ATOMOSZ = OSZTHATATLAN

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ATOMOSZ = OSZTHATATLAN"

Átírás

1 AZ ATOMOK SZERKEZETE/KVANTUMSZÁMOK 2014 szeptember PTE ÁOK Biofizikai Intézet ATOMOSZ = OSZTHATATLAN Semmi más nem létezik, csak atomok és üres tér. Minden egyéb puszta vélekedés. Démokritosz, i.e

2 A THOMSON MODELL (1902) Josep Jon Tomson elektron Mazsolás puding AZ ATOMMODELLEK Az atomok stabilak Kémiai tulajdonságai periodicitást mutatnak (Mengyelejev 1869) Gerjesztés atására fényt bocsátanak ki, emissziós színképük vonalas Joann Jakob Balmer tapasztalati képlete (1885): R 4 n 2 n: 3,4,5 R: Rydberg állandó (R = m -1 ) 2

3 RUTHERFORD MODELL (1911) Ernest Ruterford RUTHERFORD KÖVETKEZTETÉSEI 1. Az anyag nagy része üres tér! 2. A pozitív töltés nagyon kis térrészbe koncentrálódik (atommag ~10-15 m). 3. Az elektronok az atommag körül keringenek, mint bolygók a Nap körül. 3

4 BOHR-FÉLE ATOMMODELL Bor posztulátumai: Niels Bor 1. Az atom elektronjai csak megatározott pályákon keringetnek. A megengedett körpályák sugara: L mrv n 2 Állóullám! 2r n n mv 2. Az elektron csak akkor sugároz, a egyik pályáról a másikra átugrik. A kisugárzott foton energiája az elektron két pályán mért energiájának különbsége. f E 2 E 1 6, Js Planck-állandó A BOHR-MODELL KÖVETKEZMÉNYEI 1. Első pálya sugara: r 1 = 5, m (Bor-rádiusz) r 2 = 4r 1, r 3 = 9r 1.. r n = n 2 r 1 2. Az első pálya energiája: E 1 = ev (mivel kötött állapotban van) E1 E1 E1 E2 E3 E n n 4

5 A FRANK-HERTZ KÍSÉRLET A Bor-modell bizonyítéka Az atomok csak pontosan megatározott energiaadagokat nyelnek el, a Hg atomok pl. 4,9 ev-ot. A 4,9 ev pontosan megegyezik a Hg-atom alapállapota és első gerjesztett állapota közötti energiakülönbséggel. A KVANTUMMECHANIKAI ATOMMODELL Anyagullám ullámfüggvény () kiszámítató a Scrödinger egyenletből A idrogénatom alapállapotban találató elektronjának elyzete a mag körül. A pontok sűrűsége az elektron megtalálási valószínűségével arányos. A grafikon a Ψ 2 -et ábrázolja a magtól mért távolság függvényében. Elektron előfordulási valószínűsége: 2 5

6 HEISENBERG-FÉLE HATÁROZATLANSÁGI RELÁCIÓ (1927) Egy részecske elyét és lendületét (impulzusát) nem leet egyidejűleg pontosan megmérni. A két egyidejű mérés atározatlanságának (ibájának) szorzata szükségképp nagyobb mint / 4: x p x 4 Az összefüggés egy elvi atárt ad meg: a két mennyiség mérési atározatlanságának szorzata semmiképp sem leet kisebb mint / 4. KVANTUMSZÁMOK Az kvantumszámokat az elektronok állapotainak leírására vezették be. Mindegyik kvantumszám egy adott fizikai mennyiséget kvantál, azaz megatározza, ogy az milyen diszkrét értékeket veet fel. A Bor-atommodellből már ismert, ogy az elektronok energiája kvantált, azaz csak adott értékeket veet fel. Az energiaértékeket megatározza az n főkvantumszám. A kvantummecanika bebizonyította, ogy az adott energiájú állapotok további alállapotokra oszlanak, így az elektronok állapotainak leírására nem elég az n főkvantumszám, anem további kvantumszámokat kell bevezetni. 6

