Abszorbciós spektroszkópia

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Abszorbciós spektroszkópia"

Átírás

1 Abszorbciós spektroszkópia (Nyitrai Miklós; 2011 január 31.) A fény Elektromágneses hullám kölcsönhatása anyaggal Az abszorbció definíciója Az abszorpció mérése Speciális problémák, esetek Alkalmazások Emlékeztető Elektromágneses hullámok terjedése Emlékeztető növekvő energia távoli vörös vörös narancs sárga zöld kék ibolya UV 760nm 647nm 586nm 535nm 492nm 422nm 390nm Hogyan függ össze a frekvencia, hullámhossz és energia? A fény transzverzális elektromágneses hullám. Spektroszkópia energia (ev)* hullámhossz (nm) Snellius Descartes törvény frekvencia (Hz) hullámhossz tart. sin Θ sin Θ 1 2 n = n 2 1 Θ 1 Θ 2 n 1 n 2 sp.-i módszer *1eV = 1,602 x J = 3,83 x cal 1

2 Fényelnyelés híg oldatokban 0 Transzmittancia - transzmittancia -abszorpció fényforrás anyag detektor T = / 0 Általában százalékban (%) adjuk meg intenzitás 0 Minta (homogén) Exponenciális függvény!!! = 0 exp (-kx) vagy = 0 e -kx Megj.: hasonló a radioaktív bomlás egyenletéhez! N = N 0 exp (-λt) vagy N = N 0 e -λt távolság 0 minta Ez is exponenciális! A cél: Az abszorbció definíciója intenzitás - legyen könnyen érthető - legyen jól mérhető - legyen additív Megj: a transzmittancia (T=/ 0 ) nem additív: ha az egyik komponens átenged 30%-ot, a másik 60%-ot, akkor a kettő együtt NEM -10%-ot fog átengedni! ln(távolság) 2

3 A távolságfüggés más formában Miért ε(λ) és nemcsak ε? intenzitás 0 minta távolság abszorpció = ε(λ) c x λ (nm) Paraméterek definíciója! Az A λ függő így az ε is az kell hogy legyen! Az abszorbció definíciója Mi áll a megfigyelések hátterében? 0 A Born-Oppenheimer közelítés: Mag mozgás vs. elektron mozgás. anyag OD = A = - log ( / 0 ) = ε (λ) c x Röv.: optical density = ε(λ) c x Az energia felbontása Az energia felbontása E összes = E elektron + E vibrációs + E rotációs Az energia típusok nagyságrendje: Az egyes energia típusok megváltozása független. A megváltozás írható mint: ΔE elektron ~ 1,000 * ΔE vibrációs ~ 1,000,000 * ΔE rotációs ΔE összes = ΔE elektron + ΔE vibrációs + ΔE rotációs 3

4 Emergia séma: sávos spektrum Fotometriai mérések megvalósítása fotometriai = abszorpciós spektroszkópiai Hogyan mérjük az abszorpciót? Egy fotométer egyszerű sémája. fényforrás monokromátor minta detektor Spektrofotométer Fő komponensek: 1. Fényforrás UV fényforrás (~ nm): Deutérium lámpa Látható fény forrása (~ nm): Wolfram-izzó 2. Monokromátor: egyedi hullámhosszak kiválasztása. 3. Mintatartó: a minta és a referencia behelyezése a fényforrás és a detektor közé (küvetta: kisméretű, fényáteresztő mintatároló egység) 4. fotodetektor: PMT, dióda 5. Egyebek: lencsék, szűrők, rések. Egy és két-utas fotométerek Miért használunk referencia mintát? Fényforrás Deutérium lámpa Alacsony nyomású gázkisülési lámpa Hullámhossz tartomány: 112nm-900nm nm: folyamatos! 4

5 Deutérium lámpa spektruma Hidrogén spektruma a látható fény tartományában Balmer sorozat - n: x nm n:6 2 (lila) nm n:5 2 (kék) nm n:4 2 (kék-zöld) nm n:3 2 (vörös) Lymann sorozat n: x 1 (UV) Paschen sorozat n: x 3 (R) Wolfram lámpa Wolfram lámpa spektruma Fénykibocsátás hő hatására Just Sándor & Hanaman Ferenc 1904 Dec. 13-án elfogadott szabadalma. A Tungsram cég dobta piacra először ben Látható fény + hő (közeli R) Monokromátor Prizma Monokromatikus fény előállítására alkalmas eszköz. Típusai: Prizmás Rácsos (optikai rács) 5

