggésben p[mpa] a betonacélra merõleges nyomófeszültség értéke. Fontos, hogy a nyomóerõ kedvezõ hatása csak akkor és azon a szakaszon vehetõ számításba, ahol az minden esetben biztosított. A betonacélt a tényleges lehorgonyzási hosszt követõen vehetjük figyelembe 00%-ig. yilvánvaló azonban, hogy a betonacél ezt megelõzõen is képes egy csökkentett nagyságú erõ felvételére. A feszültség növekedését 0 és fyd között lineárisnak feltételezhetjük, tehát a lehorgonyzási hossz felénél a folyáshatár felének megfelelõ nyomófeszültség feltételezhetõ. Fontos azonban, hogy semmiféle feszültség nem vehetõ számításba a minimális lehorgonyzási hosszon belül. A minimális lehorgonyzási hossz nagyobb, mint a lehorgonyzási hossz alapértékének 30%-a, de legalább a betonacél átmérõjének tízszerese illetve 00mm. *A szerkesztési szabály általános esetben 0,6d(+cotα) értéket ír elő ** Deák György-Draskóczy András-Dulácska Endre-Kollár László-Visnovitz György: Vasbetonszerkezetek című könyvben javasolt érték. 58

59 Vasbetonszerkezetek I VI. gyakorlat 6.. Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása. pd=5 k/m K - K 6φ5 K φ0 6φ6 Anyagok : Beton: C5/30 Betonacél: S500B V [k] VEd.red VEd Betonfedés: 0 mm Kedv.elm.: 0 mm 6... Kiindulási adatok 6... Geometriai jellemzők a := 60mm h := 450mm b := 50mm b w := b ϕ k := 0mm d := ( h a) d = 390 mm L :=.5m ϕ ny := 6mm ϕ := 5mm d ny := ( )mm d ny = 48 mm 6 ϕ π A sl.6 := 4 A sl.6 = 945 :. szakasz 4 ϕ π A sl.4 := 4 A sl.4 = 963 :. szakasz ϕ π A sl. := A 4 sl. = 98 : 3. szakasz (a tartó teljes hosszán végig kell 6 ϕ vezetni a teljes hosszvasalás ny π A sl.ny := A legalább negyedét!) 4 sl.ny = 06 A ϕ sl.6 ny π A sl.min := max, A A 4 sl. sl.ny. := A 4 sl.ny. = 40 ϕ k π A sw := A 4 sw = 57 A sl.min := A sl Anyagjellemzők α := f ck Beton:C5/30 f ck := 5 γ c :=.5 f cd := f γ cd = c f yk Betonacél: S500B f yk := 500 γ s :=.5 f yd := f γ yd = s 59

60 Vasbetonszerkezetek I VI. gyakorlat 6... A határnyomatéki-ábra előállítása 6... Az eltolt mértékadó nyomatéki ábra meghatározása A megoszló p teherből származó nyomaték: p d L M Ed.k := M Ed.k = km A hajlításvizsgálat során feltételezzük, hogy a gerenda a rúdtengelyre merőlegesen reped be. Ha a nyírás jelentős, akkor a tartó - a bevezetőben ismertetett módon - ferdén reped be. Ezt a nyomatéki méretezés során akként kell figyelembe venni, hogy a fenti nyomatéki ábra helyett egy - a kedvezőtlen irányban a l távolsággal - eltolt nyomatéki ábrát veszünk mértékadónak, ahol al: a l = z cotθ ahol : z := 0.9 d z = 35 mm cotθ :=.3 a l := z cotθ a l = 8. mm A mértékadó nyomatéki ábra: (eltolt) mértékadó nyomatéki ábra M [km] 6... Vaselhagyás tervezése, az alkalmazott hosszvasalással felvehető határnyomatékok számítása Tegyük fel, hogy helyen szeretnénk vaselhagyást végezni; a befogásnál alkalmazott 6φ6-os nyomott valamint 6φ5-ös húzott vasból először 4φ6-os nyomott és φ5-ös húzott vasat, majd még két φ5-ös húzott vasat hagyunk el). A nyomatéki határteherbírás az. szakaszon: ( 6 db φ 6-os nyomott, 6 db φ 5-ös húzott vas) A sl.6 = 945 A sl.ny = 06 Tegyük fel, hogy az acélbetétek megfolynak. A vetületi egyensúlyi egyenlet ekkor: ( ) = 0 α f cd b + A sl.ny.6 f yd A sl.6 f yd 60

61 Vasbetonszerkezetek I VI. gyakorlat Ebből: - t kifejezve: ( ) ( ) A sl.ny A sl.6 := f yd α f cd x b c = 8.4 mm A nyomott zóna relatív magassága: ξ c := ξ d c = ξ c.ny := ξ d c.ny = 3.78 ny A nyomott zóna relatív magasságának határhelyzete: ξ co := ξ f co = ξ co.ny := ξ yd f co.ny =. yd ξ c < ξ co ξ c.ny > ξ co.ny mind a húzott, mind a nyomott acélbetétek megfolynak A nyomatéki egyensúlyi egyenlet: M Rd. := b α f cd d + A sl.ny f yd ( d d ny ) M Rd. = km M Ed := 390.6km M R.d. > M Ed a keresztmetszet hajlításra megfelel A nyomatéki határteherbírás a. szakaszon: ( db φ 6-os nyomott vas, 4 db φ 5-ös húzott vas ) 4 ϕ π A sl.4 := A 4 sl.4 = 963 ϕ ny π A sl.ny. := A 4 sl.ny. = 40 Tegyük fel, hogy az acélbetétek megfolynak. A vetületi egyensúlyi egyenlet ekkor: ( ) 0 α f cd b + A sl.ny. f yd A sl.4 f yd ( ) ( ) A sl.ny. A sl.4 = := f yd α f cd x b c = 6.9 mm A nyomott zóna relatív magassága: ξ c := ξ d c = 0.48 < ξ co = ξ c.ny := ξ d c.ny = > ξ co.ny =. ny mind a húzott, mind a nyomott acélbetétek megfolynak A nyomatéki egyensúlyi egyenlet: M Rd. := b α f cd d + A sl.ny. f yd ( d d ny ) M Rd. = 69. km 6

62 Vasbetonszerkezetek I VI. gyakorlat A nyomatéki határteherbírás a 3. szakaszon: ( φ 5-ös húzott vas, ) Megj: ugyan végig visszük a db φ6-os nyomott vasat, de csak szerelési vasként vesszük figyelembe ϕ π A sl. := A 4 sl. = 98 Tegyük fel, hogy az acélbetétek megfolynak. A vetületi egyensúlyi egyenlet ekkor: ( ) 0 α f cd b A sl. f yd A nyomott zóna relatív magassága: A sl. = := f yd α f cd x b c = 0.4 mm ( ) ξ c := ξ d c = 0.63 < ξ co = a húzott acélbetétek megfolynak A nyomatéki egyensúlyi egyenlet: M Rd.3 := b α f cd d M Rd.3 = 44.6 km A határnyomatékok összefoglalása: M Rd. = km M Rd. = 69. km M Rd.3 = 44.6 km A lehorgonyzási hosszak meghatározása A húzott vas (φ 5) lehorgonyzási hosszának meghatározása f bd :=.8 : bordás acélbetét, C5/30-as betonszilárdság. A teljes lehorgonyzási hossz: ϕ f yd l b.h := l 4 f b.h = mm bd A nettó lehorgonyzási hossz számítása l b.h.net := α a l b.h ahol : α a =.0 ha egyenes végû acélbetéteket alkalmazunk α a = 0.7 ha a húzott acélbetéteket kampózott végûnek alakítjuk ki A nettó lehorgonyzási hossz: l b.h.net = mm ( ) A minimális lehorgonyzási hossz: l b.h.min := max 0.3 l b.h, 0 ϕ, 00mm l b.h.min = 9. mm A nyomott vas (φ 6) lehorgonyzási hosszának meghatározása f bd :=.8 : bordás acélbetét, C5/30-as betonszilárdság ϕ ny f yd A teljes lehorgonyzási hossz: l b.ny := l 4 f b.ny = 6. mm bd 6

63 Vasbetonszerkezetek I VI. gyakorlat ( ) A minimális lehorgonyzási hossz: l b.ny.min := max 0.6 l b.ny, 00mm l b.ny.min = 37.7 mm A határnyomatéki ábra 3 MRd0=405.6km MRd=69.km (eltolt) mértékadó nyomatéki ábra MRd3=44.6km Határnyomaték ábra figyelembe véve a lehorgonyzási hosszon felvehető acélfeszültséget Határnyomaték ábra Ezt a nyomatékot a betonnak kell felvennie illetve ha szükséges hajtűvasa(ka)t alkalmazunk. Megjegyzés: a konzol-befogásnál a hosszirányú vasak lehorgonyzásáról a falban gondoskodunk, így itt nem jelenik meg határnyomaték-csökkenés. A határnyomatéki ábra szerkesztésénél figyelembe vehetjük, hogy a hosszanti betétek a lehorgonyzási hosszon belül is fel tudnak venni feszülltséget. Ezt a fenti ábrán a megfelelő szakaszokon lineárisan csökkenő pontozott vonal jeleníti meg. A biztonság javára történő egyszerûsítésként az első két vaselhagyás tervezésénél ezeket feszültségeket elhanyagoltuk (szaggatott vonal), bár így lényegesen gazdaságtalanabb szerkezetet kapunk A mértékadó nyíróerőábra A mértékadó nyíróerőábrát és a mértékadó nyíróerő értékek számítását az előző gyakorlaton (5.3..a. pontban) már elvégeztük. V Ed := 3.5k V Ed.red := 63.7k A nyomott beton ellenőrzése Előző gyakorlaton (5.3..c. pontban) már elvégeztük A beton által felvehető nyíróerő meghatározása A vaselhagyások miatt V Rd.c értéke szakaszonként ( pontban a határnyomatéki ábrán,, illetve 3 jelû szakaszokon) változik. Ebben a feladatban csak a 3. jelû szakasz V Rd.c értékét van értelme meghatározni (mivel a mértékadó nyíróerő még ezen a 3. jelû szakaszon belül éri el ezt a V Rd.c értéket). A nyírásra nem vasalt keresztmetszet határereje az alkalmazott φ5 húzott vasalás esetén: 3 00 f k := min +,.0 d k =.76 ν min k ck := ν min = mm A sl. ρ l := min, 0.0 ρ b w d l =

64 Vasbetonszerkezetek I VI. gyakorlat f k ck 00 ρ V Rd.c.CD max γ l b w d := c V mm mm Rd.c.CD = 58.8 k ν min 64

65 Vasbetonszerkezetek I VI. gyakorlat A határnyíróerők meghatározása valamint a határnyíróerő-ábra előállítása Az előző gyakorlaton megterveztük a tartó kengyelkiosztást AB, BC, CD szakaszokon: s AB.alk := 00mm s BC.alk := 60mm s CD.alk := 80mm Tekintettel arra, hogy az MSZ E szerint a méretezett nyírási vasalással ellátott szakaszok határnyíróereje nem függ a V Rd.c -től, a határnyíróerők értéke az A-B és a B-C szakaszokon: A - B szakasz: A sw f yd A határnyíróerő értéke: V Rd.AB := 0.9 d cotθ V s Rd.AB = 3.6 k AB.alk B-C` szakasz: A határnyíróerő értéke: A sw f yd V Rd.BC := 0.9 d cotθ V s Rd.BC = 94.8 k BC.alk C`-D szakasz: A C-D szakaszon a szerkesztési szabályok szerinti kengyelezést alkalmaztuk. Ennek határereje: A sw f yd V Rd.s.CD := 0.9 d cotθ V s Rd.s.CD =.3 k CD.alk A nyírási határerő a CD szakaszon (az MSZ E ellenőrzésre vonatkozó előírásainak megfelelően a beton által felvehető nyíróerő és a nyírási vasalás által felvehető nyíróerő közül a nagyobbik): ( ) V Rd.CD := max V Rd.s.CD, V Rd.c.CD V Rd.CD =.3 k A határnyíróerő-ábrát már az előző feladatban is megszerkesztettük: A szerkesztési szabályok ellenőrzése Előző gyakorlaton (5.3..e. pontban) már elvégeztük. 65

66 Vasbetonszerkezetek I VI. gyakorlat 6.. Határnyomatéki és határnyíróerõ ábra elõállítása felhajlított vas esetén A-A metszet Anyagok : Beton: C0/5 Betonacél: S500B Kengyel: S500B Betonfedés: 0 mm Kedv.elm.: 0 mm Terhek: g=80 k γg=.35 q=00 k γq=.5 A felhajlított vas 45 fokos szögben hajlítva. A nyomott vasalást nem vesszük számításba Kiindulási adatok 6... Geometriai alapadatok b h := 450mm φ := 0mm l net := 3.80m b w := b := 600mm φ k := 0mm c:= 30mm 9 φ π A sl := A 4 sl = 87 φ k π A sw := A 4 sw = 57 A hasznos magasság: mm 0 d:= h d = 550 mm 0 A felsõ és az alsó vasak közötti távolság: z s := h mm z s = 50 mm ( ) Az elméleti támaszköz: l eff := min l net + h, l net + c 6... Anyagjellemzõk l eff ahol: l net + h = 4.4 m = 4. m l net + c = 4. m Beton: C0/5 f ck 0 f ck := f cd := f.5 cd = 3.33 Betonacél: S500B f yk 500 f yk := f yd := f.5 yd = Kengyelacél: S500B f yk.w 500 f yk.w := f yd.w := f.5 yd.w =

67 Vasbetonszerkezetek I VI. gyakorlat 6... A határnyomatéki ábra elõállítása 6... Az eltolt mértékadó nyomatéki ábra elõállítása A nyomatéki ábra eltolása: a l = z cotθ ahol : z:= 0.9 d z A tartó totális terhelésébõl keletkezõ nyomaték a tartó közepén: (cotθ=.3 értéket feltételezve, 90 -os kengyelvasalással) = 495 mm a l := z cotθ a l = 3.8 mm M Ed.max := γ G g γ Q ( + q) l eff 8 M Ed.max = km Az eltolt mértékadó nyomatéki ábra: 6... Az alkalmazott hosszvasalásokkal felvehetõ határnyomatékok számítása (A felhajlítás miatt a nyomott övben + db A s.ny jelenik meg, de ennek hatását elhanyagoljuk) A nyomatéki határteherbírás az. szakaszon 7 φ π A sl.7 := 4 A sl.7 = 99 ( α f cd b A sl.7 f yd ) = 0 (feltéve, hogy a húzott acélbetétek folynak) Ebbõl: - t kifejezve: f yd := A sl.7 α f cd b ( ) = 59.4 mm 67

68 Vasbetonszerkezetek I VI. gyakorlat A nyomott zóna relatív magassága: ξ c := ξ d c = 0.9 A nyomott zóna relatív magasságának határhelyzete: 560 ξ co := ξ f yd co = ξ c < ξ co a húzott acélbetétek valóban megfolynak A nyomatéki egyensúlyi egyenlet: M Rd. := b α f cd d M Rd. = km A nyomatéki határteherbírás az. szakaszon 8 φ π A sl.8 := A 4 sl.8 = 53 A vetületi egyenlet (feltéve, hogy a húzott acélbetétek folynak): f ( α f cd b A sl.8 f yd ) yd = 0 := A sl.8 α f cd = 8. mm b A nyomott zóna relatív magassága: ( ) ξ c := ξ d c = 0.33 < ξ co = a húzott acélbetétek valóban megfolynak A nyomatéki egyensúlyi egyenlet: M Rd. := b α f cd d M Rd. = 50.5 km A nyomatéki határteherbírás az 3. szakaszon 9 φ π A sl.9 := A 4 sl.9 = 87 A vetületi egyenlet (feltéve, hogy a húzott acélbetétek folynak): f ( α f cd b A sl.9 f yd ) yd = 0 := A sl.9 α f cd = 04.9 mm b A nyomott zóna relatív magassága: ( ) ξ c := ξ d c = < ξ co = a húzott acélbetétek valóban megfolynak A nyomatéki egyensúlyi egyenlet: M Rd.3 := b α f cd d M Rd.3 = 550. km 68

