AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE"

Átírás

1 AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE

2 Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti sugárzásnak nevezzük. Értelmezés (spektrális emisszió képesség): A spektrális emisszió képesség az egységnyi térszögbe jutó intenzitás egységnyi hullámhossz intervallumra eső részének nagyságával mérhető. Jele: E Mértékegysége: W/m 2 Megjegyzés: E(, T)

3 Alapfogalmak Értelmezés (abszolút fekete test): Az olyan teset, amely minden ráeső sugárzást elnyel (abszolút abszorbeál) és minden elektromágneses sugárzást a lehető legnagyobb mértékben kisugároz (abszolút emittál) abszolút fekete testnek nevezzük. Következmény: Jól használható modell test a sugárzási törvények felírásához.

4 1. A Stefan Boltzmann törvény Törvény (Stefan Boltzmann-féle sugárzási törvény): Az A felületű abszolút fekete test 1 időegység alatt az abszolút hőmérséklet negyedik hatványával arányos hőteljesítményt bocsát ki. Jelölések: P hőteljesítmény, [P] = W, watt A felület, [A]= m 2 T abszolút hőmérséklet, [T]= K, kelvin Tehát a jelölésekkel: első közelítésben: P T 4 Második közelítésben: P A T 4 az arányosság feloldására arányossági tényezőt vezetünk be: P = k A T 4 Értelmezés (Stefan Boltzmann állandó): A k arányossági tényezőt Stefan Boltzmann állandónak nevezzük és σ (szigma) val jelöljük. Értéke: σ = 5, W/m 2 K 4 A Stefan-Boltzmann törvény teljes matematikai alakja: P = σ A T 4

5 2. A Wien-féle eltolódási törvény Törvény (Wien-féle eltolódási törvény): A törvény az abszolút fekete test spektrális emisszió képességének maximumához tartozó max hullámhossz és az abszolút hőmérséklet kapcsolatát írja le. Nevezetesen: Az abszolút fekete test spektrális emisszió képességének maximumához tartozó max hullámhossz és a T abszolút hőmérséklet egymással fordítottan arányos mennyiségek. Matematikai alakban: max T = állandó Az állandó pontos értéke: állandó = 2, mk Megjegyzés: rövid hullámhosszakra és alacsony hőmérsékletekre ad a tapasztalattal egyező görbét.

6 A Wien-féle eltolódási törvény

7 3. A Rayleigh Jeans formula Rayleigh és Jeans a klasszikus fizika egyenletes energiaeloszlási tételét alkalmazva kísérletet tett arra, hogy meghatározzák a sugárzási tér E ν, T spektrális energiasűrűségének a konkrét alakját. Törvény (Rayleigh - Jeans): A kapott formula: E ν, T = 8π c 3 ν2 k T Ezt az összefüggést Rayleigh Jeans-féle törvénynek nevezzük. Ha a ν frekvenciáról a λ hullámhosszra áttérve a következő összefüggéshez jutunk: E λ, T = 8πk λ 5 λ T k = m 2 kg s -2 K -1 Boltzmann állandó Megjegyzés: Ez a törvény csak a spektrum hosszabb hullámhosszú részén adott a kísérleti adatokkal megegyező eredményt. A spektrum rövidebb hullámhosszú részén nagy eltérést adott a kísérleti eredményektől.

8 Az ultraibolya katasztrófa Észrevétel (P.S. Ehrenfest észrevétele): A Raileigh Jeans törvény igen kis hullámhosszak esetében irreálisan óriási nagy spektrális energiasűrűséget ad. Másképpen fogalmazva: lim λ 0 (8πk λ 5 λ T) = Ezt az észrevételt ultraibolya katasztrófának nevezzük. Valami feloldás kell erre az ellentmondásra...

9 E A Rayleigh Jeans törvény és a Wien-féle eltolódási törvény kapcsolata

10 4. A Planck-féle sugárzási törvényhez vezető út A Wien-féle és a Rayleigh Jeans-féle részlettörvények felfedezése után magának a kísérleti eredményekkel teljes összhangban lévő alaptörvénynek a felismerése, vagyis az E λ, T függvény analitikai alakjának megállapítása és elméleti értelmezése sok kiváló fizikus fáradozása ellenére hosszabb ideig nem sikerült. Max Plancknak próbálkozással sikerült a két formulát úgy egyesítenie, hogy ezekből határesetben a Wien-féle és a Rayleigh Jeans-féle törvény is kiadódjon. Az ő összefüggése a teljes spektrum tartományban helyesen írja le a sugárzás intenzitását. Ezt követően Planck kidolgozott egy olyan levezetést is, amely tiszta elméleti meggondolások alapján is jó formulát szolgáltatott. Azonban ehhez a levezetéshez a klasszikus fizika forradalmian új feltevését kellett alkalmaznia. 2. előadás