6 A törésmutató hullámhosszfüggése A törésmutató hullámhosszfüggése n Monokromatikus fény fehér piros sárga lila λ λ Optikai rács Párhuzamosan, egymáshoz közel kialakított igen vékony rések vagy visszaverő felületek sorozata. diffrakció: a fény elhajlása az útjába eső kisméretű tárgy körül. Típusai Transzmissziós Reflexiós (osztott v. holografikus) Diffrakció (elhajlás) d sin β d sin α α α β α β d a) b) d (sinα + sin β ) = mλ Kollimátor: A széttartó fénysugarakat párhuzamossá tevő optikai berendezés. Felbontóképesség Optikai rács (λ/δλ) = m N látható fény tartományában ~ 600vonal/mm Mintatartó Küvetta: az anyagok optikai tulajdonságának meghatározásához használt üvegedény. Anyaga: Műanyag: olcsó, nem túl pontos, UV+VS. Üveg: Látható fény tartományában használható. Kvarc: UV tartományban is használható. 6

7 Fotodetektor Fény és egyéb elektromágneses hullám érzékelésére alkalmas eszköz. Típusok: Fényérzékeny ellenállás (LDR): az ellenállás a fény intenzitására változik. Fotodiódák: fényérzékeny félvezetők. Fotoelektron-sokszorozó: a fotokatód fény hatására elektront bocsájt ki, melyek száma dinódák sorozatán felerősödik. CCD kamera (Charge-coupled devices): félvezető alapú kondenzátorokat tartalmazó optikai érzékelő. Spektrum A fehérjék abszorpciója A fehérjék abszorpciója A fehérjék abszorpciójának értelmezése Lambert-Beer törvény 7

8 Johann Heinrich Lambert ( ) o? Lambert törvény Német matematikus, fizikus Photometria gyengítési (abszorpciós, extinkciós) együttható Δx Δ = k(λ) Δx k(λ) : Lineáris gyengítési (extinkciós) együttható = 10 0 kx Lambert törvénye August Beer ( ) / (0) 1 Német fizikus, matematikus Einleitung in die höhere Optik. 1/2 1/4 1/ x k = εc k : abszorpciós együttható ε(λ): moláris abszorpciós együttható (egységnyi koncentráció fényelnyelése egységnyi úthosszon) c : koncentráció (mól/liter) Lambert-Beer törvény = 10 0 k x A fényelnyelés mértéke Transzmittancia fényáteresztő képesség (%) / 0 *100 = 10 0 εc x o k = εc ε c x 8

9 A fényelnyelés mértéke Abszorpció (abszorbancia, extinkció, optikai sűrűség(od) Fényelnyelés (mértékegység nélküli) A = εcx = lg 0 o ε c x Abszorbancia mérésének előnyei a koncentrációval egyenesen arányos csak híg oldatokban! additív Miért jó az additivitás? Alkalmazás: fehérjekoncentráció meghatározása A mért abszorbció: A Szükség van egy referencia számra (kalibráció): extinkciós koefficiens: ε abszorpció fehérje fluoreszcens próba ε szokásos egységei: M -1 cm -1, vagy (mg/ml) -1 cm -1 Ha A = 0.55 and ε = 1.1 (mg/ml) -1 cm -1 λ (nm) c = (A/ ε) in mg/ml; c = 0.5 mg/ml Példa egy másik alkalmazásra: elektroforézis eredmények kiértékelése A fotométer linearitása; stray light effect S Megfigyelés: Abszorpció Várható tendencia Meredekség: ε Mérési eredmények [mdia3-fh2] (μm) Koncentráció 9

10 De miért nem mér lineárisan? A probléma forrása: elvileg sem tökéletesek a monokromátorok! Második, harmadik felharmónikusok! 2λ; 3λ Optikai rács A monokromátor működésének alapelve. Tegyük fel, hogy az anyag csak a kiválasztott hullámhosszon nyel el! Nagy abszorbció mellett: Kicsi abszorbció mellett: % λ választ és anyag 89% λ választ. és 99% λ választ. és 1% λ felh.. anyag 1% λ választ. és 1% λ felh. 1% λ felh. 1% λ felh. Az átmenő fény összetétele A hatás! Kicsi abszorbció: / 0 = 90 / 100 = 0.9 valódi érték = 89 / 99 ~ 0.9 A mért és a valódi közel azonos! Nagy abszorbció: / 0 = 2 / 100 = 0.02 valódi érték = 1 / 99 ~ 0.01 Az eltérés nagy! Abszorpció Várható tendencia Meredekség: ε Koncentráció 10