7 KVANTUMSZÁMOK A főkvantumszám (n) Már ismert, ogy a főkvantumszám az energiát kvantálja, mindegyik n értékez tartozik egy energiaérték ( n En ). Az adott n értékkel rendelkező elektronok egy éjat alkotnak, amelyeket K, L, M, stb. betűkkel jelölnek. Egy éjon belül további állapotok leetségesek, amelyeket a mellékkvantumszám atároz meg. Bor bámulatos pontossággal megjósolta a pályák elyét, viszont annyiban tévedett, ogy az elektron nem csak ilyen távolságra tartózkodat a magtól, anem ilyen távolságban tartózkodik legvalószínűbben. KVANTUMSZÁMOK A mellékkvantumszám (l) Az elektron perdületének nagyságát kvantálja. Perdület: Egy r sugarú pályán v sebességgel mozgó test perdülete vektormennyiség. Nagysága L = mvr. Iránya merőleges a mozgás síkjára. Az elektronok pályán való mozgásából eredő perdület csak L l( l 1) 2 értékeket veet fel, aol a Planck állandó, l pedig a mellékkvantumszám, amely egész szám leet 0 és n-1 között. Példa: n = 2; l = 0 (2s állapot): L = 0 l = 1 (2p állapot): L 2 2 7

8 KVANTUMSZÁMOK A mágneses kvantumszám (m) Az elektron perdületének irányát kvantálja, teát a perdület csak jól megatározott irányokba állat be. A perdületnek egy külső mágneses tér irányára (z) vett vetülete csak nagyságú leet, aol m a mágneses kvantumszám, amelynek értékei egész számok -l és +l között. Ez egyértelműen megatározza a perdület irányát. Hogyan atározza meg a perdületet: Például: a n = 2; l = 0, 1; m = -1, 0, +1 L z m 2 ZEEMAN-EFFEKTUS I. Amikor egy atom egy magasabb energiájú kezdeti állapotból egy alacsonyabb energiájú végállapotba kerül, akkor az energiakülönbséget egy foton formájában is leadatja (emisszió). Ez egy vonalat adat a látató spektrumban. Egy külső mágneses tér ennek a színképvonalnak felasadását eredményezeti. Ilyenkor a külső tér irányáoz képest a különböző irányú mágneses nyomatékkal rendelkező elektronok energiája különbözővé válik. A felasadás mértéke arányos az alkalmazott mágneses térrel. Az eredeti vonal mentén jobb és bal oldalt, szimmetrikusan jelennek meg a kísérővonalak. Ezt nevezzük Zeeman-effektusnak (normális Zeeman-effektus). 8

9 KVANTUMSZÁMOK A spinkvantumszám (s) Az elektron saját perdületének nagyságát kvantálja (spin=pörög, ang.). Úgy képzelik el, ogy az elektron (pl. a Földöz asonlóan) a pályán való keringés mellett saját tengelye körül is forog. Az elektronok saját perdülete csak S s( s 1) 2 értékeket veet fel, aol s a spinkvantumszám. A spinkvantumszám csak ½ leet, így az S saját perdületnek (vagy spinnek) is csak egy értéke van. Ez nem jelent további alállapotokat. KVANTUMSZÁMOK A mágneses spinkvantumszám (m s ) Az elektron saját perdületének irányát kvantálja. A perdületnek egy külső mágneses tér irányára (z) vett vetülete csak S z m 2 nagyságú leet, aol m s a mágneses spinkvantumszám, amely ½ vagy -½, így a spin (saját perdület) csak két irányba állat be. s 9