11 4. A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor lehetséges energiaállapotainak megfelelő energiák nem vehetnek fel tetszés szerinti és folytonosan változó értékeket, hanem csak a következő diszkrét értékeket vehetik fel: ε, 2ε, 3ε, 4ε, Egy oszcillátor n-edik állapotában tehát az energia az alábbi módon adható meg: ε n = n ε, ahol n Z

12 4. A Planck-féle sugárzási törvény Hipotézis 2.: Az oszcillátorok az egyik lehetséges állapotból a másikba ugrásszerűen mennek át ( átugorva a közbülső állapotokat), miközben a megfelelő energia különbséget emittálják vagy abszorbeálják. A sugárzó energia emissziója vagy abszorpciója tehát energiaadagokban vagy más szóval energiakvantumokban következik be. Az energiakvantum Planck-szerint arányos a kisugárzott vagy elnyelt rezgés frekvenciájával, azaz matematikai alakban: E υ, azaz ε = h υ Elnevezés (Planck-állandó): A h egy arányossági tényező, mégpedig egy univerzális állandó, amelyet Planck emlékére Planck-féle állandónak hívunk, és amelynek meghatározott értéke: h = 6, J s Elnevezés (Hatáskvantum): A Planck-állandót maga Planck hatáskvantumnak nevezte el.

13 4. A Planck-féle sugárzási törvény Törvény (Planck-féle sugárzási törvény): A Planck-féle sugárzási törvény matematikai alakjai a következők: E υ, T = 8πhν3 c 3 1 hν ekt 1 (1) És E λ, T = 8πc h λ 5 e 1 hc λtk 1 (2) Ahol, c : a fény sebessége vákuumban, [c] = m/s ν a sugárzás frekvenciája, [ν] = 1/s λ : a sugárzás hullámhossza, [λ] = m k : a Boltzmann-állandó T : az abszolút hőmérséklet, [T] = K (kelvin) h : a Planck-féle állandó

14 A fényelektromos jelenség (Fotoeffektus)

15 Előzetes kísérleti eredmények 1. Hertz tapasztalata: 1887: H. Hertz azt tapasztalta, hogy a szikrakisülést fémelektródok között az ultraibolya fény elősegíti. 2. Hallwachs Sztoljetov-effektus: 1888: Hallwachs és Sztoljetov megállapítják, hogy az ultraibolya sugarak negatív töltésű fémlapból negatív töltést szabadítanak ki. A kísérleti elrendezés: 3. P. Lenard és J.J. Thomson megfigyelései a külső fényelektromos hatás: 1898: P. Lenard és J.J. Thomson vákuumban végzett kísérletekkel megmérték a fémből fény hatására emittált részecskék fajlagos töltését ( e ) és megállapították, m hogy ezek a kilépő részecskék elektronok.

16 A fotoeffektus Foton E = h f e e E 0 = 3 2 kt E = E 0 + hf Az elektron elnyeli a fotont Ha E = 0 és E 0 0, akkor: 1 2 mv max 2 = h f W ki Az elektron mozog a felület felé. Ez a mozgás E energiát felemészthet. Az elektron kilép a felületen. Ez W ki = e U energiába kerül.

17 Röntgensugarak keltése

18 Compton- szórás Compton-formula: Compton-hullámhossz: λ = h m 0 c (1 cosθ) λ C = h m 0 c

19 Az elektromágneses sugárzás kettős természete Hőmérsékleti sugárzás Fényelektromos jelenség Compton-effektus Részecske természet Interferencia Elhajlás, törés, visszaverődés Hullám természet Modell: Hullámmodell és részecskemodell Az elektromágneses sugárzás kettős természetet mutat. 2. előadás

20 ATOMMODELLEK, KVANTUMSZÁMOK, PAULI-FÉLE TILALMI ELV 2. előadás

21 Rutherford-féle atommodell Manchesteri Egyetem Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfa-részecskékkel bombáztak vékony aranyfüst lemezt Várt eredmény: az alfa-részecskék lassulva, de terjedési irányukat megtartva áthatolnak az aranylemezen és közvetlenül a lemez mögött csapódnak be a detektorba. Kapott eredmény: az alfa részecskék kis hányada jelentős eltérülést szenvedett, vagyis az alfa részecskék szóródtak a lemezen