11 Derivatív spektroszkópia Mikor és mire jó? A probléma pl. nagy fényszórás a mintában - optikailag sűrű minták - nagyon szóró minták - igen kicsi abszorbció változások Hasznos módszer a biokémiában, gyógyszerkutatásban.stb. abszorbció A látszólagos vagy mért abszorpció A valódi abszorpció λ (nm) A spektrum deriváltja! Emlékeztető! Deriválás: ΔA / Δλ, és Δλ nagyon kicsi, nullához tart: da / dλ abszorbció Δλ ΔA d (abszorbció) / d λ A spektrum (első) deriváltja! Mért spektrum Valódi spektrum λ (nm) λ (nm) A módszer előnyei A lényeg - az abszorpciós csúcsokat könnyebb azonosítani - alkalmas továbbra is koncentráció meghatározásra - az abszorbció definíciója - az abszorbció mérése - az abszorbció alkalmazásai 11

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen

Részletesebben

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai

Részletesebben

Az optikai jelátvitel alapjai. A fény két természete, terjedése

Az optikai jelátvitel alapjai. A fény két természete, terjedése Az optikai jelátvitel alapjai A fény két természete, terjedése A fény kettős természete 1. A fény: - Elektromágneses hullám (EMH) - Optikai jelenség Egyes dolgokat a hullám természettel könnyű magyarázni,

Részletesebben

Fény kölcsönhatása az anyaggal:

Fény kölcsönhatása az anyaggal: Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh

Részletesebben

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA SPF UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Szalicilsav meghatározása egy vizes

Részletesebben

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

CCD detektorok Spektrofotométerek Optikai méréstechnika. Németh Zoltán 2013.11.15.

CCD detektorok Spektrofotométerek Optikai méréstechnika. Németh Zoltán 2013.11.15. CCD detektorok Spektrofotométerek Optikai méréstechnika Németh Zoltán 2013.11.15. Detektorok Működésük, fontosabb jellemző adataik Charge Coupled Device - töltéscsatolt eszköz Az alapelvet 1970 körül fejlesztették

Részletesebben

Lumineszcencia Fényforrások

Lumineszcencia Fényforrások Kiegészítés: színkeverés Lumineszcencia Fényforrások Alapszinek additív keverése Alapszinek kiegészítő szineinek keverése: Szubtraktív keverés Fidy udit Egyetemi tanár 2015, November 5 Emlékeztető.. Abszorpciós

Részletesebben

Spektrográf elvi felépítése

Spektrográf elvi felépítése Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera

Részletesebben

Optoelektronikai Kommunikáció. Optikai alapismeretek

Optoelektronikai Kommunikáció. Optikai alapismeretek Optoelektronikai Kommunikáció Optikai alapismeretek (OK-4) Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki Fõiskolai Kar Számítógéptechnikai Intézete Székesfehérvár 2002. Budapesti Mûszaki Fõiskola

Részletesebben

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül

Részletesebben

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu BIOFIZIKA 2012 11 26 Metodika- 4 Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria 2. 09-10 SZÜNET

Részletesebben

Lumineszcencia alapjelenségek

Lumineszcencia alapjelenségek Lumineszcencia alapjelenségek (Nyitrai Miklós; 211 február 7.) Lumineszcencia Definíció: Egyes anyagok spontán fénykibocsátása, a termikus fényemissziótól függetlenül, elektrongerjesztést követően. Lumineszcens

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Részecskék hullámtermészete

Részecskék hullámtermészete Részecskék ullámtermészete Bevezetés A sugárzás és az anyag egyaránt mutat részecskejellegű és ullámjellegű tulajdonságokat. Atommodellek A Tomson modell J.J. Tomson 1898 A negatív töltésű elektronok pozitív

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

Modern mikroszkópiai módszerek 2 2011 2012

Modern mikroszkópiai módszerek 2 2011 2012 FLUORESZCENCIA MIKROSZKÓPIA A mintának a megvilágító fény által kiváltott fluoreszcencia emisszióját képezzük le. 1 Bugyi Beáta - PTE ÁOK Biofizikai Intézet 2 FLUOROFÓROK BELSŐ (INTRINSIC) FLUORESZCENCIA