69 Vasbetonszerkezetek I VI. gyakorlat Tehát a határnyomatékok az egyes szakaszokon: M Rd. = km M Rd. = 50.5 km M Rd.3 = 550. km Lehorgonyzási hosszak számítása Húzott vas (φ0): f bd :=.4 (bordás acélbetét, C0/5-as betonszilárdság esetén) A teljes lehorgonyzási hossz: φ f yd l b.h := l 4 f b.h = mm A tartó belsõ szakaszán, ahol az elhagyott acélbetétek bd vége egyenes, ez maga a nettó lehorgonyzási hossz. A nettó lehorgonyzási hossz számítása a tartó végén: l b.h.net := α α 5 l b.h ahol : α =.0 egyenes végû α = 0.7 kampózott végû acélbetét esetén A tartóvégen: α := 0.7 A támasznál leadódó reakció a betonacélra merõleges nyomerõt eredményez. Ezt a lehorgonyzást segítõ hatást is figyelembe vehetjük. Ezt a kedvezõ hatást mintapéldánkban elhanyagoljuk. p értéke a következõ lenne: V Ed p:= 30mm b Így a tartóvégi kampózott vasak lehorgonyzási hossza: l b.h.net = mm ( ) A húzott acélbetétek minimális lehorgonyzási hossza: l b.h.min := max 0.3 l b.h, 0 φ, 00mm A határnyomatéki ábra α 5 := l b.h.min = 7.7 mm Feltámaszkodás környezete: tartótengely irányú húzóerõk burkolóábrája V Ed.red cotθ z cotθ= mm = 34.8 k A betonacél végének és a feltámaszkodás szélének távolsága t:= 30mm 30mm t = 90 mm Merev megtámasztás esetén ebben a vonalban kell biztosítania húzóerõt. tehát a támasz külsõ élének vonalában már figyelembe vehetjük a hosszvasalás t> l b.h.min teherbírásának egy részét. Mekkora ez az erõ? t A betonacélok kampózott kialakítása munkaigényes. H:= A sl.7 f yd H= k l Egyenes kialakítás is lehetséges. Ekkor azonban a b.h.net vizsgált km.-ben nem elegendõ a lehorgonyzott húzóerõ. Ilyen esetben hajtûvasak elhelyezésévelk kell kiegészíteni. 69

70 Vasbetonszerkezetek I VI. gyakorlat A határnyíróerõ ábra elõállítása A mértékadó nyíróerõ ábra meghatározása A támasznál akkor kapunk maximális nyíróerõt, ha az állandó és a hasznos terhek a tartó teljes hosszán hatnak. ( ) l eff γ G g+ γ Q q V Ed.A := V Ed.A = 53.5 k A középsõ keresztmetszetben akkor kapjuk a maximális nyíróerõt, ha a megoszló teher csak a tartó felét terheli. Feltéve, hogy az állandó teher egyenletesen oszlik meg a tartó teljes hosszán, a tartó közepén csak a hasznos teherbõl keletkezik nyíróerõ. Ennek értéke: l eff V E.d.K := γ Q q V 8 E.d.K = 77.3 k A két számított pont között a nyíróerõábra másodfokú parabola. Ezt jelen feladatban lineáris szakasszal közelítjük. A redukciós hossz a támaszreakcó hatásvonalától mérendõ. Az egyszerûség kedvéért tekintsük ezt az elméleti megtámasztás helyének. A megtámasztástól d távolságra ható megoszló teherrõl feltesszük, hogy az közvetlenül a támaszra adódik át. A redukált nyíróerõábra maximuma: ( ) d V Ed.red := V Ed.A γ G g+ γ Q q V Ed.red = k A mértékadó redukált nyíróerõ ábra: 70

71 Vasbetonszerkezetek I VI. gyakorlat A nyomott beton ellenõrzése ( ) cot( α) cot θ + V Rd.max := α cw b w z ν f cd + ( cot( θ) ) ahol: α cw := feszítés illetve nyomóerõ nélküli keresztmetszet esetén; f z:= 0.9 d z = m ν 0.6 ck := ν = cotθ=.3 α k := 90 fok a kengyelnek a tartó tengelyével bezárt szöge α felh := 45 fok a felhajlítás tartó tengelyével bezárt szöge -α = α k esetén: cot( α k ) = 0 A biztonság javára történõ közelítéssel: -α = α felh esetén: cot( α felh ) = ( ) cotθ+ cot α k + ( cotθ) cotθ+ cot( α felh ) + ( cotθ) = = V Rd.max := α cw b w z ν f cd V Rd.max = 79.8 k > V Ed.A = 53.5 k a beton keresztmetszet geometriai méretei megfelelõk. Dulácska - Kollár által javasolt, pontosabb számítással: V' Rd.max := α cw b w z ν f cd 0.75 V' Rd.max = 9.6 k > V Rd.max = 79.8 k A beton által felvehetõ nyíróerõ meghatározása A V Rd.c értékekre azért van szükség, mert amennyiben a beton által felvehetõ nyíróerõ ( V Rd.c ) nagyobb a nyírási vasalás által felvehetõ nyíróerõnél ( V Rd.s -nél), akkor az MSZ E ellenõrzésre vonatkozó elõírásainak megfelelõen ez a nagyobb érték lesz a határnyíróerõ. Jelen esetben az illetve jelû szakaszokon jelentõs a nyírási vasalás, így ezeken a szakaszokon várhatóan a V Rd.c nem játszik szerepet. Az áttekinthetõség kedvéért azonban ezeket is feltüntetjük k := min +,.0 k =.603 f ck ν d min k := ν min = 0.38 mm A vashányad értéke a határnyomatéki ábrán, illetve 3-mal jelölt szakaszokon: A sl.7. szakasz: ρ l. := min, 0.0 ρ b w d l. = A sl.8. szakasz: ρ l. := min, 0.0 ρ b w d l. = 0.00 A sl.9 3. szakasz: ρ l.3 := min, 0.0 ρ b w d l.3 = 0.04 Példánkban minden szakaszon kiszámítjuk a nyírási ellenállás alsó korlátját. Ha egy szakaszon már kiszámítottuk és kisebb értéket kaptunk, mint a nyírási vasalás által képviselt nyíróerõ ellenállás, akkor olyan szakaszokon felesleges kiszámítani az értéket, ahol az nyilvánvalan kisebb a nyírási vasalás teherbírásánál. 7

72 Vasbetonszerkezetek I VI. gyakorlat A beton által felvehetõ nyíróerõ az, és 3-mal jelölt szakaszokon: f k ck 00 ρ V Rd.c. max l. b γ c w d := V mm mm Rd.c. = 4. k ν min f k ck 00 ρ V Rd.c. max l. b γ c w d := V mm mm Rd.c. = 9.9 k ν min f k ck 00 ρ V Rd.c.3 max l.3 b γ c w d := V mm mm Rd.c.3 = 35. k ν min A határnyíróerõk meghatározása és a határnyíróerõ-ábra A felhajlított vasak hatástávolságának határai - 3. jelû felhajlított hosszacél hatástávolságának ( s 3 ) számítása: Az s 3 szakasz kezdõpontja az elméleti támaszvonal (mivel a tartóvégnél a hatástávolságot kijelõlõ 45 -os egyenes belemetsz az elméleti támaszvonalba), a végpontja pedig a. és 3. jelû felhajlított acélbetétek tengelye valamint a tartó tengely metszéspontjai által meghatározott szakasz felezõpontja. 7

73 Vasbetonszerkezetek I VI. gyakorlat z s 500mm l net + c l eff s 3 := 30mm+ + s 3 = 670 mm l net + c l eff ahol = 60 mm az elméleti támaszvonal és a gerenda vége közötti távolság -. jelû felhajlított hosszacél hatástávolságának ( s ) számítása: Az s szakasz kezdõpontja s 3 szakasz végpontja, végpontja pedig a felhajlítási pontnál indított 45 -os egyenes (az ábrán szaggatott vonallal jelölve) és a tartótengely metszéspontja. 500mm s := + z s s = 770 mm A különbözõ határnyíróerõ értékkel bíró szakaszok hosszának meghatározása Az s 3, s szakaszok, valamint a két különbözõ kengyelkiosztású (730mm illetve 330mm hosszú) szakasz a féltartót négy (különbözõ nyírási határteherbírással bíró) részre bontja. E szakaszok hossza a fenti ábra alapján a következõk: "a" szakasz l a = 670 mm "b" szakasz l b = 90 mm "c" szakasz l c = 580 mm "d" szakasz l d = 60 mm A kengyelek és a felhajlított vasak által felvehetõ nyíróerõk meghatározása Az "a" és "b" jelû szakaszokon a függõleges kengyelek távolsága: s k.sz := 80mm A "c" és "d" jelû szakaszokon a függõleges kengyelek távolsága: s k.b := 00mm A nyírási vasalás által felvehetõ nyíróerõ: Kengyelezés (s ksz = 80mm és s kb = 00 mm osztásokkal): A sw f yd.w s k.sz = 80 mm V wd.sz := 0.9 d cotθ V s wd.sz = 44. k "a" és "b" jelû k.sz szakaszokon A sw f yd.w s k.b = 00 mm V wd.b := 0.9 d cotθ V s wd.b = 9.7 k k.b "c" és "d" jelû szakaszokon Felhajlítás (s 3 = 65 mm és s = 75 mm hatástávolságokkal): A sl. f yd s 3 = 670 mm V wd.felh.3 := 0.9 d ( cotθ+ ) sin( α s felh ) V wd.felh.3 = 64. k"a" jelû 3 szakaszon A sl. f yd "b" és "c" s = 770 mm V wd.felh. := 0.9 d ( cotθ+ ) sin α s ( felh ) V wd.felh. = 4.8 k jelû szakaszon A határnyíróerõ tervezési értékeit az alábbi táblázatban adjuk meg: szakasz Vw d.kengyel V.w d.felh. VRd s Vw d.kengyel s V.w d.felh a 80 44, , 408,3 b 80 44, 387, ,8 c 00 9,7 36,5 d 00 9, ,7 73

74 Vasbetonszerkezetek I VI. gyakorlat A határnyíróerõ ábra Tájékoztatás képpen az ábrába V Rd.c értékeket is megjelenítettük a határnyíróerõ ábrában. Látható, hogy sehol sem lesz a beton nyírási teherbírása a mértékadó, vagyis V Rd.c mindenhol kisebb V Rd.s -nél. Az ábrából az is leolvasható, hogy a gerenda nyírási teherbírása (csak a teherbírási követelményeket figyelembe véve) megfelel, mivel a határnyíróerõ ábra sehol sem metsz bele a mértékadó nyíróerõ ábrába. 74

75 VII. gyakorlat VII. GYAKORLAT: Használhatósági határállapotok - Betonszerkezetek alakváltozása és repedéstágassága Készítették: Völgyi István, Kovács Tamás A vasbeton szerkezetek használhatóságát a vonatkozó hatáskombinációk alapján, az alábbi követelmények kielégítésével kell igazolni: a normálfeszültségek korlátozása a repedezettség ellenőrzése az alakváltozások korlátozása. A használhatósági határállapotok ellenőrzése során a szerkezet feszültségeit és alakváltozásait akkor szabad repedésmentes állapot feltételezésével számítani, ha a figyelembe veendő hatáskombinációból számított igénybevétel hatására repedésmentes állapot feltételezésével meghatározott beton-húzófeszültség nem haladja meg az f ctm értéket. Használhatósági határállapotok vizsgálatához a következő igénybevétel-kombinációkat használjuk: Karakterisztikus (ritka) kombináció: E ser(a) =Σ G ki,j + Q k +Σ Ψ 0,i Q ki Gyakori kombináció: E ser(b) =Σ G ki,j + Ψ, Q k +Σ Ψ,i Q ki Kvázi állandó kombináció: E ser(c) =Σ G ki,j + Σ Ψ,i Q ki A normálfeszültségek korlátozása Általános esetben igazolni kell, hogy: a túlzott mértékű beton-nyomófeszültségek miatt hosszirányú repedések nem keletkeznek: σ c 0,6f ck az acélokban képlékeny alakváltozások nem alakulnak ki: σ s 0,6f yk és σ p 0,75f pk. ahol σ c ill. σ s és σ p a karakterisztikus kombináció alapján számított maximális beton- ill. acélfeszültségek. A repedezettség vizsgálata A vasbeton szerkezetek repedezettségének mértékét a funkció, a megfelelő tartósság és a kedvezőtlen megjelenés elkerülése érdekében kell korlátozni. Általános környezeti feltételeknek kitett épületek vasbetonszerkezetei esetén általában azt kell igazolni, hogy a hatások kvázi-állandó kombinációjára a maximális repedéstágasság értéke nem haladja meg a 0,3 mm-t. A repedéstágasságot a következő összefüggéssel lehet meghatározni: w k = s r,max (ε sm - ε cm ) ahol: s r,max - a legnagyobb repedéstávolság ε sm - az acélbetét átlagos nyúlása a vonatkozó kombinációból származó igénybevétel hatására, a húzott betonzóna merevítő hatásának figyelembevételével. Feszített szerkezetek esetén csak az acélbetétet körülvevő beton feszültségmentes állapotában meglévő acélbetét-feszültséghez képesti acélfeszültség-növekményt ( σ p ) kell figyelembe venni. ε cm - átlagos nyúlás a betonban a repedések közötti repedésmentes szakaszokon. Az (ε sm - ε cm ) nyúláskülönbség a következőképpen számítható: f ct, eff σ s k t ( + α eρ p, eff ) ρ ε sm - ε cm = p, eff 0,6 σs Es Es ahol: σ s - a húzott acélbetétben lévő feszültség berepedt keresztmetszet feltételezésével a vonatkozó kombináció alapján számított igénybevételből. Feszített szerkezetek esetén σ s értékét az ε sm fenti értelmezésében szereplő σ p értékkel kell helyettesíteni. α e = E s /E c, - a rugalmassági modulusok σ s meghatározásánál alkalmazott aránya ρ p,eff = As + ξ Ap A c, eff A s és A p - az A c,eff hatékony, húzott betonzónában elhelyezkedő lágyacélbetétek, ill. tapadásos feszítőbetétek keresztmetszeti területe k t - a teher tartósságától függő tényező, értéke: k t = 0,6 rövididejű terhelés esetén k t = 0,4 tartós terhelés esetén. A c,eff - hatékony, húzott betonzóna, azaz a húzott vasalás körüli, h c,ef magasságú betonterület ahol:,5( h d ) h c,ef = h x min 3 h / ξ = φs φ p ξ, ahol ξ a tapadási szilárdság módosító tényezője. Értéke táblázat alapján határozható meg. φ s az alsó sorban alkalmazott legnagyobb betonacél átmérő φ p a feszítőbetét egyenértékű átmérője (Részletek: Farkas-Huszár-Kovács-Szalai: Betonszerkezetek méretezése az Eurocode alapján, 03. oldal) 75