22 Rutherford-féle atommodell Magyarázat: Ha az arany atomok szerkezete a mazsoláskalács modell szerint nézne ki, akkor a pozitív alfarészek nem térülnének el, hanem csak lassulnának. De eltérülés tapasztalható Nagy tömegű, pozitív töltésű, lokalizált szóró centrumnak kell jelen lennie az atomban Az atomnak van atommagja és az lokalizált az atomban

23 Rutherford-féle atommodell Rutherford atommodellje: Az atom tömege a pozitív magban koncentrálódik és körülötte körpályán keringenek az elektronok egyenletes körmozgást végezve. A centripetális erőt (a körpályán tartást) az elektrosztatikus Coulomb-erő biztosítja. Rutherford atommodelljének a hibája: A körpályán mozgó elektronnak gyorsulása van mint gyorsuló töltésnek (elektron) sugároznia kellene még alapállapotban is. Azaz az alapállapotú atomnak sugároznia kellene Energia veszteség következne be a körpálya sugara egyre jobban csökkenne Az elektron végül spirális pályán becsapódna a magba. Mindez nem következik be, tehát a modell hibás. 2. előadás

24 Bohr-féle atommodell I. Az atom tartósan csak az ún. stacionárius állapotokban létezhet, amelyekben meghatározott és állandó E 1, E 2, energiaértékekkel rendelkezik. Tehát ezekben az állapotokban nem sugároz. Másképpen: Az atomban az elektronok csak meghatározott körpályákon keringhetnek az atommag körül és ezekhez a pályákhoz diszkrét energiaértékek tartoznak. Eközben az atom nem sugároz.

25 II. Bohr-féle atommodell Két elektronpálya közötti átmenet foton kisugárzásával vagy elnyelésével jár együtt. A foton energiája ekkor: W n W k = h f A foton energiája egyenlő az energiaszintek különbségével.

26 III. Bohr-féle atommodell Az elektron L = m r v impulzusmomentumának a nagysága: m r v = n h 2π = n ħ Azaz az elektron csak olyan pályákon keringhet, ahol az elektronra jellemző pályaimpulzus-nyomaték a h egész 2π számú többszöröse. Definíció (főkvantumszám): A III. Bohr posztulátumban szereplő n-et főkvantumszámnak nevezzük.

27 Bohr-Sommerfeld atommodell Spektroszkópiai vizsgálatok szerint az atomok vonalas színképeiben a színképvonalak csíkos struktúrált szerkezetűek. A színképvonalaknak finomszerkezetük van. Sommerfeld pontosította a Bohr-modellt: L = l h 2π Ellipszispályákat vezetett be a körpályák mellé, mint finomszerkezeti magyarázat. Definíció (mellékkvantumszám): Az ellipszispályák pályaperdületeihez rendelt l számot mellékkvantumszámnak nevezzük. l = 0, 1, 2, 3, n 1, ahol n főkvantumszám

28 Mágneses kvantumszám z Bohr-magneton: M B = e h 2m e 2π L M z M e v Az atom mágneses dipólmomentumának nagysága: 2. előadás M = M B l Ennek a z-irányú tengelyre való vetülete: M z = M cosα = M B l cosα Definíció (mágneses kvantumszám): m = l cos α m = 0, ±1, ±2, m = l, 0,, +l

29 Definíció (spin): h Spin Az L S = ± 1 mennyiséget, ahol h a 2 2π Planck-állandó, spinnek nevezzük. Definíció (spinkvantumszám): Az s = ± 1 értéket a spin kifejezésében 2 spinkvantumszámnak nevezzük. 2. előadás

30 Pauli-féle tilalmi elv Pauli-elv: Az atomban kötött elektronra vonatkozóan az atomban nincsen két olyan elektron, amelyeknek mind a 4 kvantumszáma megegyezik. Bármely fizikai rendszerben a rendszer valamely adott kvantumszámokkal jellemzett állapotában nem lehet egynél több elektron. 2. előadás

Rutherford-féle atommodell

Rutherford-féle atommodell Rutherfordféle atommodell Manchesteri Egyetem 1909 1911 Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfarészecskékkel bombáztak