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

1. Atomspektroszkópia

1. Atomspektroszkópia 1. Atomspektroszkópia 1.1. Bevezetés Az atomspektroszkópia az optikai spektroszkópiai módszerek csoportjába tartozó olyan analitikai eljárás, mellyel az anyagok elemi összetételét határozhatjuk meg. Az

Részletesebben

Detektorok tulajdonságai

Detektorok tulajdonságai DETEKTOROK A detektor feladata a kiáramló eluensben mérni az összetevő pillanatnyi koncentrációját. A közvetlenül mért detektorjel általában nem maga a koncentráció, hanem annak valamilyen függvénye. Detektor

Részletesebben

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv?

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv? Ismertesse az optika fejlődésének legjelentősebb mérföldköveit! - Ókor: korai megfigyelések - Euklidész (i.e. 280) A fény homogén közegben egyenes vonalban terjed. Legrövidebb út elve (!) Tulajdonképpen

Részletesebben

Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek

Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsga kérdései a 4. Szakmai követelmények fejezetben megadott modulhoz tartozó témakörök mindegyikét tartalmazzák. Amennyiben a tétel kidolgozásához

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

Röntgendiffrakció, tömegspektrometria, infravörös spektrometria.

Röntgendiffrakció, tömegspektrometria, infravörös spektrometria. A biomolekuláris szerkezet és dinamika vizsgálómódszerei: Röntgendiffrakció, tömegspektrometria, infravörös spektrometria. Smeller László A molekuláris szerkezet és dinamika vizsgáló módszereinek áttekintése

Részletesebben

9. Fényhullámhossz és diszperzió mérése

9. Fényhullámhossz és diszperzió mérése 9. Fényhullámhossz és diszperzió mérése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam 005.1.08. Beadva: 005.1.1. 1. AZ ABLAKTÓL TÁVOLABBI MÉRHELYEN MÉRTEM. A mszerek feszültség alá helyezése után elször

Részletesebben

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata X. Fénypolarizáció X.1. A polarizáció jelenségének magyarázata A polarizáció a fény hullámtermészetét bizonyító jelenség, amely csak a transzverzális rezgések esetén észlelhető. Köztudott, hogy csak a

Részletesebben

Az elektromágneses spektrum

Az elektromágneses spektrum Az elektromágneses spektrum 400 nm 750 nm Hőmérsékleti sugárzás 1 Minden test anyagi minőségétől független, csak a test hőmérséklete által meghatározott spektrumú elektromágneses sugárzást bocsát ki, melyet

Részletesebben

Analitikai vizsgálatok. Analitikai vizsgálatok elméleti jegyzet. 2050-06, 2061-06 modul. Lovász Anikó - 1 -

Analitikai vizsgálatok. Analitikai vizsgálatok elméleti jegyzet. 2050-06, 2061-06 modul. Lovász Anikó - 1 - Analitikai vizsgálatok elméleti jegyzet 2050-06, 2061-06 modul Lovász Anikó - 1 - Mintavételi eljárások Mintavétel módjai és csoportosítása 1.) Egyéni mintavétel: egy ponton, egy alkalommal, idıben és

Részletesebben

FLUORESZCENCIA SPEKTROSZKÓPIA

FLUORESZCENCIA SPEKTROSZKÓPIA FLS FLUORESZCENCIA SPEKTROSZKÓPIA A GYAKORLAT CÉLJA: A fluoreszcencia spektroszkópia módszerének megismerése és alkalmazása kininszulfát meghatározására vizes közegű oldatmintákban. A MÉRÉSI MÓDSZER ELVE

Részletesebben

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/15/2012 Beadás ideje: 05/26/2012 Érdemjegy: 1 1. A mérés rövid

Részletesebben

Akuszto-optikai fénydiffrakció

Akuszto-optikai fénydiffrakció Bevezetés Akuszto-optikai fénydiffrakció A Brillouin által megjósolt akuszto-optikai kölcsönhatást 1932-ben mutatta ki Debye és Sears. Az effektus felhasználását, vagyis akuszto-optikai elven működő eszközök

Részletesebben

B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE,

B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE, B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE, FÉNYVISSZAVERŐDÉS, FÉNYTÖRÉS, FÉNYINTERFERENCIA, FÉNYPOLARIZÁCIÓ, FÉNYELHAJLÁS Fény: elektromágneses sugárzás (Einstein meghatározása, hogy idesorolta a

Részletesebben

d) Az a pont, ahova a homorú tükör az optikai tengely adott pontjából kiinduló sugarakat összegyőjti.

d) Az a pont, ahova a homorú tükör az optikai tengely adott pontjából kiinduló sugarakat összegyőjti. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsıdleges fényforrás. d) A szentjánosbogár megfelelı potrohszelvénye

Részletesebben

Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01.

Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01. VILÁGÍTÁSTECHNIKA Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01. ANYAGOK FELÉPÍTÉSE Az atomok felépítése: elektronhéjak: K L M N O P Q elektronok atommag W(wolfram) (Atommag = proton+neutron protonok

Részletesebben

Intelligens fotometria. Célba jutni okosan. Áttekinthető ikonok a komplikált listák helyett

Intelligens fotometria. Célba jutni okosan. Áttekinthető ikonok a komplikált listák helyett Célba jutni okosan Áttekinthető ikonok a komplikált listák helyett A MACHEREY-NAGEL cég az új NANOCOLOR VIS II és a NANOCOLOR UV / VIS II spektrofotométerekkel forradalmasítja a napi laboratóriumi munkát,

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Definíció (hullám, hullámmozgás):

Definíció (hullám, hullámmozgás): Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,

Részletesebben

Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06

Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06 The Green Company LUMI-HOD 107-B fólia Javaslatok az alkalmazásokra LUMI-HOD 107-B fólia Az LN egy új osztálya az újonnan kifejlesztett foszforeszkáló (sötétben világító) pigmenteknek, nagymértékben különböznek

Részletesebben

OKTATÁSI SEGÉDLET Környezeti analízis II. c.

OKTATÁSI SEGÉDLET Környezeti analízis II. c. OKTATÁSI SEGÉDLET a Környezeti analízis II. c. tantárgyhoz kapcsolódó laboratóriumi gyakorlat feladataihoz Nappali és levelező tagozatos környezetmérnök (BSc) szakos hallgatók számára Készítette: Dr. Bodnár

Részletesebben

Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078

Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078 Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078 Az ultrarövid, 100 fs hosszú fényimpulzusokat előállító lézerek 90-es évek elején, a 10 fs és rövidebb impulzusú lézerek a 90-es

Részletesebben

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb. Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A mérés során a fényképen látható eszközök és anyagok álltak a versenyzők rendelkezésére:

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

Kör-Fiz 3 gyak.; Mérések refraktométerekkel; PTE Környezetfizika és Lézersp. Tanszék

Kör-Fiz 3 gyak.; Mérések refraktométerekkel; PTE Környezetfizika és Lézersp. Tanszék 3. Folyadékok törésmutatójának mérése refraktométerekkel, refraktométer alkalmazása célkészülékként A MÉRÉS CÉLJA: Az oldatok törésmutatójának mérésére szolgáló alapkészüléknek (Abbé-féle refraktométer)

Részletesebben

Az infravörös spektroszkópia analitikai alkalmazása

Az infravörös spektroszkópia analitikai alkalmazása Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai

Részletesebben

HEPARINA MASSAE MOLECULARIS MINORIS. Kis molekulatömegű heparinok

HEPARINA MASSAE MOLECULARIS MINORIS. Kis molekulatömegű heparinok 01/2014:0828 HEPARINA MASSAE MOLECULARIS MINORIS Kis molekulatömegű heparinok DEFINÍCIÓ A kis molekulatömegű heparinok olyan, 8000-nél kisebb átlagos relatív molekulatömegű szulfatált glükózaminoglikánok

Részletesebben

Fizika 2 (Modern fizika szemlélete) feladatsor

Fizika 2 (Modern fizika szemlélete) feladatsor Fizika 2 (Modern fizika szemlélete) feladatsor 1. Speciális relativitáselmélet 1. A Majmok bolygója című mozifilm és könyv szerint hibernált asztronauták a Föld távoli jövőjébe utaznak, amikorra az emberi

Részletesebben

Konfokális mikroszkópia elméleti bevezetõ

Konfokális mikroszkópia elméleti bevezetõ Konfokális mikroszkópia elméleti bevezetõ A konfokális mikroszkóp fluoreszcensen jelölt minták vizsgálatára alkalmas. Jobb felbontású képeket ad, mint a hagyományos fluoreszcens mikroszkópok, és képes

Részletesebben

Robotika. 3. Érzékelés Magyar Attila. Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék

Robotika. 3. Érzékelés Magyar Attila. Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék 3. Érzékelés Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. február 24. 3. Érzékelés 2 3. Tartalom 1. Mobil

Részletesebben

Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából

Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából ELTE TTK Szerves Kémiai Tanszék 2015 1 I. Elméleti bevezető 1.1. Gyógyszerkönyv A Magyar gyógyszerkönyv (Pharmacopoea Hungarica) első

Részletesebben

Száloptika, endoszkópok

Száloptika, endoszkópok Száloptika, endoszkópok Optikai mikroszkópok a diagnosztikában Elektronmikroszkópia, fluorescens és konfokális mikroszkópia PTE-ÁOK Biofizikai ntézet Czimbalek Lívia 2009.03.16. Száloptika, endoszkópok

Részletesebben

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Fénytechnika. A fény. Dr. Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem. Budapest, 2013.

Fénytechnika. A fény. Dr. Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem. Budapest, 2013. Fénytechnika A fény Dr. Wenzel Klára egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2013. A fénnyel kapcsolatos szabványok Az elektromágnenes MSZ 9620 spektrum: Fénytechnikai

Részletesebben

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla

Részletesebben

AZ EURÓPAI GYÓGYSZERKÖNYV CÉLJA

AZ EURÓPAI GYÓGYSZERKÖNYV CÉLJA II. BEVEZETÉS Az Európai Gyógyszerkönyv létrehozása az Európa Tanács pártfogásával, a 37 tagállam (Ausztria, Belgium, Bosznia-Hercegovina, Bulgária, Csehország, Ciprus, Dánia, Egyesült Királyság, Észtország,

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

A fényerősség egységének nemzeti etalonja

A fényerősség egységének nemzeti etalonja Optikai mérések Az Nemzeti Mérésügyi Hivatal egyik fontos feladata, hogy a magyar nemzetgazdaság számára biztosítsa a magyar előállítású termékek elfogadását a külföldi piacokon és a mérések egységességének

Részletesebben

LÁMPATESTEK TERVEZÉSE ESZTERGOMI FERENC MŰSZAKI IGAZGATÓ

LÁMPATESTEK TERVEZÉSE ESZTERGOMI FERENC MŰSZAKI IGAZGATÓ LÁMPATESTEK TERVEZÉSE ESZTERGOMI FERENC MŰSZAKI IGAZGATÓ HOFEKA kft. Lámpatestek Nagyfeszültségű távvezeték szerelvények Hofeka.hu A lámpatest olyan készülék, amely biztosítja a fényforrás tartós működtetéséhez

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

, &!!! )! ),!% ), &! )..! ). 7!# &!!,!! 6 ) &! & 6! ) &!! #! 7! ( % ) ) 0!! ) & 6 # &! #! 7.!#! 9 : %!!0!

, &!!! )! ),!% ), &! )..! ). 7!# &!!,!! 6 ) &! & 6! ) &!! #! 7! ( % ) ) 0!! ) & 6 # &! #! 7.!#! 9 : %!!0! !!#!! % & (! )!!! ) +, &!!! )! ),!% ), &! )..! ). /% 0) / # ) ( ), 1!# 2 3 4 5 (!! ( 6 # 7!# &!!,!! 6 ) &! & 6! ) &!! #! 7! 8!!,!% #(( 1 6! 6 # &! #! # %& % ( % ) ) 0!! ) & 6 # &! #! 7.!#! 9 : %!!0!!!,

Részletesebben

NEMKOHERENS FÉNYFORRÁSOK I TERMIKUS ÉS LUMINESCENS SUGÁRZÓK

NEMKOHERENS FÉNYFORRÁSOK I TERMIKUS ÉS LUMINESCENS SUGÁRZÓK NEMKOHERENS FÉNYFORRÁSOK I TERMIKUS ÉS LUMINESCENS SUGÁRZÓK BEVEZETÉS Fényforrások a fotonikában: információ bevitelére, továbbítására és rögzítésére szolgáló fotonok létrehozása (emissziója), információ

Részletesebben

IX. Az emberi szem és a látás biofizikája

IX. Az emberi szem és a látás biofizikája IX. Az emberi szem és a látás biofizikája IX.1. Az emberi szem felépítése A szem az emberi szervezet legfontosabb érzékelő szerve, mivel a szem és a központi idegrendszer közreműködésével az elektromágneses