10 ZEEMAN-EFFEKTUS II. Az atomot mágneses térbe elyezzük, és vizsgáljuk a mágneses mező és az atomi elektron, pontosabban a köráram mágneses momentuma közötti kölcsönatási energiát. Néa azonban olyat is tapasztaltak, ogy a mágneses mezőben az eredeti vonal eltűnt, és páros számú vonal jelent meg. Ez az anomális Zeeman-effektus. Ezek a kísérletek már bizonyítékul szolgáltak az iránykvantálásra, de csak közvetett bizonyítékok maradtak. A közvetlen bizonyítékot a Stern-Gerlac kísérlettel találták meg. A jelenség az atombeli elektronok kvantumos természetének eredménye és úgy magyarázató, a feltesszük, ogy az elektronnak van saját perdülete, azaz spinje ami alapján az elektronnak saját mágneses nyomatéka is van. A STERN-GERLACH KÍSÉRLET A mágnes bekapcsolásakor a nyaláb atomjainak mágneses dipólusai beállnak a leetséges irányokba az Ag atomok esetén ez két irányt jelent, és mivel a különböző irányokban álló dipólusokat az inomogén mágneses tér különböző irányba téríti ki, a nyaláb kettéválik. Ha a dipólusok, bármilyen irányba beállatnának, a nyaláb nem kettéválna, anem kiszélesedne. ttp:// 10

11 A STERN-GERLACH KÍSÉRLET 1922 Következtetések: 1. A kísérlet egyértelműen bizonyítja az iránykvantálást. 2. Miért éppen kétfelé asadt? a l=0 => m=0 => nincs asadás a l=1 => m=0, 1 => áromfelé asad (azaz kétfelé asadást a pálya impulzusmomentum nem okozat) 1927-ben Pipps-Taylor alapállapotú H-atommal is elvégezték ezt a kísérletet: itt is két részre asadt Goudsmit és Ulenbeck: az elektron rendelkezik saját impulzusmomentummal ( a pörgése miatt ). Ez a SPIN. AZ EINSTEIN-DE HAAS KÍSÉRLET Bizonyítja, ogy az elektronok saját tengelykörüli forgása (saját perdülete vagy spinje) és saját mágneses nyomatéka (spinmágneses nyomatéka) egymással szorosan összefüggenek, így a egyiket megváltoztatjuk, megváltozik a másik is. Az elektronok mind az ellenkező irányban kezdenek el pörögni. A perdületmegmaradás kimondja, ogy a enger eredő perdülete állandó kell ogy maradjon, ezért, ogy az elektronok perdületváltását kompenzálja, a enger elfordul. 11

12 KVANTUMSZÁMOK Kvantumszám Jele Kvantált mennyiség Értékei Fő n Energia 1,2,3 Mellék l Perdület nagysága 0,1 n-1 Mágneses m Perdület iránya -l, -l+1 0 l- 1, l Spin s Saját perdület nagysága ½ Mágneses spin m s Saját perdület iránya ½, +½ KVANTUMSZÁMOK ttp://dilc.upd.edu.p/images/lo/cem/quantum/quantum.swf 12

Az atomok szerkezete. Atomosz = oszthatatlan. Az atommodellek. Rutherford következtetései. Joseph John Thomson A Thomson modell (1902)

Az atomok szerkezete. Atomosz = oszthatatlan. Az atommodellek. Rutherford következtetései. Joseph John Thomson A Thomson modell (1902) Az atomok szerkezete Atomosz = osztatatlan PTE ÁOK Biofizikai Intézet Semmi más nem létezik, csak atomok és üres tér. Minden egyéb puszta vélekedés. Démokritosz, i.e. 415. 013 november Josep Jon Tomson

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

2. AZ ATOM. 6.1. Az elektron felfedezése

2. AZ ATOM. 6.1. Az elektron felfedezése 2. AZ ATOM Atom: atommag + elektronfelhő = proton, neutron, elektron Elemi részecskék 6.. Az elektron felfedezése 82. Henry Davy (-) katód (+) anód Az üveggel érintkező katódsugár zöldes luminesszenciát

Részletesebben

Rutherford-féle atommodell

Rutherford-féle atommodell Rutherfordféle atommodell Manchesteri Egyetem 1909 1911 Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfarészecskékkel bombáztak

Részletesebben

AZ ATOM. Atom: atommag + elektronfelhő = proton, neutron, elektron. Elemi részecskék

AZ ATOM. Atom: atommag + elektronfelhő = proton, neutron, elektron. Elemi részecskék AZ ATOM Atom: atommag + elektronfelhő = proton, neutron, elektron Elemi részecskék Atomok Dalton elmélete (1805): John DALTON 1766-1844 1. Az elemek apró részecskékből, atomokból állnak. Atom: görög szó