76 VII. gyakorlat Ha a tapadásos acélbetétek egymáshoz közel helyezkednek el, azaz egymástól való távolságuk 5(c + φ/): s r,max = 3,4 c + 0,45 k k ρ p,eff ahol: φ - az acélbetét átmérője. Különböző átmérőjű acélbetétek esetén a φ eq egyenértékű átmérőt kell alkalmazni az alábbiak szerint: φ eq = n φ + nφ nφ + nφ ahol: n - a φ átmérőjű acélbetétek (lágyacél vagy feszítőbetét) darabszáma n - a φ átmérőjű acélbetétek (lágyacél vagy feszítőbetét) darabszáma. c - betonfedés k - az acélbetét és a beton közti tapadási tulajdonságokat figyelembe vevő tényező k = 0,8 bordás acélbetét esetén k =,6 sima felületű acélbetét esetén (pl. feszítőbetétnél) k - a keresztmetszeten belüli feszültség(nyúlás)eloszlást figyelembe vevő tényező k = 0,5 hajlítás esetén k =,0 tiszta húzás esetén Ha a tapadásos acélbetétek egymástól távol helyezkednek el, azaz egymástól való távolságuk > 5(c + φ/): s r,max =,3 (h-x) Az alakváltozások vizsgálata Az alakváltozások mértékét a) a vasbeton szerkezetek funkciója, a szerkezeti elemek megfelelő működése, a kedvezőtlen megjelenés elkerülése és b) a csatlakozó elemek károsodásának megelőzése érdekében kell korlátozni. A megengedett lehajlás értékei a terhek kvázi-állandó kombinációjának megfelelő teherre az a) esetben a támaszköz /50-ed része b) esetben a támaszköz /500-ed része. Az alakváltozások számítása során, a szerkezet repedésmentességének megítélésekor a bevezetőben leírtak szerint kell eljárni. A nem repedésmentes szerkezetek alakváltozásainak számításakor a szerkezet viselkedését a repedésmentes és a teljes hosszban berepedt állapotok közti átmenettel kell figyelembe venni, ahol az átmenet leírására az alábbi összefüggés alkalmazható: α = ζ α II + ( - ζ) α I ahol: α - alakváltozási paraméter, mely lehet pl. nyúlás, görbület, elfordulás, lehajlás, stb. α I, α II - az α paraméter I. (repedésmentes), ill. II. (teljes hosszban berepedt) feszültségi állapot alapján számított értéke ζ - a húzott betonzóna merevítő hatását figyelembe vevő tényező, a következő összefüggés szerint: σ sr ζ = - β σ s ahol: β - a teher tartósságát és ciklikusságát figyelembe vevő tényező az alábbiak szerint: β =,0 egyszeri, rövididejű terhelés esetén β = 0,5 tartós, vagy ismétlődő terhelés esetén σ s - a húzott acélbetétben keletkező feszültség, berepedt keresztmetszet feltételezésével számítva σ sr - a húzott acélbetétben keletkező feszültség a repesztőnyomaték hatására, berepedt keresztmetszet feltételezésével számítva A σ sr /σ s hányados tiszta hajlítás esetén az M cr /M, tiszta húzás esetén az cr / hányadosokkal helyettesíthető, ahol M cr a repesztőnyomaték, és cr a repesztő húzóerő. Pontosabb vizsgálat esetén az alakváltozásokat az α alakváltozási paraméter alkalmazása helyett numerikus integrálással kell meghatározni a görbületnek a szerkezeti elem szükséges számú pontjában való számítása után. E módszer közelítő változata lehet az, ha a görbületeket a tartó repedésmentes szakaszán repedésmentes keresztmetszet feltételezésével, a berepedt szakaszon a fenti α alakváltozási paraméter alkalmazásával számítjuk (ld. a gyakorlati anyag kiegészítő részét). φ 76

77 VII. gyakorlat 7.. példa Határozza meg egy kéttámaszú tartó középsõ keresztmetszetének görbületét és lehajlását! Az alakváltozás értékét a repedésmentes állapot (I. feszültség állapot) és a tartó teljes hossza mentén berepedt állapot (II. feszültség állapot) feltételezésével kapott érték közti interpoláció segítségével számíthatjuk. Az alakváltozás értékét általában kvázi állandó (quasi permanent, jele:qp) teherkombinációban kell meghatározni..elméleti támaszköz: L := 5m Betonfedés: c := 0mm φ k := 0mm A tartó kéttámaszú. A középsõ keresztmetszetet vizsgáljuk. h A keresztmetszet geometriai méretei, vasalása: b := 00mm h := 400mm φ := 0mm n := 4db b ( ) π φ A s := n A 4 s = Anyagjellemzõk: Az acél rugalmassági modulusa: E s := 00 k (S500B) A beton rugalmassági modulusának várható értéke: E cm := 30 k C0/5 A beton húzószilárdságának várható értéke 8 napos korban: f ctm :=. A beton rugalmassági modulusából számítható alakváltozási tényezõ értéke:.05 E cm φ t := E c.eff := E c.eff = φ t φ t a beton kúszását figyelembe vevõ tényezõ. Függ a környezet páratartalmától, az alkalmazott cement fajtájától, a beton szilárdsági osztályától, az elsõ terhelés idõpontjától. Most a végtelen idõponthoz tartozó, végértéket vesszük számításba. A beton húzószilárdságának számítási értéke: f ct.eff := f ctm A beton húzószilárdságának számításba vett értéke attól függ, hogy a szerkezeten várhatóan mikor jelenik meg az elsõ repedés. Ez függhet attól, hogy hány napos korban zsaluzzák ki, hogy elõregyártott, vagy monolit, esetleg, hogy lágyvasalású vagy feszített a tartó. Ha az elsõ repedés várhatóan 8 napos kor után következik be, a beton húzószilárdságának várható értékével vehetõ azonosnak. Ha a repedés várhatóan korábban jelenik meg, akkor a várható értéket a a szilárdság aktuális szintjének megfelelõen csökkenteni kell. Most feltételezzük, hogy az elsõ repedés 8 napos kor után jön létre. E s α s.eff := α E s.eff = c.eff Terhek, igénybevételek: A gerenda önsúlya és egyéb állandó jellegû terhek g karakterisztikus értéke összesen: k := 6 k m 77

78 VII. gyakorlat A gerendát terhelõ esetleges jellegû terhek karakterisztikus értéke: q k := 0 k ψ m := 0.6 A kvázi állandó teherkombinációban számítható teher: p qp := g k + ψ q k L M qp := p qp M 8 qp = km φ Használhatósági határállapotok vizsgálatakor alakhibával nem d := h c φ k d = 360 mm számolunk, így kedvezõtlen vaselmozdulást nem kell számításba venni. Keresztmetszeti jellemzõk, alakváltozások, repesztõnyomaték: A keresztmetszet jellemzõi I. feszültségi állapotban: x h x b x E c.eff = A s ( E s E c.eff ) ( d x) + b ( h x) E c.eff A keresztmetszet jellemzõi II. feszültségi állapotban (berepedt keresztmetszet): x b x E c.eff ( ) 3 = A s E s ( d x) x I = mm 3 x I h x I I I := b + b + A 3 3 s ( α s.eff ) ( d x I) I I = mm 4 f ct.eff I I M cr := M h r = 0.95 km < M qp megreped! I A középsõ keresztmetszetben számítható görbület I. feszültségi állapot feltételezésével: κ I := M qp E c.eff I I κ I = mm x II = mm 3 x II I II := b + A 3 s α s.eff ( d x II) I II = mm 4 A középsõ keresztmetszetben számítható görbület II. feszültségi állapot feltételezésével: M qp κ II := κ E c.eff I II = II mm Megjegyzés: A számítási módszer csak akkor alkalmazható, ha a betonacél rugalmas állapotban marad. Az alakváltozás Eurocode szerinti számítása: A következõkben a ζ kiszámításához szükséges mennyiségeket határozzuk meg: σ s Az acélbetétben számítható feszültség berepedt állapotot feltételezve. Kiszámításának részletes szabályait lásd az elméleti összefoglalóban. ( ) M qp d x II α s.eff σ s := σ I s = rugalmas II β a teher tartósságát és ciklikusságát veszi figyelembe. Értéke:,0, ha egyszeri, rövididejû a terhelés. 0,5, ha tartós vagy ismétlõdõ a teher. A szabályzat azért ad több értéket, mert a repedéstágasság értékét elvileg bármilyen teherre meghatározhatjuk. A vb szerkezetek repedéstágasságát kvázi állandó teherszinten korlátozzuk. Így β értéke 0,5-re veendõ fel. σsr β := 0.5 Az acélbetét feszültsége a repesztõnyomaték hatására a berepedés után (második feszültségállapot) 78

79 VII. gyakorlat σ sr := M cr ( d x I II ) α s.eff II σ sr = ζ := β σ sr σ s ζ = A km görbülete a maximális igénybvétel helyén EC szerint: ( ) κi κ EC := ζ κ II + ζ κ EC = mm A tartó maximális lehajlásának meghatározása (egyszerûsített módszer): Az elõbb vázolt módszer a tartó minden alakváltozásának meghatározására alkalmas. Így nem csak a görbületet, hanem az adott km. elfordulását vagy lehajlását is számíthatjuk a megismert módszerrel. Az egyszerûsített módszer esetén azzal, a mechanikában gyakran alkalmazott, közelítéssel élünk, hogy a keresztmetszet merevsége a tartó teljes hossza mentén állandó. (yilvánvaló, hogy ez egy a középsõ tartományában berepedt, a támasz közelében repedésmentes vasbeton gerenda esetén nem így van.) A tartó teljes hossza mentén a maximális nyomaték helyén számított merevséggel számolunk. Az így kapott érték a valódinál nagyobb, tehát a módszer a biztonság javára közelít. Kéttámaszú tartó esetében egyenletesen megoszló teher esetén a lehajlást az ismert, zárt összefüggéssel számíthatjuk: (A görbület értéke önmagában ritkán érdekes egy tartó esetében.) 5 e I := 384 ( p qp ) 5 e II := 384 ( p qp ) L 4 E c.eff I I L 4 E c.eff I II e I =.5 mm e II = mm ( ) ei e EC := ζ e II + ζ e EC = 4.74 mm A tartó a csatlakozó szerkezetek károsodását megelõzõ lehajláskorlátozást nem teljesíti. L e EC = 4.74 mm < = 0 mm 50 A tartó a szerkezetek megfelelõ mûködését biztosító lehajláskorlátozást teljesíti. Megjegyzés: A lehajlás általánosságban a görbületnek a tartó hossza mentén történõ kétszeri integrálásával kapható. Az integráláson alapuló módszer megismerése azért is hasznos, mert összetettebb tartószerkezetek esetén a lehajlás zárt képlete általában nem ismert, annak levezetése körülményes. > L 500 = 0 mm 79

80 VII. gyakorlat 7.. példa Határozza meg a tartó maximális repedéstágasságát! A repedéstágasság értékét a legnagyobb repedéstávolság és a repedések közötti tartományban az acélbetétben valamint a betonban számítható megnyúlás különbségének szorzataként kaphatjuk. A repedéstágasság megfelelõségét a tapadásos feszítõbetétet tartalmazó szerkezet esetén gyakori kombinációban, minden más betonszerkezet esetében kvázi állandó teherkombinációkban kell igazolni. A repedéstágasság értékét természetesen bármely más teherkombinációból származó igénybevételre meghatározhatjuk. (A keresztmetszet az elõzõvel azonos) A keresztmetszet geometriai méretei és vasalása: h b φ := 00mm h := 400mm := 0mm n := 4db A keresztmetszetben nincs feszítõbetét. b ( ) π A p := 0 φ A s := n A 4 s = Betonfedés: c := 0mm φ k := 0mm φ d := h c φ k d = 360 mm A tartón számítható (mértékadó) hajlítónyomaték kvázi állandó teherkombinációban: Anyagjellemzõk: Az acél rugalmassági modulusa: E s := 00 k S500B A beton rugalmassági modulusának várható értéke: E cm := 30 k C0/5 M qp := 0km.05 E cm A beton alakváltozási tényezõje: φ t := E c.eff := E c.eff = φ t Értéke az alakváltozás számításakor leírtak szerint határozható meg. f ct.eff. E s := α s.eff := α E s.eff = c.eff Használhatósági határállapotok esetén az anyagok szilárdságának és a geometriai adatoknak a várható értékét vesszük számításba. Ezért nincs szükség kedvezõtlen vaselmozdulás figyelembe vételére, amellyel a geometriai adatok szélsõ értékét lehet elõállítani. Az. példában meghatároztuk a km. repesztõnyomatékát. Az km.-et terhelõ nyomaték ezt meghaladja, így a tartó bereped. 80

81 VII. gyakorlat A keresztmetszet jellemzõi második feszültségállapotban: x b x E c.eff = A s E s ( d x) x II := Find( x) x II = mm 3 x II E s I II := b + A 3 s d x E ( II) I II = mm 4 c.eff A nyúláskülönbségek meghatározása: A következõkben a repedések között az acélban és a betonban fellépõ átlagos nyúlás közti különbség ( ε) meghatásrozásához szükséges mennyiségeket számítjuk ki. σ s Az acélbetétben számítható feszültség II. feszültségi állapotot feltételezve. Kiszámításának részletes szabályait lásd az elméleti összefoglalóban. ( ) M qp d x II α s.eff σ s := σ I s = Az acélbetét rugalmas marad, II alkalmazhatók az összefüggések. A ceff a hatékony húzott betonzóna területe h x II h h cef := min.5 ( h d),, h 3 cef = 67.6 mm A ceff := b h cef A ceff = k t A s + ξ Ap ρ peff := ρ A peff = ceff A teher tartósságától függõ tényezõ. Értéke 0,6, ha a teher rövididejû. 0,4, ha a teher tartós. A p = 0 k t := 0.4 ξ definíciója a zh-ra felkészítõ példák között. f ct.eff σ s k t + α s.eff ρ peff ρ peff σ s ε := max, 0.6 E s E ε = 0.49 % s ( ) Repedések maximális távolságának meghatározása: A repedések egymástól mért távolságát attól függõen kell meghatározni, hogy az acélbetétek tengelyei egymáshoz képest közel, vagy távol helyezkednek el. A két eset között az alábbi összefüggés alapján teszünk különbséget: φ t h := 5 c + t h = 50 mm Az acélbetétek távolsága: φ b ( c + φ k) t := t = 40 mm t < t n h Az acélbetétek tehát egymáshoz közel helyezkednek el. Különbözõ átmérõk esetén egyenértékû átmérõt kell számítani. n φ + n φ Ahol n és n a különbözõ átmérõjû acélbetétek φ eq := φ darabszáma az alsó sorban. (ti. az alsó sor betéteinek eq = 0 mm n φ + n φ átmérõje befolyásolja a repedéstágasságot) A repedések maximális távolságának meghatározása: k a beton és az acélbetét közti tapadás milyenségét figyelembe vevõ tényezõ. Értéke 0,8 bordás acélbetét esetén.,6 sima acélbetét esetén. 8