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt szint 06 ÉETTSÉGI VIZSGA 006. május 5. FIZIKA EMELT SZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉIUM A dolgozatokat az útmutató utasításai szerint, jól köethetően

Részletesebben

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása Az ionizáló sugárzások kölcsönhatása anyaggal, nehéz és könnyű töltött részek kölcsönhatása, röntgen és γ-sugárzás kölcsönhatása Az ionizáló sugárzások mérése, gáztöltésű detektorok (ionizációs kamra,

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Nemkoherens fényforrások 1. Termikus és lumineszcens sugárzók

Nemkoherens fényforrások 1. Termikus és lumineszcens sugárzók Nemkoherens fényforrások 1. Termikus és lumineszcens sugárzók BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY BEVEZETÉS Fényforrások a fotonikában: információ bevitelére,

Részletesebben

Rutherford-féle atommodell

Rutherford-féle atommodell Rutherfordféle atommodell Manchesteri Egyetem 1909 1911 Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfarészecskékkel bombáztak

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis. 2008. április 22.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis. 2008. április 22. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. április 22. A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis Értékelés: A beadás dátuma: 28. május 5. A mérést végezte: Puszta Adrián,

Részletesebben

MÉRŐÉRZÉKELŐK FIZIKÁJA. Hang, fény jellemzők mérése. Dr. Seres István

MÉRŐÉRZÉKELŐK FIZIKÁJA. Hang, fény jellemzők mérése. Dr. Seres István MÉRŐÉRZÉKELŐK FIZIKÁJA Hang, fény jellemzők mérése Dr. Seres István Hangintenzitás: E I A W 2 Hangerősség: Kétféle szokásos mértékegysége van: Decibel skála Phon skála Dr. Seres István 2 http://fft.szie.hu

Részletesebben

A fény terjedése és kölcsönhatásai

A fény terjedése és kölcsönhatásai A fény terjedése és kölcsönhatásai A fény terjedése és kölcsönhatásai Kellermayer Miklós A fénytörés (refrakció) alkalmazásai A fényhullám érzékelhető paraméterei A fényhullám fázisa; fáziskontraszt mikroszkópia

Részletesebben

Képalkotás a pásztázó elektronmikroszkóppal

Képalkotás a pásztázó elektronmikroszkóppal 1 Képalkotás a pásztázó elektronmikroszkóppal Anton van Leeuwenhoek (1632-1723, Delft) Havancsák Károly, 2011. január FEI Quanta 3D SEM/FIB 2 A TÁMOP pályázat eddigi történései 3 Időrend A helyiség kialakítás

Részletesebben

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II:

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II: RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II: Üveg és PMMA struktúrák CO 2 és Nd:YAG lézeres megmunkálással Készítette: Nagy Péter dr. és Varga Máté A mérés célja: CO 2 és Nd:YAG lézerek fontosabb tulajdonságainak

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre

Részletesebben

A poláros fény rejtett dimenziói

A poláros fény rejtett dimenziói HORVÁTH GÁBOR BARTA ANDRÁS SUHAI BENCE VARJÚ DEZSÕ A poláros fény rejtett dimenziói Elsõ rész Sarkított fény a természetben, polarizációs mintázatok Mivel az emberi szem fotoreceptorai érzéketlenek a fény

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgálati módszerek tételsor 1. A TOC (total organic carbon) meghatározás, az egyes méréseknek mi az elve? 2. Mi a Soxhlet extraktor működési elve, mire használják? 3. Kőszenek kénmegoszlása és mi

Részletesebben

Sugárzási alapismeretek

Sugárzási alapismeretek Sugárzási alapismeretek Energia 10 20 J Évi bejövő sugárzásmennyiség 54 385 1976-os kínai földrengés 5006 Föld széntartalékának energiája 1952 Föld olajtartalékának energiája 179 Föld gáztartalékának energiája

Részletesebben

Radiometria, fotometria, színmérés. Radiometria, fotometria, színmérés 2014.03.18. RADIOMETRIA Elektromágneses sugárzás

Radiometria, fotometria, színmérés. Radiometria, fotometria, színmérés 2014.03.18. RADIOMETRIA Elektromágneses sugárzás Jelenségek leírására használt három kategória Radiometria, fotometria, színmérés Kategóriák mechanikai pld. fotometria Jelenség Mennyiség Egység távolság hosszúság méter világosság vagy láthatóság fénysűrűség

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elektronika. TFBE3 Szűrők TFBE3 Elektronika. nalóg elektronika ismétlődő feladatai, szűrők Szűrő: Olyan elektronikus rendezés, amely a menetére kapcsolt jelből csak a szűrőre jellemző frekenciasába eső

Részletesebben

a fizikai (hullám) optika

a fizikai (hullám) optika A fény f hullám m természete a fizikai (hullám) optika Geometriai optika Optika Fizikai optika Fény-anyag kölcsönhatás Összeállította: CSISZÁR IMRE SZTE, Ságvári E. Gyakorló Gimnázium SZEGED, 006. szeptember

Részletesebben

Gerhátné Udvary Eszter

Gerhátné Udvary Eszter Az optikai hálózatok alapjai (BMEVIHVJV71) Moduláció 2014.02.25. Gerhátné Udvary Eszter udvary@mht.bme.hu Budapest University of Technology and Economics Department of Broadband Infocommunication Systems

Részletesebben

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig.

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig. Szakmai zárójelentés az Ultrarövid infravörös és távoli infravörös (THz-es) fényimpulzusok előállítása és alkalmazása című, T 38372 számú OTKA projekthez A projekt eredetileg kért időtartama: 22 február

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

A poláros fény rejtett dimenziói

A poláros fény rejtett dimenziói AZ ATOMOKTÓL A CSILLAGOKIG HORVÁTH GÁBOR BARTA ANDRÁS SUHAI BENCE VARJÚ DEZSÕ A poláros fény rejtett dimenziói Elsõ rész Sarkított fény a természetben, polarizációs mintázatok Mivel az emberi szem fotoreceptorai

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

Széndioxid, üvegház, éghajlat érvek és ellenérvek

Széndioxid, üvegház, éghajlat érvek és ellenérvek Széndioxid, üvegház, éghajlat érvek és ellenérvek A Földön, a bolygó keletkezése óta, vagyis évmilliárdok óta, folyamatosan zajlik a klímaváltozás, ez jelenleg az átlagos felszíni hőmérséklet növekedésében

Részletesebben

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT.

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT. T&T tematika & tételek A magkémia alapjai, kv1n1mg1 (A) A magkémia alapjai tárgykiegészítés, kv1n1mgx (X) című, ill. kódú integrált előadáshoz http://www.chem.elte.hu/sandor.nagy/okt/amka/index.html Bevezető

Részletesebben

2 Mekkora az egyes sejtekre vonatkozó nyugalmi potenciál értéke? 30 és 100 mikrovolt közötti értékek nagyságrendjébe esik

2 Mekkora az egyes sejtekre vonatkozó nyugalmi potenciál értéke? 30 és 100 mikrovolt közötti értékek nagyságrendjébe esik 1 Melyik érték HMIS a nyugalmi állapotban mérhető INTRLLUÁRIS ionkoncentrációkra vonatkozóan? ~4 mmol/l l - 140 150 mmol/l Na + ~155 mmol/l fehérje-anionok 140 155 mmol/l K +

Részletesebben

Adatok: Δ k H (kj/mol) metán 74,4. butadién 110,0. szén-dioxid 393,5. víz 285,8

Adatok: Δ k H (kj/mol) metán 74,4. butadién 110,0. szén-dioxid 393,5. víz 285,8 Relay feladatok 1. 24,5 dm 3 25 C-os, standardállapotú metán butadién gázelegyet oxigénfeleslegben elégettünk (a keletkező vízgőz lecsapódott). A folyamat során 1716 kj hő szabadult fel. Mennyi volt a

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Újgörög nyelv emelt szint 0611 ÉRETTSÉGI VIZSGA 2006. november 3. ÚJGÖRÖG NYELV EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM I. Olvasott szöveg

Részletesebben

A lámpatestek II. Optikai elemek és fénytechnikai tulajdonságok Fényeloszlások ábrázolása Fényeloszlás mérése

A lámpatestek II. Optikai elemek és fénytechnikai tulajdonságok Fényeloszlások ábrázolása Fényeloszlás mérése Előadó: Schwarcz Péter (tel: +36 30 931 9514) A lámpatestek II. Optikai elemek és fénytechnikai tulajdonságok Fényeloszlások ábrázolása Fényeloszlás mérése Schréder the reference Lámpatestek in lighting

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés A spektroszkópia, spektrofotometria az egyik legelterjedtebb anyagvizsgálati módszer. Az igen sokféle mérési technika közös alapja az, hogy az anyagok molekuláris,-

Részletesebben