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Történeti áttekintés Ernest Rutherford (1911) Rutherford alfa részecskéket tanulmányozott 1898-tól (ő fedezte fel őket). 1909-ben egy kísérlet során

Részletesebben

Az atom szerkezete. Atommodellek. A Rutherford-kísérlet. A Bohr-modell. A Frank-Hertz kísérlet

Az atom szerkezete. Atommodellek. A Rutherford-kísérlet. A Bohr-modell. A Frank-Hertz kísérlet Az atom szerkezete Atommodellek A Rutherford-kísérlet A Bohr-modell A Frank-Hertz kísérlet Ha egy világkatasztrófa következtében minden tudományos ismeretanyag megsemmisülne és csak egyetlenegy mondat

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

Az anyagszerkezet alapjai

Az anyagszerkezet alapjai Kérdések Az anyagszerkezet alapjai Az atomok felépítése Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Természettudomány. 1-2. témakör: Atomok, atommodellek Anyagok, gázok

Természettudomány. 1-2. témakör: Atomok, atommodellek Anyagok, gázok Természettudomány 1-2. témakör: Atomok, atommodellek Anyagok, gázok Atommodellek viták, elképzelések, tények I. i.e. 600. körül: Thálész: a víz az ősanyag i.e. IV-V. század: Démokritosz: az anyagot parányi

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti

Részletesebben

Részecskék hullámtermészete

Részecskék hullámtermészete Részecskék ullámtermészete Bevezetés A sugárzás és az anyag egyaránt mutat részecskejellegű és ullámjellegű tulajdonságokat. Atommodellek A Tomson modell J.J. Tomson 1898 A negatív töltésű elektronok pozitív

Részletesebben

Az atomok szerkezete. Az atomok szerkezete. Általános és szervetlen kémia 2. hét Az atomok szerkezete

Az atomok szerkezete. Az atomok szerkezete. Általános és szervetlen kémia 2. hét Az atomok szerkezete Általános és szervetlen kémia 2. hét Az atomok szerkezete az atom: a kémiai elem legkisebb, a kémiai változás során át nem alakuló része atommag?!?? kémiai történések: változás az atomok vegyértékelektron-szerkezetében

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,

Részletesebben

Az anyagi világ felépítése. Általános és szervetlen kémia 2. hét Az elızı órán elsajátítottuk, hogy. Mai témakörök. Az anyagi világ felépítése

Az anyagi világ felépítése. Általános és szervetlen kémia 2. hét Az elızı órán elsajátítottuk, hogy. Mai témakörök. Az anyagi világ felépítése Általános és szervetlen kémia 2. hét Az elızı órán elsajátítottuk, hogy az anyagokat hogyan csoportosítjuk a fizikai és kémiai folyamatok miben térnek el egymástól milyen kémiai jelölésrendszert használunk

Részletesebben

Az elektron felfedezése

Az elektron felfedezése Az elektron felfedezése A katódsugárcső végét foszforeszkáló anyaggal vonják be. Ha ezt eltalálja a katódsugár, akkor ezen a helyen zöldesen világít. feszültségforrás katód anód kis rés vákuum foszforeszkáló

Részletesebben

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek! 1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,

Részletesebben

A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei:

A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei: AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának tényezői

Részletesebben

[MECHANIKA- HAJLÍTÁS]

[MECHANIKA- HAJLÍTÁS] 2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás

Részletesebben

Egyszerű áramkörök vizsgálata

Egyszerű áramkörök vizsgálata A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)

Részletesebben

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

Pozitron-emissziós tomográf (PET) mire való és hogyan működik?