82 VII. gyakorlat k a keresztmetszeten belüli nyúlás alakulását figyelembe vevõ tényezõ. 0,5 hajlítás esetén,0 tiszta húzás esetén (alapeset) Külpontos húzás esetén közbensõ értéket kell alkalmazni. ε + ε k := 0.8 k := Ahol ε és ε a szélsõ szálakban számítható nyúlás berepedt ε km. feltételezésével. A húzás pozitív. ε >ε k := 0.5 Külpontos nyomás esetén 0,5 érték alkalmazandó. φ eq s rmax := 3.4 c k k s rmax = mm ρ peff A repedéstágasság értéke: s rmax ( ε) w k := w k = 0.56 mm < 0,3mm (A határérték a szerkezet kitéti osztályától és megfelel jellegétõl függ) Megjegyzés: Ha az acélbetétek távolsága a határértéknél nagyobb, a repedések legnagyobb távolsága: s rmax. :=.3 h x II ( ) 7.3. példa Határozza meg a tartó maximális repedéstágasságát! A tartó egyirányban teherviselõ lemez. 00 cm h Legyen a kvázi állandó kombinációban számítható hajlítónyomaték értéke: h := 00mm φ := mm n := 6 db m m qp := A keresztmetszet geometriai méretei és vasalása: 40 km m Az egyirányban teherviselõ lemezek számítása egy m széles gerenda számításával azonosan végezhetõ. Anyagjellemzõk: E s := 00 k S500B E cm 30 k.05 E cm := C0/5 φ t := E c.eff := + φ t f ctm :=. f ct.eff := f ctm ( ) π E s φ α s.eff := α E s.eff = a s := n c.eff 4 A betonfedés értéke: c := 0mm Vonal mentén megtámasztott φ födémek nem tartalmaznak kengyelt. d := h c d = 74 mm A keresztmetszet viselkedése I. és II. feszültségi állapotban: A repesztõnyomaték számítása: x E c.eff x h x = a s ( E s E c.eff ) ( d x) + ( h x) E c.eff x I = 04.7 mm 8

83 VII. gyakorlat ( ) 3 3 x I h x I I I := + + a 3 3 s ( α s.eff ) ( d x I) I I = m mm4 f ct.eff I I m cr := m h r = I m km < m qp megreped! A keresztmetszet jellemzõi II. feszültségi állapotban: x x E c.eff = a s E s ( d x) x II := Find( x) x II = mm 3 x II E s I II := + a 3 s d x E ( II) I II = c.eff m mm4 ε meghatározása: ( ) m qp d x II α s.eff σ s := σ I s = II A ceff a hatékony húzott betonzóna területe A betonacél rugalmas marad, alkalmazhatók a képletek. h x II h h cef := min.5 ( h d),, h 3 cef = 48. mm A ceff := h cef A ceff = m mm a s + ξ ap ρ peff := ρ A peff = 0.04 k t := 0.4 ceff f ct.eff σ s k t + α s.eff ρ peff ρ peff σ s ε := max, 0.6 E s E ε = 0.5 % s ( ) φ t h := 5 c + t h = 30 mm Az acélbetétek távolsága: t := t = mm t > t n h Az acélbetétek tehát egymástól távol helyezkednek el. Ha az acélbetétek távolsága a határértéknél nagyobb, a repedések legnagyobb távolsága: s rmax. :=.3 h x II s rmax. = 0.88 m ( ) A repedéstágasság értéke: s rmax. ( ε) w k := w k = 0.8 mm < 0,3 mm megfelel 83

84 Kiegészítő anyag az I. gyakorlathoz KIEGÉSZÍTŐ AYAG AZ I. GYAKORLATHOZ Gyengén -, normálisan - és túlvasalt vasbeton keresztmetszetek monoton növekvő hajlítónyomatékkal szembeni viselkedésének vizsgálata Készítették: Klinka Katalin és Völgyi István A vizsgálat során alkalmazott geometria jellemzők: h := 500mm b := 300mm 500 As 450 d := 450mm (A hajlítónyomaték alul okoz húzást) 300 A vizsgálat során alkalmazott anyagjellemzők definiálása: A repedésmentes beton A berepedt beton σ(ε) diagramja: σ(ε) diagramja: A betonacél σ(ε) diagramja: c[mpa] c[mpa] σs[mpa] 0,7 0,04 0,585 3,5,9 E c = 8.3 k εc[% ] 0,7 0,585 3,5 εc[% ] εs' ,7, εs[%0] A beton anyagjellemzői: σs' E s = 00 k f c.c f c.c := 0.7 f c.t :=.9 ε := ε E = ε c.e := ε ε c.e = c f c.t ε := ε E = 0.04 ε cu := 3.5 c A betonacél anyagjellemzői: f y f y := 434 ε s.e := ε E s.e =.7 ε su := 5 s E s A betonacél és a beton rugalmassági modulusának aránya: α E := α E E = 0.93 c Megjegyzés: A következő vizsgálatokban a betonkeresztmetszet geometriai méretei és a felhasznált beton illetve betonacél merevségi, szilárdsági jellemzői azonosak. Csak az alkalmazott betonacél mennyisége változik. Feltételezzük továbbá, hogy a keresztmetszetek hasznos magassága változatlan marad. A vizsgálat során csak az első terhelést veszük figyelembe, a visszaterheléssel, a reverzíbilitással, a maradó alakváltozásokkal és az újra terhelés esetével nem foglalkozunk. Meg kell még azt is állapítanunk, hogy a vizsgálatot a gerenda egyetlen keresztmetszetében végezzük el. 84

85 .. Vasbetonszerkezetek I. Kiegészítő anyag az I. gyakorlathoz M A M z 500 GYEGÉ VASALT VASBETO KERESZTMETSZET A-A metszet az alkalmazott húzott vasalás: n := darab φ := mm φ A s n φ π := A A 4 s = Az I. feszültségi állapotban levő (repedésmentes) vb. km. nyomatékfüggvénye: A vetületi egyenletből megkapjuk a repedesmentes vasbeton keresztmetszet súlypontjának helyét: M A A M z h A-A metszet As b y x d ε=κ*x { εs κ x { ε=κ*(h-x) ε*ec { σs Εc. 3x { ε*ec. 3(h-x) Belső erők κ x I E c b x I κ ( h x I) E c ( h x I ) b κ ( d x I ) E c A s κ ( d x I ) E s A s = 0 x I E c b x I ( h x I) E c ( h x I ) b ( d x I ) E c A s ( d x I ) E s A s = 0 Az I. feszültségi állapothoz tartozó ideális keresztmetszet inerciája: x I = 54mm Fc.c Fc.t Fs 3 bx I b ( h x I) 3 I I := + + A 3 3 s ( d x I ) ( α E ) I I = 3356.cm 4 M I ( κ) := E c I I κ Az I. feszültségi állapotban nyomaték a κ görbület függvényében: Az I. feszültségi állapot határát jelentő görbület értéke: ε A húzott beton szélsőszál határnyúlásához tartozó görbület: κ I := κ h x I = I mm A II. feszültségi állapotban levő vb. km. nyomatékfüggvénye: A vetületi egyenletből megkapjuk a II. fesz. állapotban a vasbeton keresztmetszet súlypontjának helyét: A A-A metszet ε ε=κ*x { σ ε*ec { Belső erők M M z A h x y As b d κ x { εs ε=κ*(h-x). 3 x σs Εc Fc.c= *κ*x*ec*b*x-κ*(d'-x)*ec*a's Fs=κ*(d-x)*Es*As x II E c b x II ( d x II ) E s A s = 0 x II = 78.3mm A II. feszültségi állapothoz tartozó ideális keresztmetszet inerciája: 3 I II := x II b + A 3 s α E ( d x II) I II = 38955cm 4 Az II. feszültségi állapotban nyomaték a κ görbület függvényében: M II κ ( ) := E c I II κ 85

86 . x. Vasbetonszerkezetek I. Kiegészítő anyag az I. gyakorlathoz II c II A II. feszültségi állapot határát jelentő görbület értéke: ε A nyomott szélsőszál rugalmassági határához tartozó nyúlásához a görbület: κ := κ x = II mm ε s.e A húzott acél rugalmassági határához tartozó nyúlásából kapott görbület: κ s := κ d x s = II mm κ A II. feszültségi állapot határát adó κ II görbület: κ II := min (a húzott acél eléri a rugalmassági határát) κ s κ II = mm A II. és a III. feszültségi állapot közötti intermedier állapotban levő vasbeton km. nyomatékfüggvényei: Ha a beton rugalmas állapotban van, az acélbetétek folynak, ekkor a nyomatékfüggvény: x fy ( κ) := f y A s κ E c b M fy ( κ) ( ) := κ E c b x fy κ ( ) d 3 x fy κ Ha a beton rugalmas és képlékeny állapot határán van, az acélbetétek folynak, ekkor a görbület: ε x ε κ εc.e := x M E c b x A M z A f y A s = 0 A beton képlékeny állapotban van, az acélbetétek folynak: h A-A metszet y As b x d εc. ε { κ a εs f c σ { σs Belső erők Fc.c, Fc.c, Fs x = 6.mm κ εc.e = mm Vetületi egyenlet: ε c.e b ( x a) f c.c + b a f c.c A s f y = 0 ahol a = κ ε c.e b x κ ε c.e f c.c + b f c.c A s f y = 0 κ átalakítva ε c.e ε c.e bx f c.c b f c.c + κ b f c.c A s f y = 0 ebből a semleges tengely helyének a függvénye: κ x fc.c ( κ) ε c.e ε c.e f c.c b + κ f c.c b A s f y κ := f c.c b Ekkor nyomaték a κ függvényében: M fc.c κ ( ) := b x fc.c ( κ) ε c.e κ f c.c d x fc.c ( κ) ε c.e κ + ε c.e b f c.c d x fc.c κ κ ( ) + ε c.e 3 κ 86

87 Kiegészítő anyag az I. gyakorlathoz III. feszültségi állapotban levő vasbeton keresztmetszet számítása: A betonacél eléri a határnyúlását. ε c.e ε su ε b c.e x ( d x) ε c.e f ε su c.c + b ( d x) f ε su c.c A s f y = 0 a ε c.e = ebből a = ( d x) b ( x a) f d x c + ε su b a f c A s f y = 0 x = 35.4mm ε su A görbület értéke III. feszültségi állapotban: κ III := κ d x III = mm A beton szélső szálának összenyomódása: ε := κ III x ε =. Tényleg nem éri el a határösszenyomódás értékét. Megjegyzés: diagramokon az értékek m-ban és /m-ben értendők. A szemléltetés kedvéért ábrázoljuk egy diagramon a különböző állapotokhoz tartozó nyomaték függvényeket: M I ( κ) M II ( κ) M fy ( κ) M fc.c ( κ) A gyengén vasalt vasbeton keresztmetszet M(κ) görbéje: A viselkedést az előbbi nyomaték-függvények metszéspontjai alapján kapjuk: κ M gy ( κ, h gy ) κ 87

88 Kiegészítő anyag az I. gyakorlathoz ORMÁLISA VASALT VASBETO KERESZTMETSZET M A M z A 500 A-A metszet az alkalmazott húzott vasalás: n := 4 darab φ := 0mm A s n φ π := A 4 s = 56.6 Az I. feszültségi állapotban levő (repedésmentes) vb. km. nyomatékfüggvénye: x I E c b x I ( h x I) E c ( h x I ) b ( d x I ) E c A s ( d x I )E s A s = 0 3 bx I I I := 3 ( ) := E c I I M I κ b h x I + + A 3 s ( d x I ) α E ( ) 3 κ ( ) Az I. feszültségi állapot határát jelentő görbület értéke: x I = 65mm I I = 3356.cm 4 ε κ I := κ h x I = I mm A II. feszültségi állapotban levő vb. km. nyomatékfüggvénye: x II E c b x II ( d x II ) E s A s = 0 x II = 6.3mm 3 I II := x II b + A 3 s α E ( d x II) I II = 5648cm 4 I I h n := M I II κ II ( ) := E c I II A II. feszültségi állapot határát jelentő görbület értéke: ε A nyomott szélsőszál rugalmassági határához tartozó nyúlásához a görbület: κ := κ x = II mm ε s.e A húzott acél rugalmassági határához tartozó nyúlásából kapott görbület: κ s := κ d x s = II mm κ A II. feszültségi állapot határát adó κ II görbület: (a nyomott szélsőszál eléri a rugalmassági határát) κ κ II := min κ s κ II = mm 88

89 Kiegészítő anyag az I. gyakorlathoz A II. és a III. feszültségi állapot közötti intermedier állapotban levő vasbeton km. nyomatékfüggvényei: Ha beton képlékeny állapotban van, az acélbetétek rugalmasak, ekkor a nyomatékfüggvény: b ( x a) f c.c + b a f c.c A s E s ε s = 0 ε s = κ ( d x) ehhez tartozó betonacél feszültség: σ s = E s ε s ε c.e a = behelyettesítve a vetületi egyenletbe: κ ε c.e b x κ ( ) x f c.c b + A s E s κ ε c.e f c.c + b f c.c A s E s κ ( d x) = 0 átrendezve κ ε c.e f c.c b κ A semleges tengely helye a κ függvényében: A nyomaték a κ függvényében: M fc.c κ ( ) := b x fc.c ( κ) ε c.e κ ε c.e + f c.c b A s E s κ d = 0 κ f c.c d x fc.c ( κ) x fc.c ( κ) ε c.e ε c.e f c.c b + κ f c.c b A s E s κ d κ := f c.c b + A s E s κ ε c.e κ ε c.e + b f c.c d x fc.c ( κ) κ ε c.e + 3 κ Ennek az állapotnak a határát az acélbetétek megfolyása jelenti, az ehhez tartozó görbület értéke: ε c.e ε s.e a = ebből a = d x ε c.e ( d x) ε s.e A semleges tengely helye a vetületi egyenletből meghatározható: ε b c.e x ( d x) ε c.e f ε s.e c.c + b ( d x) f ε s.e c.c A s f y = 0 x = 03.mm ε s.e Az acélbetétek megfolyásához tartozó görbület értéke: κ εs.e := κ d x εs.e = mm A beton képlékeny állapotban van, az acélbetétek folynak, ekkor a nyomatékfüggvény: Vetületi egyenlet: b ( x a) f c.c + b a f c.c A s f y = 0 A semleges tengely helye a κ függvényében: A nyomaték a κ függvényében: M fy κ ( ) := b x fy ( κ) ε c.e κ f c.c d x fy ( κ) x fy ( κ) ε c.e κ ε c.e ε c.e f c.c b + κ f c.c b A s f y κ := f c.c b ε c.e + b f c.c d x fy ( κ) κ ε c.e + 3 κ 89

90 Kiegészítő anyag az I. gyakorlathoz III. feszültségi állapotban levő vasbeton keresztmetszet számítása: A vasbeton nyomott, felső szélső szálban az összenyomódás eléri a beton határösszenyomódásának értékét, ezért a vb. keresztmetszet a III. feszültség állapotba kerül (ε c,felső =ε c,u =3,5%o)! A semleges tengely helye a vetületi egyenletből meghatározható: b ( x a) f c + b a f c A s f y = 0 ε c.e b x x ε cu ε c.e f c.c + b x f ε cu c.c A s f y = 0 x = 85.4mm ε cu A görbület értéke III. feszültségi állapotban: κ εcu := κ x εcu = mm A szemléltetés kedvéért ábrázoljuk egy diagramon a különböző állapotokhoz tartozó nyomaték függvényeket: Megjegyzés: diagramon az értékek m- ben és /m-ben értendők M I ( κ) M II ( κ) M fy ( κ) M fc.c ( κ) A normálisan vasalt vasbeton keresztmetszet M(κ) görbéje: A viselkedést az előbbi nyomaték-függvények metszéspontjai alapján kapjuk:..0 5 κ M n ( κ, h n ) κ 90