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Történeti áttekintés Ernest Rutherford (1911) Rutherford alfa részecskéket tanulmányozott 1898-tól (ő fedezte fel őket). 1909-ben egy kísérlet során

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

2. AZ ATOM. 6.1. Az elektron felfedezése

2. AZ ATOM. 6.1. Az elektron felfedezése 2. AZ ATOM Atom: atommag + elektronfelhő = proton, neutron, elektron Elemi részecskék 6.. Az elektron felfedezése 82. Henry Davy (-) katód (+) anód Az üveggel érintkező katódsugár zöldes luminesszenciát

Részletesebben

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor

Részletesebben

ATOMOSZ = OSZTHATATLAN

ATOMOSZ = OSZTHATATLAN AZ ATOMOK SZERKEZETE/KVANTUMSZÁMOK 2014 szeptember 15-16-17. PTE ÁOK Biofizikai Intézet ATOMOSZ = OSZTHATATLAN Semmi más nem létezik, csak atomok és üres tér. Minden egyéb puszta vélekedés. Démokritosz,

Részletesebben

Az elektron felfedezése

Az elektron felfedezése Az elektron felfedezése A katódsugárcső végét foszforeszkáló anyaggal vonják be. Ha ezt eltalálja a katódsugár, akkor ezen a helyen zöldesen világít. feszültségforrás katód anód kis rés vákuum foszforeszkáló

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Természettudomány. 1-2. témakör: Atomok, atommodellek Anyagok, gázok

Természettudomány. 1-2. témakör: Atomok, atommodellek Anyagok, gázok Természettudomány 1-2. témakör: Atomok, atommodellek Anyagok, gázok Atommodellek viták, elképzelések, tények I. i.e. 600. körül: Thálész: a víz az ősanyag i.e. IV-V. század: Démokritosz: az anyagot parányi

Részletesebben

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám.

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám. Fényszórás mérése A jelenség magyarázata A megfigyelhető jelenségek A fény elektromágneses hullám. Az elektromos tér töltésekre erőhatást fejt ki. A dipólus keletkezése Dipólusok: a pozitív és a negatív

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti

Részletesebben

Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék

Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék Reológia 2 Bányai István DE Kolloid- és Környezetkémiai Tanszék Mérése nyomásesés áramlásra p 1 p 2 v=0 folyás csőben z r p 1 p 2 v max I V 1 p p t 8 l 1 2 r 2 x Höppler-típusú viszkoziméter v 2g 9 2 testgömb

Részletesebben

Az atom szerkezete. Atommodellek. A Rutherford-kísérlet. A Bohr-modell. A Frank-Hertz kísérlet

Az atom szerkezete. Atommodellek. A Rutherford-kísérlet. A Bohr-modell. A Frank-Hertz kísérlet Az atom szerkezete Atommodellek A Rutherford-kísérlet A Bohr-modell A Frank-Hertz kísérlet Ha egy világkatasztrófa következtében minden tudományos ismeretanyag megsemmisülne és csak egyetlenegy mondat

Részletesebben

AZ ATOM. Atom: atommag + elektronfelhő = proton, neutron, elektron. Elemi részecskék

AZ ATOM. Atom: atommag + elektronfelhő = proton, neutron, elektron. Elemi részecskék AZ ATOM Atom: atommag + elektronfelhő = proton, neutron, elektron Elemi részecskék Atomok Dalton elmélete (1805): John DALTON 1766-1844 1. Az elemek apró részecskékből, atomokból állnak. Atom: görög szó

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK - 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei:

A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei: AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának tényezői

Részletesebben

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

5. Mérés. Fényelektromos jelenség vizsgálata Fotocella mérése 2014.02.15.

5. Mérés. Fényelektromos jelenség vizsgálata Fotocella mérése 2014.02.15. 1. Elméleti áttekintés: 5. Mérés Fényelektromos jelenség vizsgálata Fotocella mérése 2014.02.15. Fény hatására a fémekből elektronok lépnek ki. Ezt a jelenséget nevezzük fényelektromos jelenségnek (fotoeffektus).