Pozitron-emissziós tomográf (PET) mire való és hogyan működik? Pozitron-emissziós tomográf (PET) mire való és hogyan működik? Major Péter Atomoktól csillagokig, 2011. nov. 10. Vázlat Mi az hogy Tomográf? (fajták, képek) Milyen tomográfok vannak, miért van ennyi? Milyen

Részletesebben

Forgómozgás alapjai. Forgómozgás alapjai

Forgómozgás alapjai. Forgómozgás alapjai Forgómozgás alapjai Kiterjedt test általános mozgása Kísérlet a forgómozgásra Forgómozgás és haladó mozgás analógiája Merev test általános mozgása Gondolkodtató kérdés Összetett mozgások Egy test általános

Részletesebben

VASÚTI PÁLYA DINAMIKÁJA

VASÚTI PÁLYA DINAMIKÁJA VASÚTI PÁLYA DINAMIKÁJA Dynamics of the railway track Liegner Nándor BME Út és Vasútépítési Tanszék A vasúti felépítmény szerkezeti elemeiben ébredő igénybevételek A Zimmermann Eisenmann elmélet alapján

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Light Amplification by Stimulated Emission of Radiation rövidítése; magyarul: fényerősítés indukált emisszióval

Light Amplification by Stimulated Emission of Radiation rövidítése; magyarul: fényerősítés indukált emisszióval LASER Light Amplification by Stimulated Emission of Radiation rövidítése; magyarul: fényerősítés indukált emisszióval A lézerfény létrejötte: 1.) Atomok és molekulák energiaszint-rendszere atomi energiaszintek,

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Nagy Sándor: Magkémia

Nagy Sándor: Magkémia Nagy Sándor: Magkémia (kv1c1mg1) 03. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala:

Részletesebben

Debreceni Egyetem Orvos- és Egészségtudományi Centrum (DE OEC) Biofizikai és Sejtbiológiai Intézet, igazgató: Szöllősi János, egyetemi tanár

Debreceni Egyetem Orvos- és Egészségtudományi Centrum (DE OEC) Biofizikai és Sejtbiológiai Intézet, igazgató: Szöllősi János, egyetemi tanár Debreceni Egyetem Orvos- és Egészségtudományi Centrum (DE OEC) Biofizikai és Sejtbiológiai Intézet, igazgató: Szöllősi János, egyetemi tanár Biofizikai Tanszék (1. félév) vezető: Panyi György, egyetemi

Részletesebben

Lécgerenda. 1. ábra. 2. ábra

Lécgerenda. 1. ábra. 2. ábra Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel

Részletesebben

Pár szó az Optikáról

Pár szó az Optikáról Pár szó az Optikáról Hullámok: Tekintsünk egy haladó hullámot, pl. vízhullámot, a hullám forrásától elég távol. Ha egy konkrét időpillanatban lefényképeznénk, azt látnánk, hogy térben (megközelítőleg)

Részletesebben

Mágneses alapjelenségek

Mágneses alapjelenségek Mágneses alapjelenségek Bizonyos vasércek képesek apró vasdarabokat magukhoz vonzani: permanens mágnes Az acélrúd felmágnesezhető ilyen ércek segítségével. Rúd két vége: pólusok (a vasreszelék csak ide

Részletesebben

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám.

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám. Fényszórás mérése A jelenség magyarázata A megfigyelhető jelenségek A fény elektromágneses hullám. Az elektromos tér töltésekre erőhatást fejt ki. A dipólus keletkezése Dipólusok: a pozitív és a negatív

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

Lendület, lendületmegmaradás

Lendület, lendületmegmaradás Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Ipari és vasúti szénkefék

Ipari és vasúti szénkefék www.schunk-group.com Ipari és vasúti szénkefék A legjelentősebb anyagminőségek fizikai tulajdonságai A legjelentősebb anyagminőségek fizikai tulajdonságai A szénkefetestként használt szén és grafit anyagminőségek

Részletesebben

ADATBÁZIS-KEZELÉS. Funkcionális függés, normál formák

ADATBÁZIS-KEZELÉS. Funkcionális függés, normál formák ADATBÁZIS-KEZELÉS Funkcionális függés, normál formák KARBANTARTÁSI ANOMÁLIÁK beszúrási anomáliák törlési anomáliák módosítási anomáliák DOLG_PROJ(Dszsz, Pszám, Dnév, Pnév, Órák) 2 MÓDOSÍTÁSI ANOMÁLIÁK