91 Kiegészítő anyag az I. gyakorlathoz 6φ0 M A A M z 500 TÚLVASALT KERESZTMETSZET VISELKEDÉSE A-A metszet az alkalmazott húzott vasalás: n := 6 darab φ := 0mm A s n φ π := A 4 s = 885 Az I. feszültségi állapotban levő (repedésmentes) vasbeton keresztmetszet nyomatékfüggvénye: x I E c b x I ( h x I) E c ( h x I ) b ( d x I ) E c A s ( d x I )E s A s = 0 3 bx I b ( h x I) 3 I I := + + A 3 3 s ( d x I ) ( α E ) Az I. feszültségi állapot határát jelentő görbület értéke: x I = 7mm I I = cm 4 ( ) := E c I I ε κ I := κ h x I = I mm A II. feszültségi állapotban levő vb. km. nyomatékfüggvénye: x II E c b x II ( d x II ) E s A s = 0 x II = 89.mm 3 I II := x II b + A 3 s α E ( d x II) I II = 07846cm 4 M II κ M I κ ( ) := E c I II A II. feszültségi állapot határát jelentő görbület értéke: ε A nyomott szélsőszál rugalmassági határához tartozó nyúlásához a görbület: κ := κ x = II mm ε s.e A húzott acél rugalmassági határához tartozó nyúlásából kapott görbület: κ s := κ d x s = II mm κ κ A II. feszültségi állapot határát adó κ II görbület: (a nyomott szélsőszál eléri a rugalmassági határát) κ κ II := min κ s κ II = mm A II. és a III. feszültségi állapot közötti intermedier állapotban levő vasbeton km. nyomatékfüggvényei: A beton képlékenyedik, az acélbetétek rugalmas állapotban vannak, ekkor a nyomatékfüggvény: b ( x a) f c.c + b a f c.c A s E s ε s = 0 σ s = E s ε s ε c.e ε c.e b x f c.c + κ b f c.c A s E s κ ( d x) = 0 κ ε c.e f c.c b κ A semleges tengely helye a κ függvényében: x fc.c ( κ) := A nyomaték a κ függvényében: M fc.c κ ( ) := b x fc.c ( κ) ε c.e κ f c.c d x fc.c ( κ) ε c.e κ ε c.e + f c.c b A s E s κ d κ f c.c b + A s E s κ ε c.e + b f c.c d x fc.c ( κ) κ ε c.e + 3 κ 9

92 Kiegészítő anyag az I. gyakorlathoz III. feszültségi állapotban levő vasbeton keresztmetszet számítása: A vasbeton km. nyomott, felső szélső szálában az összenyomódás eléri a beton határösszenyomódásának értékét: ε cu =3,5%o, így III. fesz. állapotba kerül, mielőtt az acél megfolyna A semleges tengely helye a vetületi egyenletből meghatározható: ε c.e a ε c.e = ebből a = x ε cu d x ε cu ε cu ε cu κ = ε x s = κ ( d x) = ( d x) b ( x a) f x c + b a f c A s E s ε s = 0 ε c.e b x x ε cu ε c.e ε f c.c b x cu + f ε cu c.c A s E s ( d x) = 0 x x = 77.9mm ε cu A görbület értéke III. feszültségi állapotban: κ εcu := κ x εcu = mm Ekkor az acélban keletkező megnyúlás: ε s := κ εcu ( d x) ε s =.68 < ε s.e =.7 A szemléltetés kedvéért ábrázoljuk egy diagramon a különböző állapotokhoz tartozó nyomaték függvényeket: M fc.c ( κ) M I ( κ) M II ( κ) A túlvasalt vasbeton keresztmetszet M(κ) görbéje: κ M t ( κ, h t ) κ 9

93 κ Kiegészítő anyag az I. gyakorlathoz A gyengén -, a normálisan - és túlvasalt vasbeton keresztmetszet M(κ) görbéi ( ) ( ) ( ) M gy κ, h gy M n κ, h n M t κ, h t MEGÁLLAPÍTÁSOK (összegezve): A VB. KM. YOMATÉK-GÖRBÜLET ÖSSZEFÜGGÉSE Ábrázoljuk a példákban szereplő vb. keresztmetszet a nyomatékainak alakulását a görbületváltozásának függvényéban, ha azt monoton növekvő nyomaték terheli, (és csak az első terhelést veszük figyelembe, a visszaterheléssel, a reverzíbilitással, a maradó alakváltozásokkal és az újra terhelés esetével nem foglalkozunk)! (A vizsgálatot részletesen lásd a Kiegészítő anyag az I. gyakorlathoz c. részben a normálisan vasalt keresztmetszetnél) κ M [km] MIII=98,96 98,488 intermedierállapotiii. fesz. áll. MII=03,3 (első képlékeny jelenség) Mcr=9,04 II. fesz. áll. I. fesz. áll. κiii=,888 0,879 κii=0,3603 κcr=0,043 κ [ 0-5 mm] A vizsgált, monoton növekvő nyomatékkal terhelt vb. keresztmetszet M(κ) görbéjének I. fesz. állapothoz tartozó szakasza egy adott meredekségű egyenessel jellemzhető, amelynek a határát a repesztőnyomaték értéke adja. Ekkor a vb. keresztmetszet bereped, így az inerciája lecsökken ( I II < I I ), mivel κ= M, ezért nyomaték állandó nagysága mellett κ EI szükségszerűen növekedni fog. A II. feszültségi állapot is egy egyenessel jellemezhető, a meredeksége nyilvánvalóan kisebb lesz, mint az I. feszültségi állapoté, hisz a berepedt km. inerciája is kisebb. A II. fesz. állapotot egy nemlineáris intermedier állapot követ, ebben az intermedier állapotban először vagy a beton, vagy a betonacél/ok kezdenek el képlékenyen viselkedni, majd nyomaték növekedésével mind a beton és a betonacélok is képlékeny állapotba kerülnek. Az M(κ) görbének a végpontja - és valóban csak egyetlen pontja - a III. feszültségi állapot. 93

94 Kiegészítő anyag az I. gyakorlathoz EGYSZERESE VASALT ÉGYSZÖGKERESZTMETSZET HAJLíTÓYOMATÉKKAL SZEMBEI VISELKEDÉSÉEK ELEMZÉSE YOMATÉK-GÖRBÜLET ÖSSZEFÜGGÉS A gyengén -, a normálisan - és túlvasalt vasbeton keresztmetszet M(κ) görbéi a következő diagramon láthatóak: Megjegyzés: a vizsgálat során a beton bilineáris anyagmodelljét használtuk. M [km] 63,63 6φ0 túlvasalt 98,96 4φ0 normálisan vasalt 7,53 03,3 4,66 3,663 φ0 gyengén vasalt 0,309 0,584 0,879,60,888 6,03 κ [0-5 mm] A diagramon követhető, hogy a repesztőnyomaték nagysága alig függ a vasmennyiségtől. Az is megfigyelhető, hogy ha kevés a betonacél a vb. keresztmetszetben (I I >>I II ) az I. feszültségi állapothoz tartozó egyenes meredekségéhez képest jelentősen lecsökken a II. feszültségi állapothoz tartozó egyenes meredeksége, míg sok vas esetén ez alig csökken. A gyengén vasalt keresztmetszetnél a felvehető M Rd hajlítónyomaték értéke nem sokkal nagyobb, mint a repesztőnyomaték, és már egy igen alacsony nyomatékértéknél nagy alakváltozások játszódnak le. A túlvasalt keresztmetszetnél pedig az látható, hogy a III. feszültségi állapot elérése előtt csak korlátozottan képes alakváltozásokra. A normálisan vasalt vb. keresztmetszetek viselkedése mindezekkel szemben kedvező, hisz megfelelően nagy nyomatékot képes felvenni a repesztőnyomaték felett és a keresztmetszet tönkremenetele előtt jelentősen nagy képlékeny alakváltozásokra képes. A "megfelelően" nagy nyomatéki teherbírás és a "jelentősen nagy" képlékeny alakváltozások tisztázása a vizsgálatot részletesen lásd a Kiegészítő anyag az II. gyakorlathoz c. részben. 94

95 II. gyakorlat KIEGÉSZÍTŐ AYAG AZ II. GYAKORLATHOZ Egyszeresen vasalt négyszög keresztmetszet hajlítónyomatékkal szembeni viselkedésének elemezése Készítették: Klinka Katalin és Völgyi István Az elemzés során az alábbi vasbeton keresztmetszet viselkedését kísérjük végig egyre növekvő húzott vasmennyiségek mellett: A vizsgálat során alkalmazott geometria jellemzők: 500 As h := 500mm b := 300mm d := 450mm A vizsgálat során alkalmazott anyagjellemzők definiálása: A beton σ(ε) diagramja: A betonacél σ(ε) diagramja: A hajlítónyomaték alul okoz húzást f ck αf cd σc C6/0 σck ασcd S500B -f yk -f yd σs σyk σyd εc=0,7 εc[%0] εcu=3,5 εs' f yd εsu=-5 εs[%o] ' σyd ' σyk Es f yd' f yk' σs ' A beton anyagjellemzői: C6/0 f ck f ck := 6 f cd := f cd = 0.7 f ctm :=.9 ε cu := 3.5 γ c A betonacél anyagjellemzői: S500B f yk f yk := 500 f yd := f yd = ε su := 5 E s = 00 k γ s 560 ξ c0 := ξ f yd c0 = := d ξ c0 0 =.mm Megjegyzés: A vizsgálat a keresztmetszet tönkremenetelét okozó görbületre ill. nyomatékra korlátozódik. Az EC szerkesztési szabályok ad meg vasbeton keresztmetszetekben előírt minimális és maximális vasmennyiségre, ahhoz hogy egyátalán vasbetonként számolhatóak legyenek: 0.6 f ctm b d A smin := max f yk A smin = b d A smax := 4%b d A smax =

96 . Vasbetonszerkezetek I. II. gyakorlat A vasbeton keresztmetszet tönkremeneteli módját tekintve három fő csoportot különböztetünk meg: - a gyengén vasalt keresztmetszetek, - a normálisan vasalt keresztmetszetek és - a túlvasalt keresztmetszetek σc[mpa] C6/0 f cd=0,7 εc[%0] 0,7 εcu=3,5 xa_b h=500 mm d=450 mm xc.b_c xb_c As εs "a" GYEGÉ VASALT KM. εsu=-5 εsu=-5 b=300 mm "b" ORMÁLISA VASALT KM. f yd Es "c" TÚLVASALT KM. =,7 ε σs[mpa] ' f yd Es =,7 S500B εsu=5 εs[%0] ' f yd=434,8 σs Határozzuk meg először, mekkora vasmennyiségek esetén van a vb. keresztmetszet éppen a viselkedésmódok határán! Gyengén vasalt (a) és normálisan vasalt (b) keresztmetszet határa: Ilyen esetben a modellünk szerint a nyomott beton szélső szál összenyomdása éppen akkor merül ki (3.5 ), amikor az acélbetét elszakad (5 ). Számszerűen: xa_b cu=3,5%0 h d x a_b = és x d.a_b =.5 x a_b a_b As b εsu=5%0 3.5 d.a_b :=.5 ( ) A fenti összefüggéseket felhasználva, a vetületi egyenletből megkapjuk a vasmennyiséget: bx c.a_b α f cd = A s.a_b f yd.a_b = 44.mm bx c.a_b α f cd A s.a_b := A f s.a_b = 35.4 yd 96

97 II. gyakorlat ormálisan vasalt (b) és túlvasalt (c) keresztmetszet határa: Ekkor a nyomott zóna relatív magasság éppen a határhelyzettel egyenlő:.b_c := ξ c0 d.b_c =.mm A vetületi egyenletből megkapjuk a vasmennyiséget: bx c.b_c α f cd = A s.b_c f yd bx c.b_c α f cd A s.b_c := A f s.b_c = yd A következőkben meghatározzuk, hogyan alakul a három szakaszon a kmetszet határnyomatéka és a keresztmetszet relatív elfordulása a vasmennyiség függvényében: Gyengén vasalt keresztmetszet: A s f yd A nyomott betonzóna magassága vasmennyiség függvényében: A keresztmetszet határnyomatéka a vasmennyiség függvényében.a ( A s ) := M Rd.a A s b α f cd ( ) := A s f yd d.a A s Mekkora ekkor a keresztmetszet görbülete? Az acélbetét megnyúlása 5, ekkor a nyomott szélső száltól távolságra a beton összenyomódása 0,7 : ( ) κ Rda d.a = A keresztmetszet görbülete a vasmennyiség függvényében: A normálisan vasalt keresztmetszet: A nyomott betonzóna magassága:.b ( A s ) := A s f yd b α f cd A normálisan vasalt km. határnyomatéka a vasmennyiség függvényében A normálisan vasalt km. görbülete a vasmennyiség függvényében: κ Rd.a ( A s ) M Rd.b A s κ Rd.b ( A s ) 5.7 := d.a ( A s ) ( ) := A s f yd 3.5 :=.5.b ( A s ) A túlvasalt keresztmetszet: Most az acélbetét rugalmas állapotban van, így az fügvények meghatározása kicsit bonyolultabb feladat. 560 d 560 d σ s = 700 és bx.c α f cd = A s 700 c.c.c 560 d bx c.c α f cd = A s 700A x s c.c 560 d bx c.c α f cd A s + 700A x s = 0 c.c b α A valós fizikai jelentéssel bíró.c függvénye:.c ( A s ) f cd.c + 700A s.c A s 560 d = A s A s A s d b f cd := b f cd A túlvasalt km. határnyomatéka a vasmennyiség függvényében: A túlvasalt km. görbülete a vasmennyiség függvényében: M Rd.c A s κ Rd.c ( A s ) ( ) := bx c.c ( A s ) 3.5 :=.5.c ( A s ) ( ) d.b A s ( ) ( ).c A s α f cd d 97

98 II. gyakorlat Az egyszeresen vasalt vasbeton négyszög keresztmetszetek viselkedése a vasmennyiség függvényében: A szemléltetés érdekében ábrázoljuk külön-külön a görbületfüggvényeket: Megjegyzés: a grafikonokon az értékek m-ban, -ben és /m-ben vannak megadva. 0. ( ) ( ) ( ) κ Rd.a A s κ Rd.b A s 0.3 κ Rd.c A s A s A függvények metszéspontjai megadják a gyengén, a normálisan és a túlvasalt keresztmetszetek viselkedésének a határát. yilvánvaló, hogy ezen határokon belül a görbületet jellemző függvény más és más, tehát növekvő vasmennyiség mellett a valós viselkedést leíró görbületfüggvény a következő grafikonon látható: ( ) κ Rd.b ( A s ) κ Rd.a ( A s ) if A s < A s.a_b ( ) if A s.b_c A s κ Rd A s := M Rd A s κ Rd.c A s < < A smax ( ) := M Rd.b ( A s ) M Rd.a ( A s ) if A s < A s.a_b M Rd.c ( A s ) if A s.b_c A s < < A smax κ Rd ( A s ) A s ( ) M Rd A s A s 98

99 II. gyakorlat EGYSZERESE VASALT ÉGYSZÖGKERESZTMETSZET HAJLíTÓYOMATÉKKAL SZEMBEI VISELKEDÉSÉEK ELEMZÉSE YOMATÉK-GÖRBÜLET ÖSSZEFÜGGÉS A gyengén -, a normálisan - és túlvasalt vasbeton keresztmetszet M(κ) görbéi a következő diagramon láthatóak: (A vizsgálatot részletesen lásd a Kiegészítő anyag az I. gyakorlathoz c. részben) Megjegyzés: a vizsgálat során a beton bilineáris anyagmodelljét használtuk. M [km] 63,63 6φ0 túlvasalt 98,96 4φ0 normálisan vasalt 7,53 03,3 4,66 3,663 φ0 gyengén vasalt 0,309 0,584 0,879,60,888 6,03 κ [0-5 mm] 99