Részletesebben

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása Az ionizáló sugárzások kölcsönhatása anyaggal, nehéz és könnyű töltött részek kölcsönhatása, röntgen és γ-sugárzás kölcsönhatása Az ionizáló sugárzások mérése, gáztöltésű detektorok (ionizációs kamra,

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK FIZIKA KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon az alábbi kompetenciák meglétét kell bizonyítania: - ismeretei összekapcsolása a mindennapokban tapasztalt

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

paradoxonok a modern fizikában Dr. Héjjas István

paradoxonok a modern fizikában Dr. Héjjas István paradoxonok a modern fizikában Dr. Héjjas István 1 A modern fizika voltaképpen ezoterikus tudomány!!! miért? 1. Olyan jelenségekkel (is) foglalkozik, amelyeket képtelenségeknek tartunk, mivel ellentmondanak

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.)

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.) A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla 7. Előadás (2015.10.29.) Az atomelmélet fejlődése (folyt.) 1, az anyag atomos szerkezetének bizonyítása

Részletesebben

Debreceni Egyetem Orvos- és Egészségtudományi Centrum (DE OEC) Biofizikai és Sejtbiológiai Intézet, igazgató: Szöllősi János, egyetemi tanár

Debreceni Egyetem Orvos- és Egészségtudományi Centrum (DE OEC) Biofizikai és Sejtbiológiai Intézet, igazgató: Szöllősi János, egyetemi tanár Debreceni Egyetem Orvos- és Egészségtudományi Centrum (DE OEC) Biofizikai és Sejtbiológiai Intézet, igazgató: Szöllősi János, egyetemi tanár Biofizikai Tanszék (1. félév) vezető: Panyi György, egyetemi

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

1. tesztlap. Fizikát elsı évben tanulók számára

1. tesztlap. Fizikát elsı évben tanulók számára 1. tesztlap Fizikát elsı évben tanulók számára 1.) Egy fékezı vonatban menetiránynak megfelelıen ülve feldobunk egy labdát. Hová esik vissza? A) Éppen a kezünkbe. B) Elénk C) Mögénk. D) Attól függ, milyen

Részletesebben

Hőszivattyúk 2010. Makk Árpád Viessmann Akadémia. Viessmann Werke 23.04.2010. Hőszivattyúk. Chart 1

Hőszivattyúk 2010. Makk Árpád Viessmann Akadémia. Viessmann Werke 23.04.2010. Hőszivattyúk. Chart 1 Hőszivattyúk Chart 1 Hőszivattyúk 2010 Makk Árpád Viessmann Akadémia Vorlage 2 560 3 550 2 440 1 500 1 000 700 550 420 850 1 000 1 300 1 400 1 900 2 300 3 578 6 100 5 240 4 600 4 719 5 736 8 330 8 300

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Lendület, lendületmegmaradás

Lendület, lendületmegmaradás Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

Lumineszcencia (fluoreszcencia, foszforeszcencia)

Lumineszcencia (fluoreszcencia, foszforeszcencia) Lumineszcencia (fluoreszcencia, foszforeszcencia) Lumineszcencia Bizonyos anyagok fény (látható fény, röntgen sugárzás, vagy radioaktív sugárzás) hatására látható fényt sugároznak ki. A hőmérsékleti sugárzással

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Órai kidolgozásra: 1. feladat Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk,

Részletesebben

Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/

Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/ Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott

Részletesebben

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Tartalom Egyensúly elágazási határállapot Rugalmas nyomott oszlop kritikus ereje (Euler erő) Valódi nyomott oszlopok

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

Light Amplification by Stimulated Emission of Radiation rövidítése; magyarul: fényerősítés indukált emisszióval

Light Amplification by Stimulated Emission of Radiation rövidítése; magyarul: fényerősítés indukált emisszióval LASER Light Amplification by Stimulated Emission of Radiation rövidítése; magyarul: fényerősítés indukált emisszióval A lézerfény létrejötte: 1.) Atomok és molekulák energiaszint-rendszere atomi energiaszintek,

Részletesebben

Részecskék hullámtermészete

Részecskék hullámtermészete Részecskék ullámtermészete Bevezetés A sugárzás és az anyag egyaránt mutat részecskejellegű és ullámjellegű tulajdonságokat. Atommodellek A Tomson modell J.J. Tomson 1898 A negatív töltésű elektronok pozitív

Részletesebben

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI OSZTÁLYOZÓ VIZSGA TÉMAKÖREI Az anyag néhány tulajdonsága, kölcsönhatások Fizika - 7. évfolyam 1. Az anyag belső szerkezete légnemű, folyékony és szilárd halmazállapotban 2. A testek mérhető tulajdonságai