Részletesebben

A környezettan tantárgy intelligencia fejlesztő lehetőségei

A környezettan tantárgy intelligencia fejlesztő lehetőségei A környezettan tantárgy intelligencia fejlesztő lehetőségei Készítette: Pék Krisztina biológia környezettan szak Belső konzulens: Dr. Schróth Ágnes Külső konzulens: Dr. Széphalmi Ágnes A szakdolgozatom

Részletesebben

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

1. A gyorsulás Kísérlet: Eszközök Számítsa ki 1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Elektrokardiográfia. Az EKG jel kialakulása. Az EKG jel kialakulása. Dr. Zupán Kristóf Ph. D. 2013.03.12.

Elektrokardiográfia. Az EKG jel kialakulása. Az EKG jel kialakulása. Dr. Zupán Kristóf Ph. D. 2013.03.12. Elektrokardiográfia Dr. Zupán Kristóf Ph. D. 2013.03.12. depolarizáció és a repolarizáció terjedése alatt 0 depolarizáció és a repolarizáció terjedése alatt 0 Nyugalmi helyzet Depolarizált állapot Depolarizáció

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

paradoxonok a modern fizikában Dr. Héjjas István

paradoxonok a modern fizikában Dr. Héjjas István paradoxonok a modern fizikában Dr. Héjjas István 1 A modern fizika voltaképpen ezoterikus tudomány!!! miért? 1. Olyan jelenségekkel (is) foglalkozik, amelyeket képtelenségeknek tartunk, mivel ellentmondanak

Részletesebben

A mérések eredményeit az 1. számú táblázatban tüntettük fel.

A mérések eredményeit az 1. számú táblázatban tüntettük fel. Oktatási Hivatal A Mérések függőleges, vastag falú alumínium csőben eső mágnesekkel 2011/2012. tanévi Fizika Országos Középiskolai Tanulmányi Verseny döntő feladatának M E G O L D Á S A I. kategória. A

Részletesebben

Ultrahangos mérőfej XRS-5. Használati utasítás SITRANS. XRS-5 mérőfej Használati utasítás

Ultrahangos mérőfej XRS-5. Használati utasítás SITRANS. XRS-5 mérőfej Használati utasítás Ultrahangos mérőfej XRS-5 Használati utasítás SITRANS 1 Tartalom Ismertető... 3 Áttekintés... 3 Külső méretek... 4 Telepítés... 5 Elektromos bekötések... 7 Közvetlen csatlakoztatás... 7 Kábel toldás...

Részletesebben

1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév

1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak

Részletesebben

Bevezetés a lágy számítás módszereibe

Bevezetés a lágy számítás módszereibe BLSZM-07 p. 1/10 Bevezetés a lágy számítás módszereibe Nem fuzzy halmaz kimenetű fuzzy irányítási rendszerek Egy víztisztító berendezés szabályozását megvalósító modell Viselkedésijósló tervezési példa

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 11 KRISTÁLYkÉMIA XI. ATOMOK És IONOK 1. AZ ATOM Az atom az anyag legkisebb olyan része, amely még hordozza a kémiai elem jellegzetességeit. Ezért az ásványtanban

Részletesebben

Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek, mutatós műszerek működésének alapja

Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek, mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A vllamos forgógépek, mutatós műszerek működésének alapja Magnetosztatka mező: nyugvó állandó mágnesek és egyenáramok dőben állandó

Részletesebben

Párhuzamos programozás

Párhuzamos programozás Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.)