100 II. gyakorlat YOMATÉK - VASMEYISÉG ÉS GÖRBÜLET- VASMEYISÉG ÖSSZEFÜGGÉSEK Az elemzés során az alábbi vasbeton keresztmetszet viselkedését - hajlítónyomatékainak és görböletváltozásának alakulását - kísérjük végig egyre növekvő húzott vasmennyiségek mellett: A vizsgálat során a vb. keresztmetszetek III. feszültségi állaptban vannak, és beton merev-képlékeny anyagmodelljét használtuk. (A vizsgálatot részletesen lásd a Kiegészítő anyag az II. gyakorlathoz c. részben) MRd [km] 8,68 40,876 60,536 az As növelése kb. lineárisan növeli az MRd-t MRd= As*f yd*0,8*d az As növelése alig növeli az MRd-t GYEGÉ VASALT 35,39 634, ORMÁLISA VASALT TÚLVASALT As[ ] Az M Rd (A s ) diagramon látható, hogy amíg a keresztmetszet normálisan vasalt vasmennyiség növekedése jelentős mértékben növeli a vasbeton keresztmetszet hajlítónyomatéki ellenállását, addig a túlvasalt keresztmetszetnél a vasmennyiség növelése alig növeli meg a határnyomaték értékét. Jól látszik az is, hogy ha nem túlvasalt a km. akkor az M Rd kb. lineárisan függ a A s vasmennyiségtől, ezért kielégítően pontos közelítést ad (lásd a kék egyenest a 0. diagramon), ha a határnyomatékot a következő egyszerű képlettel becsüljük: --- M Rd = A s f yd 0.8 d Tanulságként levontató, hogy nem érdemes a vasbeton keresztmetszetben vasmennyiséget úgy növelni, hogy a túlvasalt keresztmetszetet kapjunk, mert az gazdaságtalan lenne. Rd[ 0-5 mm] 6,333 A κ Rd (A s ) diagramon látható, hogy a vasmennyiség növekedésével egyre kisebb alakváltozásra lesz képes a tartó. Túlvasalt esetben pedig egészen kis alakváltozásra képes, aminek az a következménye, hogy a képlékeny nyomatékátrendeződés nem tud lejátszódni.,6 0,968 35,39 634, As[ ] GYEGÉ VASALT ORMÁLISA VASALT TÚLVASALT 00

101 Kiegészítő anyag az I. gyakorlathoz A következõ példákban a betonkeresztmetszet geometriai méretei és a felhasznált beton, illetve betonacél szilárdsági jellemzõi azonosak: A A-A metszet M M z A hajlítónyomaték alul okoz húzást A 300 4φ0 A repedésmentes beton A berepedt beton σ(ε) diagramja: σ(ε) diagramja: A betonacél σ(ε) diagramja c[mpa] c[mpa] σs[mpa] 0,7 0,7 0,04 εc[% ] 0,585 3,5,9 E c = 8.3 k Geometria jellemzõk definiálása: h := 500mm b := 300mm d := 450mm 0,585 3,5 d εc[% ] εs' ,7 σs',7-434 εs[%0] 5 E s = 00 k As b - az alkalmazott húzott vasalás: n := 4 db φ := 0mm A s n φ π := 4 A s = 56.6 Anyagjellemzõk definiálása: A beton anyagjellemzõi: A beton nyomószilárdsága: f c.c := 0.7 A beton húzószilárdsága: f c.t :=.9 f c.c A nyomott szélsõszál rugalmas határához tartozó nyúlás: ε := ε E = c ε c.e := ε ε c.e = f c.t A húzott szélsõszál határnyúlása: ε := ε E = 0.04 c ε cu := 3.5 A betonacél anyagjellemzõi: A betonacél folyáshatára: f y := 434 f y A betonacél folyási határához tartozó nyúlás: ε s.e := ε E s.e =.7 s Az acél határnyúlása: ε su := 5 E s A betonacél és a beton rugalmassági modulusának aránya: α E := α E E = 0.93 c 0

102 . Vasbetonszerkezetek I. Kiegészítő anyag az I. gyakorlathoz II. FESZÜLTSÉGI ÁLLAPOTBA LEVÕ VB. KM. SZÁMÍTÁSA..példa: Határozza meg az alábbi berepedt vb. km. II. feszültségi állapot végét jelentõ görbületét és a hozzá tartozó nyomatékot! A s b d h = 500mm b = 300mm d = 450mm A repedésmentes beton σ(ε) diagramja: 0,7 c[mpa] 0,585 3,5 εc[% ] A s = 56.6 A betonacél σ(ε) diagramja: = σs[mpa] f y = 434 ε c.e f c.c = 0.7 E c = 8.3 k εs' ,7, εs[%0] ε s.e =.7 E s = 00 k Megjegyzés: beton és betonacél s(e) diagramjánál is elegendõ lenne lineárisan rugalmas szakaszt megadni, hisz a betonacél a II. feszültségi állapotban nem éri el a diagram képlékeny szakaszát. ε σ Belső erők ε=κ*x ε*ec mivel κ 0 ezért végig oszthatunk vele x II E c b x II ( d x II ) E s A s = 0 x II = 6.3mm A II. feszültségi állapot határát adó κ II görbület számítása: ε A nyomott szélsõszál rugalmassági határához tartozó nyúlásához a görbület: κ := κ x = II mm ε s.e A húzott acél rugalmassági határához tartozó nyúlásából kapott görbület: κ s := κ d x s = II mm κ A II. feszültségi állapot határát adó κ II görbület: κ II := min κ (a nyomott szélsõszál eléri a rugalmassági határát) s κ II = mm A húzott acélbetét megfolyását okozó nyomaték nagysága: 3 M II = κ II E c x II b 3 ahol M A M A h A feladat megoldása: z A-A metszet y As b x d { κ + A s α E d x II x { ( ) εs ε=κ*(h-x) { Fc.c= *κ*x*ec*b*x 3 I II := x II b + A 3 s α E ( d x II) I II = 5648cm 4. 3 x σs Εc Fs=κ*(d-x)*Es*As A vetületi egyenletbõl megkapjuk a repedesmentes vasbeton keresztmetszet súlypontjának helyét: ( ) F c.c + F s xκ, = = 0 κ x II E c b x II κ ( d x II ) E s A s = 0 σs' M II = 03.3k m 0

103 Kiegészítő anyag az I. gyakorlathoz.3.példa: Határozza meg az alábbi vasbeton keresztmetszet felsõ-szélsõ szálának összenyomódását abban az esetben, ha a keresztmetszetre M=00 km nagyságú hajlítónyomaték hat! A betonkeresztmetszet geometriai méretei és a felhasznált beton, illetve betonacél szilárdsági jellemzõi, mint az elõzõ példákban. A feladat megoldása: Tegyük fel, hogy a beton és acél rugalmas állapotban vannak! A vetületi egyenletbõl megkapjuk a repedesmentes vasbeton keresztmetszet súlypontjának helyét: x II = 6.3mm A nyomatéki egyenlet: M = κ x II E c b x II ( ) d x II x 3 II + κ d x II E s A s ( ) ebbõl a görbületet megkapjuk κ = mm Feltevés ellenõzése: ε s := κ d x II ( ) ε s =.005 < ε s.e =.70 jó volt a feltevés, az acél rugalmas Felsõ szélsõ szál összenyomódása: ε c := κ x II ε c = < ε = jó volt a feltevés, a beton rugalmas 03

104 Kiegészítés-alakváltozás, repedéstágasság KIEGÉSZÍTÕ IFORMÁCIÓK Használhatósági határállapotok betonszerkezetek alakváltozása és repedéstágassága témakörhöz Készítette: Völgyi István A következõkben a VII. gyakorlat anyagának. mintapéldájához kívánunk kiegészítõ információkat közölni. A lehajlás értékének pontosított meghatározása. Most a gyakorlaton tett közelítés nélkül végezzük el a számítást, azaz a nyomaték értéke a tartó hossza mentén folyamatosan változik, ζ értéke nem konstans. Így a lehajlást csak a görbület függvényének tényleges integrálása segítségével határozhatjuk meg. κ I ( y) := ( ) L M( y) := p qp y M( y) E c.eff I I ( ) y p qp σ s ( y) κ II ( y) := M( y) E c.eff I II ( ) M( y) d x II α s.eff := I II Hol éri el a külsõ terhekbõl számítható nyomaték a repesztõnyomaték értékét? z:= m Given M( z) = M cr x rep := Find( z) x rep = 0.40m ζ( y) := β σ sr σ s ( y) 0 otherwise if M( y) > M cr ζ( y) 0.5 y Jól látható, hogy ζ értéke a repesztõnyomatékkal megegyezõ nyomaték mûködése esetén (vagyis közvetlenül a repedést követõen) 0,5. A támasz felett számítható véglapelfordulás, és lehajlás értéke I., II. feszültségállapotban, majd EC szerint: L α I := κ I ( y) dy 0 L α II := κ II ( y) dy α I = α II = 0.0 L α EC := ζ( y) κ II ( y) + ( ζ( y) ) κi ( y) dy 0 κ EC ( y) := ζ( y) κ II ( y) + ( ζ( y) ) κi ( y) L L e I := α I κ I ( y) 0 L e II := α II L κ II ( y) 0 α EC = L L y y dy dy e I =.5mm e II = 4.883mm 04

105 Kiegészítés-alakváltozás, repedéstágasság κ I ( y) κ EC ( y) κ II ( y) A kiselmozdulások gondolatmenetét felhasználva: u e( u) := α EC u κ EC ( y) ( u y) dy e L 0 y = 4.69 mm A matematikai gondolatmenetet felhasználva is számíthatjuk a lehajlás értékét. A görbület integrálja a szögelfordulás. A tartóvégen számítható elfordulással módosítva teljesíthetjük a peremfeltételt. u φ( u) := α EC κ EC ( y) dy φ( u) Az így kapott elfordulásfüggvényt integrálva kapjuk a lehajlás függvényét. A támasz felett a lehajlás zérus, így a peremfeltétel itt automatikusan teljesül. e ( v) v := φ( u) du 0 u L e =.883mm 05

106 Kiegészítés-alakváltozás, repedéstágasság A következõkben az. gyakorló példát egészítjük ki. A lehajlás értékének pontosított meghatározása. ( L y) M( y) ( p qp ) := σ s ( y) := ( ) M( y) d x II α s.eff I II ζ( y) := β σ sr σ s ( y) 0 otherwise if M( y) M cr κ I ( y) := M( y) E c.eff I I κ II ( y) := M( y) E c.eff I II Hol éri el a külsõ terhekbõl számítható nyomaték a repesztõnyomaték értékét? M( z) = M cr x rep := Find( z) x rep =.506m ( ) κi y κ EC ( y) := ζ( y) κ II ( y) + ζ( y) ( ) if y< x rep κ I ( y) otherwise e EC ( u) u := κ EC ( y) ( u y) dy 0 A két mintapélda eredményeit elemezve megállapíthatjuk, hogy a közelítõ számítás igen jó eredményt ad. A pontosított eljárás akkor eredményezhet számottevõen kedvezõbb eredményt, ha olyan speciálisak a megtámasztási és a terhelési viszonyok, hogy nagy csúcsigénybevétel alakul ki olyan kis kiterjedésû helyen, aminek a maximális lehajlásra nincs nagy hatása, vagy, ha a repedésmentes és a berepedt keresztmetszet merevsége jelentõsen eltér, esetleg keresztmetszet merevsége a hossz mentén jelentõsen változik (keresztmetszet méretének vagy vasalásának változása). e EC ( L) = 9.559mm ζ( y) y κ I ( y) κ EC ( y) κ II ( y) y 06

107 Kiegészítés-alakváltozás, repedéstágasság ézzük a változó vasalású vasbeton gerenda gerenda lehajlásának pontos meghatározását. Határozza meg egy az ábrán látható kéttámaszú, egyoldali, változó lágyvasalású tartó maximális lehajlását MSZ E 99 (EC) alapján. L:= 8.5m Betonfedés: c:= 0mm φ k := 0mm φ b:= 50mm h:= 400mm φ := 6mmn := 3db A s := n A 4 s = l := m. vasmennyiség: 3φ6. vasmennyiség: 4φ6 3. vasmennyiség: 5φ6 E s := 00 k S500B E cm := 5.35 k φ t := ( ) π ( ) π φ n := 4db A s := n A 4 s = l := m ( ) π φ n 3 := 5db A s3 := n 3 A 4 s3 = f ctm.9 E s := f ct.eff := f ctm α s.eff := α E s.eff =.54 c.eff.05e cm E c.eff := E c.eff = k + φ t g k := 8 k q m k := 8 k ψ m := 0.8 p qp := g k + ψ q k φ d:= h c φ k d = 36mm Keresztmetszeti jellemzõk meghatározása: L M qp := p qp M 8 qp = 30.05km. vasmennyiséggel A keresztmetszet jellemzõi elsõ feszültségállapotban: x h x bx E c.eff = A s ( E s E c.eff ) ( d x) + b ( h x) E c.eff x I := Find( x) x I = 8.69mm 3 x I ( h x I ) 3 I I := b + b + A 3 3 s ( α s.eff ) ( d x I) I I = mm 4 f ct.eff I I M cr := h x I M cr = 7.9km 07

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A

Részletesebben

Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban

Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban /Határnyomaték számítás/ 4. előadás A számítást III. feszültségi állapotban végezzük. A számításokban feltételezzük, hogy: -a rúd

Részletesebben

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt . Gyakorlat: asbeton gerenák nyírásvizsgálata Készítették: Frieman Noémi és Dr. Huszár Zsolt -- A nyírási teherbírás vizsgálata A nyírási teherbírás megfelelő, ha a következő követelmények minegyike egyiejűleg

Részletesebben

A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA

A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A FÖDÉMSZERKEZET: helyszíni vasbeton gerendákkal alátámasztott PK pallók. STATIKAI VÁZ:

Részletesebben

Feszített vasbeton gerendatartó tervezése költségoptimumra

Feszített vasbeton gerendatartó tervezése költségoptimumra newton Dr. Szalai Kálmán "Vasbetonelmélet" c. tárgya keretében elhangzott előadások alapján k 1000 km k m meter m Ft 1 1 1000 Feszített vasbeton gerendatartó tervezése költségoptimumra deg A következőkben

Részletesebben

ELŐFESZÍTETT VASBETON TARTÓ TERVEZÉSE AZ EUROCODE SZERINT

ELŐFESZÍTETT VASBETON TARTÓ TERVEZÉSE AZ EUROCODE SZERINT BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar Hidak és Szerkezetek Tanszéke ELŐFESZÍTETT VASBETON TARTÓ TERVEZÉSE AZ EUROCODE SZERINT Segédlet v1.14 Összeállította: Koris Kálmán Budapest,

Részletesebben

54 582 03 1000 00 00 Magasépítő technikus Magasépítő technikus

54 582 03 1000 00 00 Magasépítő technikus Magasépítő technikus Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/20. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6. statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek

Részletesebben

Draskóczy András VASBETONSZERKEZETEK PÉLDATÁR az Eurocode előírásai alapján

Draskóczy András VASBETONSZERKEZETEK PÉLDATÁR az Eurocode előírásai alapján BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építészmérnöki Kar SZILÁRDSÁGTANI ÉS TARTÓSZERKEZETI TANSZÉK Draskóczy András VASBETONSZERKEZETEK PÉLDATÁR az Eurocode előírásai alapján LEMEZEK OSZLOPOK,

Részletesebben

Vasbetonszerkezetek 14. évfolyam

Vasbetonszerkezetek 14. évfolyam Vasbetonszerkezetek 14. évfolyam Tankönyv: Herczeg Balázs, Bán Tivadarné: Vasbetonszerkezetek /Tankönyvmester Kiadó/ I. félév Vasbetonszerkezetek lényege, anyagai, vasbetonszerkezetekben alkalmazott betonok

Részletesebben

BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE SZERINT Farkas György 1 Kovács Tamás 2 Szalai Kálmán 3

BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE SZERINT Farkas György 1 Kovács Tamás 2 Szalai Kálmán 3 BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE SZERINT Farkas György 1 Kovács Tamás 2 Szalai Kálmán 3 A betonszerkezetek Eurocode szerinti tervezését az épületekre vonatkozó MSZ EN 1992-1- 1 [1] és a hidakra vonatkozó

Részletesebben

A nyírás ellenőrzése

A nyírás ellenőrzése A nyírás ellenőrzése A nyírási ellenállás számítása Ellenőrzés és tervezés nyírásra 7. előadás Nyírásvizsgálat repedésmentes állapotban (I. feszültségi állapotban) A feszültségek az ideális keresztmetszetet

Részletesebben

1. A vasbetét kialakításának szabályai. 1.1 A betétek közötti távolság

1. A vasbetét kialakításának szabályai. 1.1 A betétek közötti távolság Az MSZ EN 1992-1 fontosabb szerkesztési szabályai 1. A vasbetét kialakításának szabályai 1.1 A betétek közötti távolság A (horizontális, vagy vertikális) betétek közötti legkisebb távolság (bebetonozhatóság

Részletesebben

Csatlakozási lehetőségek 11. Méretek 12-13. A dilatációs tüske méretezésének a folyamata 14. Acél teherbírása 15

Csatlakozási lehetőségek 11. Méretek 12-13. A dilatációs tüske méretezésének a folyamata 14. Acél teherbírása 15 Schöck Dorn Schöck Dorn Tartalom Oldal Termékleírás 10 Csatlakozási lehetőségek 11 Méretek 12-13 A dilatációs tüske méretezésének a folyamata 14 Acél teherbírása 15 Minimális szerkezeti méretek és tüsketávolságok

Részletesebben

VASALÁSI SEGÉDLET (ábragyűjtemény)

VASALÁSI SEGÉDLET (ábragyűjtemény) V VASALÁSI SEGÉDLET (ábragyűjtemény) Ez a segédlet az alábbi tankönyv szerves része: Dr. habil JANKÓ LÁSZLÓ VASBETONSZERKEZETEK I.-II. BUDAPEST 2009 V/1 V V.1. VASALÁSI ALAPISMERETEK V/2 Az íves vezetésű

Részletesebben

Acélszerkezetek. 3. előadás 2012.02.24.