Részletesebben

1. A kvantummechanika alapjai

1. A kvantummechanika alapjai 1. A kvantummechanika alapjai 1.1. A klasszikus fizika tudományos világképe 1) Vannak anyagok vagy testek, amelyek tömeggel és impulzussal rendelkeznek. A mikrorészecskék közül ilyenek pl. az elektronok

Részletesebben

Fluxus. A G vektormező V egyszeresen összefüggő, zárt felületre vett fluxusa:

Fluxus. A G vektormező V egyszeresen összefüggő, zárt felületre vett fluxusa: Matematikai alapok Fluxus A G vektormező V egyszeresen összefüggő, zárt felületre vett fluxusa: GF d V Divergencia Koordinátaredszertől független definíció: div G lim V Descartes-féle koordináták esetén:

Részletesebben

Pár szó az Optikáról

Pár szó az Optikáról Pár szó az Optikáról Hullámok: Tekintsünk egy haladó hullámot, pl. vízhullámot, a hullám forrásától elég távol. Ha egy konkrét időpillanatban lefényképeznénk, azt látnánk, hogy térben (megközelítőleg)

Részletesebben

B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE,

B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE, B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE, FÉNYVISSZAVERŐDÉS, FÉNYTÖRÉS, FÉNYINTERFERENCIA, FÉNYPOLARIZÁCIÓ, FÉNYELHAJLÁS Fény: elektromágneses sugárzás (Einstein meghatározása, hogy idesorolta a

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia E m S Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben = µ

Részletesebben

Kooperáció és intelligencia

Kooperáció és intelligencia Kooperáció és intelligencia Tanulás többágenses szervezetekben/2 Tanulás több ágensből álló környezetben -a mozgó cél tanulás problémája (alapvetően megerősítéses tanulás) Legyen az ágens közösség formalizált

Részletesebben

Az anyagszerkezet alapjai

Az anyagszerkezet alapjai Kérdések Az anyagszerkezet alapjai Az atomok felépítése Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél

Részletesebben

Mértékegységrendszerek 2006.09.28. 1

Mértékegységrendszerek 2006.09.28. 1 Mértékegységrendszerek 2006.09.28. 1 Mértékegységrendszerek első mértékegységek C. Huygens XVII sz. természeti állandók Párizsi akadémia 1791 hosszúság méter tömeg kilogramm idő másodperc C. F. Gauss 1832

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

Fizika 2 (Modern fizika szemlélete) feladatsor

Fizika 2 (Modern fizika szemlélete) feladatsor Fizika 2 (Modern fizika szemlélete) feladatsor 1. Speciális relativitáselmélet 1. A Majmok bolygója című mozifilm és könyv szerint hibernált asztronauták a Föld távoli jövőjébe utaznak, amikorra az emberi

Részletesebben

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT.

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT. T&T tematika & tételek A magkémia alapjai, kv1n1mg1 (A) A magkémia alapjai tárgykiegészítés, kv1n1mgx (X) című, ill. kódú integrált előadáshoz http://www.chem.elte.hu/sandor.nagy/okt/amka/index.html Bevezető

Részletesebben

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés.

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés. MŰSZAKI HŐTAN II.. ZÁRTHELYI Adja meg az Ön képzési kódját! N Név: Azonosító: Terem Helyszám: K - Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl

Részletesebben

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója? 1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján

Részletesebben

Fény kölcsönhatása az anyaggal:

Fény kölcsönhatása az anyaggal: Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh

Részletesebben

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika BEVEZETÉS TANMENET Óra Tananyag Tevékenység, megjegyzések I. Mechanikai rezgések és hullámok 1. Bevezetés Emlékeztet : A fejezet feldolgozásához

Részletesebben

Az anyagi világ felépítése. Általános és szervetlen kémia 2. hét Az elızı órán elsajátítottuk, hogy. Mai témakörök. Az anyagi világ felépítése

Az anyagi világ felépítése. Általános és szervetlen kémia 2. hét Az elızı órán elsajátítottuk, hogy. Mai témakörök. Az anyagi világ felépítése Általános és szervetlen kémia 2. hét Az elızı órán elsajátítottuk, hogy az anyagokat hogyan csoportosítjuk a fizikai és kémiai folyamatok miben térnek el egymástól milyen kémiai jelölésrendszert használunk

Részletesebben

Az elektromágneses anyagvizsgálat alapjai

Az elektromágneses anyagvizsgálat alapjai BME, Anyagtudomány és Technológia Tanszék Az elektromágneses anyagvizsgálat alapjai Dr. Mészáros István Habilitációs előadás BME 216. március 3. 1 B = µ H Mágneses tér anyag kölcsönhatás B = µ µ r H =

Részletesebben

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

1. A gyorsulás Kísérlet: Eszközök Számítsa ki 1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Homlokzati tűzterjedés vizsgálati módszere

Homlokzati tűzterjedés vizsgálati módszere Homlokzati tűzterjedés vizsgálati módszere Siófok 2008. április 17. Dr. Bánky Tamás Nyílásos homlokzatok esetén a tűzterjedési gát kritériumait nem kielégítő homlokzati megoldásoknál továbbá nyílásos homlokzatokon

Részletesebben

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Forgómozgás alapjai. Forgómozgás alapjai

Forgómozgás alapjai. Forgómozgás alapjai Forgómozgás alapjai Kiterjedt test általános mozgása Kísérlet a forgómozgásra Forgómozgás és haladó mozgás analógiája Merev test általános mozgása Gondolkodtató kérdés Összetett mozgások Egy test általános

Részletesebben

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg 1 Az elektromágneses spektrum 2 Az anyag és s a fény f kölcsk lcsönhatása Visszaverődés, reflexió Törés, kettőstörés,

Részletesebben

BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE

BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE BACZY"SKI Gábor Budape?ti 1Iűszaki Egyetem, Közlekedésmérnöki Kar Epítő- és Anyagmozgató Gépek Tanszék Körkeresztmetszet{Í

Részletesebben

3. alkalom, gyakorlat

3. alkalom, gyakorlat Vegyület-félvezető struktúrák technológiája és alkalmazásaik: III-V és II-VI típusú vegyület-félvezetők; direkt és indirekt sávszerkezet; optikai tulajdonságok és alkalmazásuk 3. alkalom, gyakorlat A GYAKORLAT

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

A HŐMÉRSÉKLETI SUGÁRZÁS

A HŐMÉRSÉKLETI SUGÁRZÁS A HŐMÉRSÉKLETI SUGÁRZÁS 1. Törtéeti összefoglaló A tizekilecedik század végé a fizikát lezárt tudomáyak tartották. A sikeres Newto-i mechaika és gravitációs elmélet alapjá a Napredszer bolygóiak mozgása

Részletesebben

FIZIKA PRÓBAÉRETTSÉGI 2004. EMELT SZINT. 240 perc

FIZIKA PRÓBAÉRETTSÉGI 2004. EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. FIZIKA EMELT SZINT 240 perc A feladatlap megoldásához 240 perc áll rendelkezésére. Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 4 előadás Főátlagok összehasonlítása http://uni-obudahu/users/koczyl/gazdasagstatisztikahtm Kóczy Á László KGK-VMI Viszonyszámok (emlékeztető) Jelenség színvonalának vizsgálata

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

Mössbauer Spektroszkópia

Mössbauer Spektroszkópia Mössbauer Spektroszkópia Homa Gábor, Markó Gergely Mérés dátuma: 2008. 10. 15., 2008. 10. 22., 2008. 11. 05. Leadás dátuma: 2008. 11. 23. Figure 1: Rezonancia-abszorpció és szórás 1 Elméleti összefoglaló

Részletesebben

Kockázatkezelés és biztosítás

Kockázatkezelés és biztosítás Kockázatkezelés és biztosítás Dr. habil. Farkas Szilveszter PhD egyetemi docens, tanszékvezető Pénzügy Intézeti Tanszék Témák 1. Kockáztatott eszközök 2. Károkozó tényezők (vállalati kockázatok) 3. Holisztikus

Részletesebben

Gimnázium-szakközépiskola 12. Fizika (Közép szintű érettségi előkészítő)

Gimnázium-szakközépiskola 12. Fizika (Közép szintű érettségi előkészítő) 12. évfolyam Az középszintű érettségi előkészítő elsődleges célja az előzőleg elsajátított tananyag rendszerező ismétlése, a középszintű érettségi vizsgakövetelményeinek figyelembevételével. Tematikai

Részletesebben

BMEEOVKAI09 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

BMEEOVKAI09 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése 1 EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése HEFOP/2004/3.3.1/0001.01 V Í Z É S K Ö R N Y E Z E T I BMEEOVKAI09 segédlet a BME Építőmérnöki

Részletesebben

2 Mekkora az egyes sejtekre vonatkozó nyugalmi potenciál értéke? 30 és 100 mikrovolt közötti értékek nagyságrendjébe esik

2 Mekkora az egyes sejtekre vonatkozó nyugalmi potenciál értéke? 30 és 100 mikrovolt közötti értékek nagyságrendjébe esik 1 Melyik érték HMIS a nyugalmi állapotban mérhető INTRLLUÁRIS ionkoncentrációkra vonatkozóan? ~4 mmol/l l - 140 150 mmol/l Na + ~155 mmol/l fehérje-anionok 140 155 mmol/l K +

Részletesebben

A robbanékony és a gyorserő fejlesztésének elmélete és módszerei

A robbanékony és a gyorserő fejlesztésének elmélete és módszerei A robbanékony és a gyorserő fejlesztésének elmélete és módszerei Tihanyi József Semmelweis Egyetem, Testnevelési és Sporttudományi Kar (TF) Biomechanika, Kineziológia és informatika tanszék Budapest, 2014.

Részletesebben

A Hozzárendelési feladat megoldása Magyar-módszerrel

A Hozzárendelési feladat megoldása Magyar-módszerrel A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független

Részletesebben

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla

Részletesebben

HWDEV-02A GSM TERMOSZTÁT

HWDEV-02A GSM TERMOSZTÁT HWDEV-02A GSM TERMOSZTÁT 2010 HASZNÁLATI ÚTMUTATÓ A termosztát egy beépített mobiltelefonnal rendelkezik. Ez fogadja az Ön hívását ha felhívja a termosztát telefonszámát. Érdemes ezt a telefonszámot felírni

Részletesebben

FIZIKA. EMELT SZINTŐ ÍRÁSBELI VIZSGA 2008. április 12. Az írásbeli vizsga idıtartama: 240 perc. Max. p. Elért p. I. Feleletválasztós kérdések 30

FIZIKA. EMELT SZINTŐ ÍRÁSBELI VIZSGA 2008. április 12. Az írásbeli vizsga idıtartama: 240 perc. Max. p. Elért p. I. Feleletválasztós kérdések 30 FIZIKA EMELT SZINTŐ ÍRÁSBELI VIZSGA 2008. április 12. Az írásbeli vizsga idıtartama: 240 perc Max. p. Elért p. I. Feleletválasztós kérdések 30 II. Esszé: tartalom 18 II. Esszé: kifejtés módja 5 Összetett

Részletesebben

Távérzékelés - alapfogalmak

Távérzékelés - alapfogalmak Távérzékelés - alapfogalmak Dr. Berke József www.digkep.hu Kvark Bt., Keszthely Tartalom A képfeldolgozás fogalma Távérzékelés fogalma Hazai és nemzetközi kitekintések Légi- és űrfelvételek alapvető jellemzői

Részletesebben

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN 2007. február 6. 1 Pálinkás József: Fizika 2. XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN Bevezetés: Az előző fejezetekben megismertük, hogy a kvantumelmélet milyen jól leírja az atomok és a molekulák felépítését.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

MINTA. Fizetendô összeg: 62 136,00 HUF. Telefonon: 06 40 / 20 99 20 ben: Interneten:

MINTA. Fizetendô összeg: 62 136,00 HUF. Telefonon: 06 40 / 20 99 20  ben: Interneten: Részszámla Számla. eredeti példány / oldal Elszámolási idôszak: 00.0. - 00.09.. Partnerszám: 000009 Fizetési határidô: 00.09.0. Vevô neve, címe: Minta út. Fizetendô összeg:, Minta út. Szerzôdéses folyószámla

Részletesebben

Hőhidak meghatározásának bizonytalansága. Sólyomi Péter ÉMI Nonprofit Kft.

Hőhidak meghatározásának bizonytalansága. Sólyomi Péter ÉMI Nonprofit Kft. Hőhidak meghatározásának bizonytalansága Sólyomi Péter ÉMI Nonprofit Kft. 7./2006. (V. 24.) TNM r e n d e l e t Épülethatároló szerkezet A hőátbocsátási tényező követelményértéke U W/m 2 K Külső fal 0,45

Részletesebben

Áz anyag szerkezete.

Áz anyag szerkezete. Áz anyag szerkezete. Az.. 1938. március 6-i közgyűlésén tartott előadás. ár Krisztus előtt 400 évvel a görög bölcsészeket nagyban foglalkoztatta az a kérdés, hogy a indenség ősanyaga egészen tömör, egynemű,

Részletesebben