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.) A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla 7. Előadás (2015.10.29.) Az atomelmélet fejlődése (folyt.) 1, az anyag atomos szerkezetének bizonyítása

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek

Részletesebben

A testek részecskéinek szerkezete

A testek részecskéinek szerkezete A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

MINTA. Fizetendô összeg: 62 136,00 HUF. Telefonon: 06 40 / 20 99 20 ben: Interneten:

MINTA. Fizetendô összeg: 62 136,00 HUF. Telefonon: 06 40 / 20 99 20  ben: Interneten: Részszámla Számla. eredeti példány / oldal Elszámolási idôszak: 00.0. - 00.09.. Partnerszám: 000009 Fizetési határidô: 00.09.0. Vevô neve, címe: Minta út. Fizetendô összeg:, Minta út. Szerzôdéses folyószámla

Részletesebben

Mágneses alapjelenségek

Mágneses alapjelenségek Mágneses alapjelenségek Bizonyos vasércek képesek apró vasdarabokat magukhoz vonzani: permanens mágnes Az acélrúd felmágnesezhető ilyen ércek segítségével. Rúd két vége: pólusok (a vasreszelék csak ide

Részletesebben

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális

Részletesebben

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE Készítette: Ács György RTO FORRÁS: FLUXUS SZONDA ÉS ALKALMAZÁSA KTT MÉRNÖKI IRODA 11SP mérési eredményei A forgórész menetzárlat okozta

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály 5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,

Részletesebben

KÉMIA I. műszaki menedzser hallgatók részére

KÉMIA I. műszaki menedzser hallgatók részére KÉMIA I. műszaki menedzser hallgatók részére Készítette: Lektorálta: dr. Horváth Viola tudományos főmunkatárs BME Általános és Analitikai Kémiai Tanszék Prof. Horvai György egyetemi tanár BME Kémiai Informatika

Részletesebben

A táblázatkezelő felépítése

A táblázatkezelő felépítése A táblázatkezelés A táblázatkezelő felépítése A táblázatkezelő felépítése Címsor: A munkafüzet címét mutatja, és a program nevét, amivel megnyitottam. Menüszalag: A menüsor segítségével használhatjuk az

Részletesebben

A magkémia alapjai. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások. Nagy Sándor ELTE, Kémiai Intézet

A magkémia alapjai. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások. Nagy Sándor ELTE, Kémiai Intézet A magkémia alapjai Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások Nagy Sándor ELTE, Kémiai Intézet 03 E gradu U x, r U y U, r U z T Mondom: NIN-CSEN TÉR-E-RŐŐŐŐ! A tömör golyó töltéseloszlásához

Részletesebben

Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek

Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve) Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...

Részletesebben

Kockázatkezelés és biztosítás

Kockázatkezelés és biztosítás Kockázatkezelés és biztosítás Dr. habil. Farkas Szilveszter PhD egyetemi docens, tanszékvezető Pénzügy Intézeti Tanszék Témák 1. Kockáztatott eszközök 2. Károkozó tényezők (vállalati kockázatok) 3. Holisztikus

Részletesebben

Azonosító jel: Matematika emelt szint

Azonosító jel: Matematika emelt szint I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV. Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk

Részletesebben

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29.

A mechanika alapjai. A pontszerű testek dinamikája. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Bevezetés Newton I. Newton II. Newton III. Newton IV. 2 / 27 Bevezetés Bevezetés Newton I.

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Órai kidolgozásra: 1. feladat Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk,

Részletesebben

http://www.olcsoweboldal.hu ingyenes tanulmány GOOGLE INSIGHTS FOR SEARCH

http://www.olcsoweboldal.hu ingyenes tanulmány GOOGLE INSIGHTS FOR SEARCH 2008. augusztus 5-én elindult a Google Insights for Search, ami betekintést nyújt a keresőt használók tömegeinek lelkivilágába, és időben-térben szemlélteti is, amit tud róluk. Az alapja a Google Trends,

Részletesebben

lásd: enantiotóp, diasztereotóp

lásd: enantiotóp, diasztereotóp anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic

Részletesebben

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Tartalom Egyensúly elágazási határállapot Rugalmas nyomott oszlop kritikus ereje (Euler erő) Valódi nyomott oszlopok

Részletesebben

6. A kémiai kötés fajtái

6. A kémiai kötés fajtái 6. A kémiai kötés fajtái 6.1. A kémiai kötés egyszerű, Lewis féle elmélete, kovalens kötés Láttuk, hogy VB elméletben a kötés létrejöttéért az azonos térrészbe kerülő párosítatlan elektronok a felelősek.