Acélszerkezetek. 3. előadás 2012.02.24. Acélszerkezetek 3. előadás 2012.02.24. Kapcsolatok méretezése Kapcsolatok típusai Mechanikus kapcsolatok: Szegecsek Csavarok Csapok Hegesztett kapcsolatok Tompavarrat Sarokvarrat Coalbrookdale, 1781 Eiffel

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei

Részletesebben

Vasbeton gerendák kísérleti és elméleti nyírásvizsgálata

Vasbeton gerendák kísérleti és elméleti nyírásvizsgálata Vasbeton gerendák kísérleti és elméleti nyírásvizsgálata DRASKÓCZY András egy.adjunktus BME, Szilárdságtani és Tartószerkezeti Tanszék EMT 2011 Csíksomlyó Draskóczy A.: Vasbeton gerendák nyírása 1. oldal

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések

Részletesebben

Schöck Isokorb W. Schöck Isokorb W

Schöck Isokorb W. Schöck Isokorb W Schöck Isokorb Schöck Isokorb Schöck Isokorb típus Konzolos faltárcsákhoz alkalmazható. Negatív nyomaték és pozitív nyíróerő mellett kétirányú horizontális erőt tud felvenni. 115 Schöck Isokorb Elemek

Részletesebben

Dr. habil JANKÓ LÁSZLÓ. VASBETON SZILÁRDSÁGTAN az EUROCODE 2 szerint (magasépítés) Az EC és az MSZ összehasonlítása is TANKÖNYV I. AZ ÁBRÁK.

Dr. habil JANKÓ LÁSZLÓ. VASBETON SZILÁRDSÁGTAN az EUROCODE 2 szerint (magasépítés) Az EC és az MSZ összehasonlítása is TANKÖNYV I. AZ ÁBRÁK. Dr. habil JANKÓ LÁSZLÓ VASBETON SZILÁRDSÁGTAN az EUROCODE 2 szerint (magasépítés) Az és az összehasonlítása is TANKÖNYV I. AZ ÁBRÁK N Ed M Edo (alapérték, elsőrendű elmélet) Mekkora az N Rd határerő? l

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Tartószerkezet rekonstrukciós szakmérnök képzés Feszített és előregyártott vasbeton szerkezetek 1. előadás Előregyártott vasbeton szerkezetek kapcsolatai Dr. Sipos András Árpád 2012. november 17. Vázlat

Részletesebben

Schöck Isokorb Q, Q-VV

Schöck Isokorb Q, Q-VV Schöck Isokorb, -VV Schöck Isokorb típus Alátámasztott erkélyekhez alkalmas. Pozitív nyíróerők felvételére. Schöck Isokorb -VV típus Alátámasztott erkélyekhez alkalmas. Pozitív és negatív nyíróerők felvételére.

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János VASBETON SZERKEZETEK TERVEZÉSE 2 Szabvány A tartószerkezetek tervezése jelenleg Magyarországon és az EU államaiban az Euronorm szabványsorozat alapján

Részletesebben

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás tűz alatti eljárás A módszer célja 2 3 Az előadás tartalma Öszvérfödém szerkezetek tűz esetén egyszerű módszere 20 C Födém modell Tönkremeneteli módok Öszvérfödémek egyszerű eljárása magas Kiterjesztés

Részletesebben

II. KÖZÚTI BETONHIDAK TERVEZÉSE

II. KÖZÚTI BETONHIDAK TERVEZÉSE II. KÖZÚTI BETONHIDAK TERVEZÉSE A beton (a továbbiakban: vasalatlan beton), vasbeton és feszített beton anyagú közúti hidakat (a továbbiakban: betonhidak) az I. fejezet 2. szakasza szerinti terhekre és

Részletesebben

VII. Gyakorlat: Használhatósági határállapotok MSZ EN 1992 alapján Betonszerkezetek alakváltozása és repedéstágassága

VII. Gyakorlat: Használhatósági határállapotok MSZ EN 1992 alapján Betonszerkezetek alakváltozása és repedéstágassága VII. Gyakorlat: Használhatósági határállapotok MSZ EN 199 alapján Betonszerkezetek alakváltozása és repedéstágassága Készítették: Kovács Tamás és Völgyi István -1- Készítették: Kovács Tamás, Völgyi István

Részletesebben

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?

Részletesebben

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági 1. - Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági vizsgálatát. - Jellemezze a vasbeton három feszültségi

Részletesebben

BME Szilárdságtani és Tartószerkezeti Tanszék LEMEZEK. ;2 ) = 2,52 m. 8 = 96 mm. d = 120 20-2. a s,min = ρ min bd = 0,0013 1000 96 = 125 mm 2,

BME Szilárdságtani és Tartószerkezeti Tanszék LEMEZEK. ;2 ) = 2,52 m. 8 = 96 mm. d = 120 20-2. a s,min = ρ min bd = 0,0013 1000 96 = 125 mm 2, . fejezet:.1. Hajlított lemezkeresztmetszet ellenőrzése Adatok C0/5 4/K beton f cd 13,3 N/mm B0.50 betonacél f yd 435 N/mm c nom 0 mm betonfedés Terhelés: p Ed 1 kn/m Alsó lemezvasalás y irányban : Ø8/150

Részletesebben

2011.11.08. 7. előadás Falszerkezetek

2011.11.08. 7. előadás Falszerkezetek 2011.11.08. 7. előadás Falszerkezetek Falazott szerkezetek: MSZ EN 1996 (Eurocode 6) 1-1. rész: Az épületekre vonatkozó általános szabályok. Falazott szerkezetek vasalással és vasalás nélkül 1-2. rész:

Részletesebben

E-gerendás födém tervezési segédlete

E-gerendás födém tervezési segédlete E-gerendás födém tervezési segédlete 1 Teherbírás ellenőrzése A feszített vasbetongerendákkal tervezett födémek teherbírását az MSZ EN 1992-1-1 szabvány szerint kell számítással ellenőrizni. A födémre

Részletesebben

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2013.02.11.

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2013.02.11. TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2013.02.11. A felületszerkezetek csoportosítása Felületszerkezetek Sík középfelület Görbült középfelület (héjszerkezet) Tárcsa Lemez Egyszeresen görbült Kétszeresen

Részletesebben

LINDAB Floor könnyűszerkezetes födém-rendszer Tervezési útmutató teherbírási táblázatok

LINDAB Floor könnyűszerkezetes födém-rendszer Tervezési útmutató teherbírási táblázatok LINDAB Floor könnyűszerkezetes födém-rendszer Tervezési útmutató teherbírási táblázatok Budapest, 2004. 1 Tartalom 1. BEVEZETÉS... 4 1.1. A tervezési útmutató tárgya... 4 1.2. Az alkalmazott szabványok...

Részletesebben

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok Dr. Szalai József Főiskolai adjunktus Tartalom Acélszerkezetek kapcsolatai Csavarozott kapcsolatok kialakítása Csavarozott kapcsolatok

Részletesebben

Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék 3 4.GYAKORLAT

Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék 3 4.GYAKORLAT 3 4.GYAKORLAT III. feszültségi állpot képlékeny feszültségi állpot A vsetonszerkezeteket teerírási tárállpotn III. feszültségi állpot feltételezésével méretezzük. A vsetonszerkezetek keresztmetszeti méretezési

Részletesebben

Alapcsavar FBN II Milliószor bizonyított, rugalmas az ár és a teljesítmény tekintetében.

Alapcsavar FBN II Milliószor bizonyított, rugalmas az ár és a teljesítmény tekintetében. 1 Milliószor bizonyított, rugalmas az ár és a teljesítmény tekintetében. Áttekintés FBN II cinkkel galvanizált acél FBN II A4 korrózióálló acél, III-as korrózióállósági osztály, pl. A4 FBN II fvz* tüzihorganyzott

Részletesebben

Harántfalas épület két- és többtámaszú monolit vasbeton födémlemezének tervezése kiadott feladatlap alapján.

Harántfalas épület két- és többtámaszú monolit vasbeton födémlemezének tervezése kiadott feladatlap alapján. TERVEZÉSI FELADAT: Harántfalas épület két- és többtámaszú monolit vasbeton födémlemezének tervezése kiadott feladatlap alapján. Feladatok: 1. Tervezzük meg a harántfalas épület egyirányban teherhordó monolit

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

Használhatósági határállapotok

Használhatósági határállapotok Használhatósági határállapotok Repedéstágasság ellenőrzése Alakváltozás ellenőrzése 10. előadás Definíciók Határállapot: A tartószerkezet olyan állapotai, amelyeken túl már nem teljesülnek a vonatkozó

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

Tartószerkezetek közelítő méretfelvétele

Tartószerkezetek közelítő méretfelvétele Tudományos Diákköri Konferencia 2010 Tartószerkezetek közelítő méretfelvétele Készítette: Hartyáni Csenge Zsuzsanna IV. évf. Konzulens: Dr. Pluzsik Anikó Szilárdságtani és Tartószerkezeti Tanszék Budapesti

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

Tipikus fa kapcsolatok

Tipikus fa kapcsolatok Tipikus fa kapcsolatok Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék 1 Gerenda fal kapcsolatok Gerenda feltámaszkodás 1 Vízszintes és (lefelé vagy fölfelé irányuló) függőleges terhek

Részletesebben

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára 4. feladat Géprajz-Gépelemek (GEGET4B) c. tárgyból a űszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TOKOS TENGELYKAPCSOLÓ méretezése és szerkesztése útmutató segítségével 1. Villamos motorról

Részletesebben

7. előad. szló 2012.

7. előad. szló 2012. 7. előad adás Kis LászlL szló 2012. Előadás vázlat Lemez hidak, bordás hidak Lemez hidak Lemezhidak fogalma, osztályozása, Lemezhíd típusok bemutatása, Lemezhidak számítása, vasalása. Bordás hidak Bordás

Részletesebben

Tartalomjegyzék a felszerkezet statikai számításához

Tartalomjegyzék a felszerkezet statikai számításához Tartalomjegyzék a felszerkezet statikai számításához 1. Kiindulási adatok 3. 1.1. Geometria; 3. 1.2. Terhelés; 6. 1.3. Szabványok; 6. 1.4. Anyagok, anyagmin ségek; 6. 2. A statikai számításról 7. 2.1.

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei 10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja

Részletesebben

Acélszerkezetek I. Gyakorlati óravázlat. BMEEOHSSI03 és BMEEOHSAT17. Jakab Gábor

Acélszerkezetek I. Gyakorlati óravázlat. BMEEOHSSI03 és BMEEOHSAT17. Jakab Gábor Acélszerkezetek I. BMEEOHSSI0 és BMEEOHSAT17 Gakorlati óravázlat Készítette: Dr. Kovács Nauzika Jakab Gábor A gakorlatok témája: 1. A félév gakorlati oktatásának felépítése. A szerkezeti acélanagok fajtái,

Részletesebben

Építészettörténet Örökségvédelem

Építészettörténet Örökségvédelem Örökségvédelem VIII. Vasbeton szerkezetek 2. Dr. Déry Attila VIII. előadás 01 VII. 4. Korai gerendás és elemes szerkezetek a kísérletezés útjai Dr. Déry Attila VIII. előadás 02 A fejlesztés lehetőségei:

Részletesebben

Vasbetontartók vizsgálata az Eurocode és a hazai szabvány szerint

Vasbetontartók vizsgálata az Eurocode és a hazai szabvány szerint Vasbetontartók vizsgálata az Eurocoe és a hazai szabvány szerint Dr. Kiss Zoltán Kolozsvári Műszaki Egyetem 1. Bevezetés A méretezési előírasok betartása minenhol kötelező volt régen is, kötelező ma is.

Részletesebben

GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1. multifunkcionális csarnok kialakításának építési engedélyezési terve

GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1. multifunkcionális csarnok kialakításának építési engedélyezési terve GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1 multifunkcionális csarnok kialakításának építési engedélyezési terve STATIKAI SZÁMÍTÁSOK Tervezők: Róth Ernő, okl. építőmérnök TT-08-0105

Részletesebben

Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok Dr. Szalai József Főiskolai adjunktus I. ZH STATIKA!!! Gyakorlás: Mechanikai példatár I. kötet (6.1 Egyenes tengelyű tartók)

Részletesebben

Leggyakoribb fa rácsos tartó kialakítások

Leggyakoribb fa rácsos tartó kialakítások Fa rácsostartók vizsgálata 1. Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék Leggakoribb fa rácsos tartó kialakítások Változó magasságú Állandó magasságú Kis mértékben változó magasságú

Részletesebben

IX. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár

IX. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár IX. Reinforced Concrete Structures Vasbetonszerkezetek - Vasbeton keresztmetszet nyírási teherbírása - Dr. Kovács Imre PhD tanszékvezető főiskolai tanár E-mail: dr.kovacs.imre@gmail.com Mobil: 06-30-743-68-65

Részletesebben

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS Miskolci Egyetem Bányászati és Geotechnikai Intézet Bányászati és Geotechnikai Intézeti Tanszék ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS Oktatási segédlet Szerző: Dr. Somosvári Zsolt DSc professzor emeritus Szerkesztette:

Részletesebben

A.11. Nyomott rudak. A.11.1. Bevezetés

A.11. Nyomott rudak. A.11.1. Bevezetés A.. Nyomott rudak A... Bevezetés A nyomott szerkezeti elem fogalmat általában olyan szerkezeti elemek jelölésére használjuk, amelyekre csak tengelyirányú nyomóerő hat. Ez lehet speciális terhelésű oszlop,

Részletesebben

KERETSZERKEZETEK. Definíciók, Keretek igénybevételei, méretezése. 10. előadás

KERETSZERKEZETEK. Definíciók, Keretek igénybevételei, méretezése. 10. előadás KERETSZERKEZETEK Definíciók, Keretek igénybevételei, méretezése 10. előadás Definíciók: Oszlop definíciója: Az oszlop vonalas tartószerkezet, két keresztmetszeti mérete (h, b) lényegesen kisebb, mint a

Részletesebben

Dr. habil JANKÓ LÁSZLÓ. VASBETON SZILÁRDSÁGTAN az EUROCODE 2 szerint (magasépítés) Az EC és az MSZ összehasonlítása is TANKÖNYV II.