Részletesebben

Homlokzati tűzterjedés vizsgálati módszere

Homlokzati tűzterjedés vizsgálati módszere Homlokzati tűzterjedés vizsgálati módszere Siófok 2008. április 17. Dr. Bánky Tamás Nyílásos homlokzatok esetén a tűzterjedési gát kritériumait nem kielégítő homlokzati megoldásoknál továbbá nyílásos homlokzatokon

Részletesebben

Az elektromágneses anyagvizsgálat alapjai

Az elektromágneses anyagvizsgálat alapjai BME, Anyagtudomány és Technológia Tanszék Az elektromágneses anyagvizsgálat alapjai Dr. Mészáros István Habilitációs előadás BME 216. március 3. 1 B = µ H Mágneses tér anyag kölcsönhatás B = µ µ r H =

Részletesebben

MATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések

MATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések MATLAB 4. gyakorlat Lineáris egyenletrendszerek, leképezések Menetrend Kis ZH MATLAB függvények Lineáris egyenletrendszerek Lineáris leképezések Kis ZH pdf MATLAB függvények a szkriptekhez hasonlóan az

Részletesebben

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg 1 Az elektromágneses spektrum 2 Az anyag és s a fény f kölcsk lcsönhatása Visszaverődés, reflexió Törés, kettőstörés,

Részletesebben

BMEEOVKAI09 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

BMEEOVKAI09 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése 1 EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése HEFOP/2004/3.3.1/0001.01 V Í Z É S K Ö R N Y E Z E T I BMEEOVKAI09 segédlet a BME Építőmérnöki

Részletesebben

Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék

Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék Reológia 2 Bányai István DE Kolloid- és Környezetkémiai Tanszék Mérése nyomásesés áramlásra p 1 p 2 v=0 folyás csőben z r p 1 p 2 v max I V 1 p p t 8 l 1 2 r 2 x Höppler-típusú viszkoziméter v 2g 9 2 testgömb

Részletesebben

2010.05.12. 1300 Infó Rádió. Hírek

2010.05.12. 1300 Infó Rádió. Hírek 2010.05.12. 1300 Infó Rádió Hírek 100512 1303 [1127h GAZ MKIK - pozitív index MTI km 100512] Jelentősen javultak a magyar vállalatok várakozásai a következő félévre a Magyar Kereskedelmi és Iparkamara

Részletesebben

SzigetShop.hu Traffipax-jelzõk, radar-detektorok, lézerblokkoló

SzigetShop.hu Traffipax-jelzõk, radar-detektorok, lézerblokkoló BÜNTETÉSI DIJAK A készülékek ára már egyetlen jelzéssel megtérülhet! A traffipax készülékek mûködési elve, hogy rádiófrekvenciás jeleket bocsájtanak ki, melyek a gépkocsiról visszaverõdve meghatározhatóvá

Részletesebben

2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m]

2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m] 1. Elektrosztatika 1. Egymástól 30 m távolságban rögzítjük az 5 µ C és 25 µ C nagyságú töltéseket. Hová helyezzük a 12 µ C nagyságú töltést, hogy egyensúlyban legyen? [9,27 m] 2. Egymástól 130 cm távolságban

Részletesebben

Hőhidak meghatározásának bizonytalansága. Sólyomi Péter ÉMI Nonprofit Kft.

Hőhidak meghatározásának bizonytalansága. Sólyomi Péter ÉMI Nonprofit Kft. Hőhidak meghatározásának bizonytalansága Sólyomi Péter ÉMI Nonprofit Kft. 7./2006. (V. 24.) TNM r e n d e l e t Épülethatároló szerkezet A hőátbocsátási tényező követelményértéke U W/m 2 K Külső fal 0,45

Részletesebben

Földrajzi helymeghatározás

Földrajzi helymeghatározás A mérés megnevezése, célkitűzései: Földrajzi fokhálózat jelentősége és használata a gyakorlatban Eszközszükséglet: Szükséges anyagok: narancs Szükséges eszközök: GPS készülék, földgömb, földrajz atlasz,

Részletesebben