Dr. habil JANKÓ LÁSZLÓ. VASBETON SZILÁRDSÁGTAN az EUROCODE 2 szerint (magasépítés) Az EC és az MSZ összehasonlítása is TANKÖNYV II. Dr. habil JANKÓ LÁSZLÓ VASBETON SZILÁRDSÁGTAN az EUROCODE 2 szerint (magasépítés) Az EC és az MSZ összehasonlítása is TANKÖNYV II. A SZÖVEGES RÉSZ N Ed M Edo (alapérték, elsőrendű elmélet) Mekkora az N

Részletesebben

VII. - Gombafejek igénybevételei, síklemezek átszúródás és átlyukadás vizsgálata -

VII. - Gombafejek igénybevételei, síklemezek átszúródás és átlyukadás vizsgálata - VII. Reinforced Concrete Structures II. Vasbetonszerkezetek II. - Gombafejek igénybevételei, síklemezek átszúródás és átlyukadás vizsgálata - Dr. Kovács Imre PhD tanszékvezető főiskolai tanár E-mail: dr.kovacs.imre@gmail.com

Részletesebben

VB-EC2012 program rövid szakmai ismertetése

VB-EC2012 program rövid szakmai ismertetése VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

HSQ hüvely HK kombihüvely HS kombihüvely. ED (nemesacél) Típusok és jelölések 36-37. Alkalmazási példák 38-39

HSQ hüvely HK kombihüvely HS kombihüvely. ED (nemesacél) Típusok és jelölések 36-37. Alkalmazási példák 38-39 Schöck Dorn HSQ hüvely HK kombihüvely HS kombihüvely ED (tűzihorganyzott) ED (nemesacél) -B Schöck acéltüske-rendszerek Tartalom Oldal Típusok és jelölések 36-37 Alkalmazási példák 38-39 Méretek 40 Korrózióvédelem

Részletesebben

NSZ/NT beton és hídépítési alkalmazása

NSZ/NT beton és hídépítési alkalmazása NSZ/NT beton és hídépítési alkalmazása Farkas Gy.-Huszár Zs.-Kovács T.-Szalai K. R forgalmi terhelésű utak - megnövekedett forgalmi terhelés - fokozott tartóssági igény - fenntartási idő és költségek csökkentése

Részletesebben

CONSTEEL 8 ÚJDONSÁGOK

CONSTEEL 8 ÚJDONSÁGOK CONSTEEL 8 ÚJDONSÁGOK Verzió 8.0 2013.11.20 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új szelvénykatalógusok... 2 1.2 Diafragma elem... 2 1.3 Merev test... 2 1.4 Rúdelemek

Részletesebben

Útmutató az. AxisVM rapido 2. használatához

Útmutató az. AxisVM rapido 2. használatához 2011-2013 Inter-CAD Kft. Minden jog fenntartva Útmutató az AxisVM rapido 2 használatához A program célja a tervezési munka megkönnyítése. Használata nem csökkenti felhasználójának felelősségét, hogy a

Részletesebben

BMEEOHSASA4 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

BMEEOHSASA4 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK S Z E R K E Z E T E K M E G E R Ő S Í T É S E BMEEOHSASA4 segédlet a BME Építőmérnöki Kar hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi

Részletesebben

Magasépítési vasbetonszerkezetek

Magasépítési vasbetonszerkezetek Magasépítési vasbetonszerkezetek k Egyhajós daruzott vasbetoncsarnok tervezése Szabó Imre Gábor Pécsi Tudományegyetem Műszaki és Informatikai Kar Szilárdságtan és Tartószerkezetek Tanszék Rövid főtartó

Részletesebben

3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára

3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára 3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TENGELYVÉG CSAPÁGYAZÁSA, útmutató segítségével d. A táblázatban szereplő adatok alapján

Részletesebben

AutoN cr. Automatikus Kihajlási Hossz számítás AxisVM-ben. elméleti háttér és szemléltető példák. 2016. február

AutoN cr. Automatikus Kihajlási Hossz számítás AxisVM-ben. elméleti háttér és szemléltető példák. 2016. február AutoN cr Automatikus Kihajlási Hossz számítás AxisVM-ben elméleti háttér és szemléltető példák 2016. február Tartalomjegyzék 1 Bevezető... 3 2 Célkitűzések és alkalmazási korlátok... 4 3 Módszertan...

Részletesebben

A SZERKEZET SEMATIKUS ÁBRÁJA STATIKAI VÁZA ERŐI (KÜLSŐ/TÁMASZ) VALÓSÁG ÉS MODELL 01 az elemek keresztmetszeti mérete a hosszméretnél lényegesen kisebb az elemek vastagsága a másik két méretnél lényegesen

Részletesebben

SZEMMEL. Előadó: Tornai László tartószerkezeti vezető tervező KÉSZ Építő Zrt. 2011. 12. 16. 1

SZEMMEL. Előadó: Tornai László tartószerkezeti vezető tervező KÉSZ Építő Zrt. 2011. 12. 16. 1 A FÖLDRENGF LDRENGÉSRŐL L MÉRNM RNÖK SZEMMEL 4. rész: r szabályok, példp ldák Előadó: Tornai László tartószerkezeti vezető tervező KÉSZ Építő Zrt. 2011. 12. 16. 1 Szabályok A földrengésre méretezett szerkezetek

Részletesebben

TARTALOMJEGYZÉK 1. VASÚTI FELSZERKEZET VIZSGÁLATA 1.1. KIINDULÁSI ADATOK 1.1.1. GEOMETRIA 1.1.2. ANYAGJELLEMZŐK 1.1.3. ELŐÍRÁSOK, SZABÁLYZATOK

TARTALOMJEGYZÉK 1. VASÚTI FELSZERKEZET VIZSGÁLATA 1.1. KIINDULÁSI ADATOK 1.1.1. GEOMETRIA 1.1.2. ANYAGJELLEMZŐK 1.1.3. ELŐÍRÁSOK, SZABÁLYZATOK TARTALOMJEGYZÉK. VASÚTI FELSZERKEZET VIZSGÁLATA.. KIINDULÁSI ADATOK... GEOMETRIA... ANYAGJELLEMZŐK..3. ELŐÍRÁSOK, SZABÁLYZATOK.. KERESZTMETSZETI JELLEMZŐK.3. HATÁRTEHERBÍRÁS MEGHATÁROZÁSA.4. SZÁMÍTÓGÉPES

Részletesebben

AZ ELSŐ MAGYAR NAGYSZILÁRDSÁGÚ/NAGY TELJESÍTŐKÉPESSÉGŰ (NSZ/NT) VASBETON HÍD TERVEZÉSE ÉS ÉPÍTÉSE AZ M-7-ES AUTÓPÁLYÁN

AZ ELSŐ MAGYAR NAGYSZILÁRDSÁGÚ/NAGY TELJESÍTŐKÉPESSÉGŰ (NSZ/NT) VASBETON HÍD TERVEZÉSE ÉS ÉPÍTÉSE AZ M-7-ES AUTÓPÁLYÁN AZ ELSŐ MAGYAR NAGYSZILÁRDSÁGÚ/NAGY TELJESÍTŐKÉPESSÉGŰ (NSZ/NT) VASBETON HÍD TERVEZÉSE ÉS ÉPÍTÉSE AZ M-7-ES AUTÓPÁLYÁN Dr. Farkas János Kocsis Ildikó Németh Imre Bodor Jenő Bán Lajos Tervező Betontechnológus

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

HLC falcsavar. Elhelyezésre vonatkozó adatok, HLC. Alapanyag vastagsága, a horgony tengely- és peremtávolsága M8 10 M6 8 M12 16 M16 20 M10 12

HLC falcsavar. Elhelyezésre vonatkozó adatok, HLC. Alapanyag vastagsága, a horgony tengely- és peremtávolsága M8 10 M6 8 M12 16 M16 20 M10 12 HLC falcsavar Elhelyezésre vonatkozó adatok, HLC Menetméret d [mm] M5 6,5 Fúrószár névleges átmérője d o [mm] 6,5 (1/4 ) M6 8 M8 10 M10 12 M12 16 M16 20 8 10 12 16 20 Fúrószár vágási átmérője d cut [mm]

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

ELŐREGYÁRTOTT, SŰRŰBORDÁS VASBETON HÍDFELSZERKEZET SZÁMÍTÁSA

ELŐREGYÁRTOTT, SŰRŰBORDÁS VASBETON HÍDFELSZERKEZET SZÁMÍTÁSA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar Hidak és Szerkezetek Tanszéke ELŐREGYÁRTOTT, SŰRŰBORDÁS VASBETON HÍDFELSZERKEZET SZÁMÍTÁSA - mintapélda Segédlet a VASBETON HIDAK c. tárgy

Részletesebben

FÖDÉMEK. összeállította: D.Müller Mária 2007

FÖDÉMEK. összeállította: D.Müller Mária 2007 2007 BOLTOZATOK MONOSTORI ERŐD BOLTOZATOK FŐPOLGÁRMESTERI HIVATAL III. EMELET ACÉLGERENDÁS FÖDÉMEK felülbordás alulbordás FAL-FÖDÉM KAPCSOLATOK FF JELŰ VB. GERENDA+B60 G GERENDA+ BH

Részletesebben

Lindab Z/C 200 ECO gerendák statikai méretezése. Tervezési útmutató

Lindab Z/C 200 ECO gerendák statikai méretezése. Tervezési útmutató Lindab Z/C 200 ECO gerendák statikai méretezése Tervezési útmutató Készítette: Dr. Ádány Sándor Lindab Kft 2007. február ZC200ECO / 1 1. Bevezetés Jelen útmutató a Lindab Kft. által 1998-ban kiadott Lindab

Részletesebben

SCHÖCK BOLE MŰSZAKI INFORMÁCIÓK 2005. NOVEMBER

SCHÖCK BOLE MŰSZAKI INFORMÁCIÓK 2005. NOVEMBER SCHÖCK BOLE MŰSZAKI INFORMÁCIÓK 2005. NOVEMBER SCHÖCK BOLE ÁTSZÚRÓDÁSI VASALÁS Schöck BOLE előnyei az építés helyszínén Egyszerű beépíthetőség A statikai igénybevétel szerint összeszerelt beépítéskész

Részletesebben

Tervezés katalógusokkal kisfeladat

Tervezés katalógusokkal kisfeladat BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Számítógépes tervezés, méretezés és gyártás (BME KOJHM401) Tervezés katalógusokkal kisfeladat Járműelemek és Járműszerkezetanalízis Tanszék Ssz.:...... Név:.........................................

Részletesebben

A.15. Oldalirányban nem megtámasztott gerendák

A.15. Oldalirányban nem megtámasztott gerendák A.15. Oldalirányban nem megtámasztott gerendák A.15.1. Bevezetés Amikor egy karcsú szerkezeti elemet a nagyobb merevségű síkjában terhelünk, mindig fennáll annak lehetősége, hogy egy hajlékonyabb síkban

Részletesebben

RR fa tartók előnyei

RR fa tartók előnyei Rétegelt ragasztott fa tartók k vizsgálata Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék RR fa tartók előnyei Acélhoz és betonhoz képest kis térfogatsúly Kedvező szilárdsági és merevségi

Részletesebben

Vasalási távtartók muanyagból

Vasalási távtartók muanyagból Vasalási távtartók muanyagból Távolságtartó sín (hossz: m) Rúd alakú távolságtartó sín, alsó fogazással. Alaplemezek és födémek, rámpák alsó vasalásának távolságtartására. További méretek: 60 mm és 70

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Reinforced Concrete Structures I. / Vasbetonszerkezetek I. II.

Reinforced Concrete Structures I. / Vasbetonszerkezetek I. II. II. Reinforced Concrete Structures I. Vasbetonszerkezetek I. - A beton fizikai és mechanikai tulajdonságai - Dr. Kovács Imre PhD tanszékvezető főiskolai tanár E-mail: dr.kovacs.imre@gmail.com Mobil: 6-3-743-68-65

Részletesebben

Előregyártott körgyűrű keresztmetszetű oszlopokból kialakított többszintes vázszerkezet csomópontjainak vizsgálata

Előregyártott körgyűrű keresztmetszetű oszlopokból kialakított többszintes vázszerkezet csomópontjainak vizsgálata Előregyártott körgyűrű keresztmetszetű oszlopokból kialakított többszintes vázszerkezet csomópontjainak vizsgálata Dr.Kiss Zoltán, Becski Álmos Kolozsvári Műszaki Egyetem Ebben a munkában a két szerző

Részletesebben

Schöck Isokorb ABXT. Schöck Isokorb ABXT ABXT

Schöck Isokorb ABXT. Schöck Isokorb ABXT ABXT Schöck Isokorb Schöck Isokorb Schöck Isokorb típus Attika és mellvéd szerkezetek bekötéséhez alkalmazható. Nyomatékot, nyíróerőt és normálerőt tud felvenni. 133 Schöck Isokorb Elemek elhelyezése Beépítési

Részletesebben

Reinforced Concrete Structures II. / Vasbetonszerkezetek II. VIII.

Reinforced Concrete Structures II. / Vasbetonszerkezetek II. VIII. einforced Concrete Structures II. / Vasbetonszerkezetek II. einforced Concrete Structures II. VIII. Vasbetonszerkezetek II. - Vasbeton rúdszerkezetek kélékeny teherbírása - Dr. Kovács Imre PhD tanszékvezető

Részletesebben

8. előadás Kis László Szabó Balázs 2012.

8. előadás Kis László Szabó Balázs 2012. 8.. előad adás Kis LászlL szló Szabó Balázs 2012. Kerethidak Előadás vázlat Csoportosítás statikai váz alapján, Viselkedésük, Megépült példák. Szekrény keresztmetszetű hidak Csoportosítás km. kialakítás

Részletesebben

Rákóczi híd próbaterhelése

Rákóczi híd próbaterhelése Rákóczi híd próbaterhelése Dr. Kövesdi Balázs egyetemi docens, BME Dr. Dunai László egyetemi tanár, BME Próbaterhelés célja - programja Cél: Villamos forgalom elindítása előtti teherbírás ellenőrzése helyszíni

Részletesebben

A beton kúszása és ernyedése

A beton kúszása és ernyedése A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág

Részletesebben

FÖDÉMEK MEGERŐSÍTÉSE

FÖDÉMEK MEGERŐSÍTÉSE FÖDÉMEK MEGERŐSÍTÉSE FASZERKEZETŰ TARTÓK Csapos gerendafödém megerősítése A, B keresztmetszetek; C hosszmetszet a felfekvésnél; D alternatív km; E, F igényesebb födém megerősítése (kereszt- és hosszmetszet)

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 6.2. fejezet 483 FEJEZET BEVEZETŐ 6.2. fejezet: Síkalapozás (vb. lemezalapozás) Az irodaház szerkezete, geometriája, a helyszín és a geotechnikai adottságok is megegyeznek az előző (6.1-es) fejezetben

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben