Nemkoherens fényforrások 1. Termikus és lumineszcens sugárzók

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nemkoherens fényforrások 1. Termikus és lumineszcens sugárzók"

Átírás

1 Nemkoherens fényforrások 1. Termikus és lumineszcens sugárzók BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY BEVEZETÉS Fényforrások a fotonikában: információ bevitelére, továbbítására és rögzítésére szolgáló fotonok létrehozása (emissziója), információ megjelenítése. Fényforrások az emberiség szolgálatában: világítás (a nappal világos időszak mesterséges meghosszabbítása). Fényforrások csoportosítása a fényemisszió fizikája alapján: nem-koherens források, koherens források. Témák: Fizikai alapok, fényforrások radiometriai és fotometriai jellemzése Termikus gerjesztésű fényforrások Gázkisüléses fényforrások Lumineszcens fényforrások 2/48

2 BEVEZETÉS (FOLYTATÁS) Irodalom: Mojzes-Kökényessi: Fotonikai anyagok és eszközök Csuti Schanda: Világítástechnika 95 (7-8) 221 (2002) Borsányi János: kvk.bmf.hu/konf2008/doc/eloadasok/03.ppt Lajtha-Szép: Fénytávközlő rendszerek és elemeik (5. Fénydetektorok fizikája és technológiája, valamint 6. Fényadók fizikája és technológiája fejezetek) 3/48 RADIOMETRIA ÉS FOTOMETRIA Radiometriai egységek: a sugárzás által vitt energiára vonatkoznak, ezek az SI mértékrendszer részei. Fotometriai egységek: Ezek az emberi szem által érzékelt spektrális tartományra és az ember fényérzetére vonatkoznak. CIE (Commission International d Eclairage): Emberi szem standardizált érzékenységi görbéje szerint a relatív érzékenység maximuma λ = 0,550 µm-nél van, (sárgás-zöld), itt 1 watt sugárzási teljesítmény 680 lumennel egyenértékű (1 lm megfelel 1,47 mw-nak). A relatív érzékenység 0,380 µm-nél (ibolya) és 0,780 µm-nél (vörös) válik nullává. 4/48

3 AZ EMBERI SZEM ÉRZÉKENYSÉGI GÖRBÉJE ÉS A FÉLVEZETŐK 5/48 FÉNY ÉS FÉLVEZETŐ E = hν = hc/λ E [ev] = 1,24/λ [µm] = 1240/λ [nm] E a kölcsönhatás karakterisztikus energiája, pl. tiltott sáv, szennyezési centrum ionizációs energiája, stb. Példa: látható zöld fény λ = 500 nm, E = 2,48 ev szilícium tiltott sáv E = 1,12 ev, fotoválasz küszöbhullámhossza λ = 1107 nm 6/48

4 RADIOMETRIA ÉS FOTOMETRIA Mennyiség Radiometria Fotometria Fényáram W lumen Fényerősség W/szteradián kandela Megvilágítás W/m 2 lux = lumen/m 2 Fényerősség egységnyi térszögbe kibocsátott fényáram Egy kandela erősségű fényforrás 4π lument bocsát ki. A kandela (cd) mai definíciója (1979): Annak a fényforrásnak az erőssége, mely adott irányba 540x10 12 Hz frekvenciájú monokromatikus fényt bocsát ki és sugárerőssége 1/683 W/szteradián. Az adott frekvencia 556 nm hullámhossznak (zöld fény) felel meg. Az így definiált kandela az SI rendszerben alapegység. 7/48 FÉNYFORRÁSOK CSOPORTOSÍTÁSA Fényforrások Hőmérsékleti sugárzók (izzólámpák) 1930-as évek Kisüléses fényforrások Félvezető-alapú fényforrások LED-ek 1990-es évek hagyományos 1880-as évek kisnyomású nagynyomású halogén 1950-es évek fénycső indukciós lámpa kisnyomású nátriumlámpa higanylámpa hagyományos kompakt fémhalogén lámpa nagynyomású nátriumlámpa Színek a működési elv alapján xenon lámpa 8/48

5 FÉNYFORRÁSOK: TÖRTÉNELMI ÁTTEKINTÉS Ősidők óta használnak különböző fényforrásokat és világítótesteket, de csak a XX század elején jelentek meg az első tűrhető hatásfokú fényforrások. Jó fényhasznosítás, elfogadható élettartam: izzószálas fényforrások. Az izzólámpát 1879-ben találta fel Thomas A. Edison. Azt fejlesztették tovább a Tungsram mérnökei és kutatói, Hamala Sándor, Juszt Ferenc és Bródy Imre, akik a szénszálat volfrámszálra cserélték, az izzó buráját pedig kriptongázzal töltötték fel. Az új izzólámpával akkoriban kb. 75%-os árammegtakarítást értek el és az izzó fényereje is nagyságrendekkel nagyobb lett. Millner Tivadar nevéhez fűződik a magas hőmérsékleteken is megfelelő mechanikai tulajdonságokkal bíró, alaktartó volfrámszál technológiájának tudományos megalapozása és megvalósítása. 9/48 FÉNYFORRÁSOK: TÖRTÉNELMI ÁTTEKINTÉS Az izzószálas megoldásnál is hatékonyabbak a kis- és nagynyomású gázkisülőlámpák: fém-halogén és nagynyomású nátrium-lámpák ( lm/w). A fénycsövek számos területen a világítás fő eszközeivé váltak. Korszerű fénycső fényhasznosítása 90 lm/w. Izzólámpák új családja: halogén-izzólámpa (15-20 lm/w). 10/48

6 FÉNYFORRÁSOK: TÖRTÉNELMI ÁTTEKINTÉS A fényforrások fényhasznosításának fejlődése. Fényforrás fényárama Elfogyasztott elektromos teljesítmény 11/48 FÉNYFORRÁSOK: TÖRTÉNELMI ÁTTEKINTÉS Szilárdtest fényforrások: Komoly áttörést végül a viágítódiódák (LED) jelentették. 70-es évek közepe: 1 lm/w 80-as évek vége: 10 lm/w, ekkor vált versenyképessé a hagyományos fényforrásokkal. A LED-ek közel monokromatikus (kvázi-monokromatikus) sugárzást hoznak létre így pl. jelzőfényként sokkal jobban hasznosítják az elektromos energiát, mint a hagyományos fényforrások különböző fényszűrő optikákkal. 12/48

7 INFRAVÖRÖS LED-EK SPEKTRUMA Surface emitting InP/InGaAsP LEDs produced by LPE. 9-diode LED set covering emission in 1.1 to 1.8 µm range. 13/48 NAGYTELJESÍTMÉNYŰ LED (5 W) Lumileds Lighting: Light from Silicon Valley 14/48

8 TERMIKUS GERJESZTÉSŰ FÉNYFORRÁSOK Az izzó testek kb. 550 o C felett világítanak. Jelenleg az emberiség túlnyomórészt termikus gerjesztésű fényforrásokat használ általános világításra. Pl. az EU-ban használt fényforrások 85 %-a a hagyományos izzólámpa (kb évi adat). A világításra elhasznált villamosenergia a megtermelt villamosenergia számottevő része. Hagyományos izzólámpák Halogén töltésű izzólámpák 15/48 HŐMÉRSÉKLETI SUGÁRZÁS Az anyagi testek hőmérsékletüktől függően elektromágneses sugárzást bocsátanak ki. A kibocsátott EM (fény) energia a hőmérséklettel emelésével rohamosan (az abszolút hőmérséklet negyedik hatványával) nő. A sugárzás spektruma a teljes (0, ) tartományra kiterjed, és a spektrális maximum helye hullámhosszban az abszolút hőmérséklettel fordítva arányos. Alapvető fizikai törvények: Planck féle sugárzási törvény Wien féle eltolódási törvény Stefan-Boltzmann törvény (Rayleigh-Jeans törvény) 16/48

9 TERMIKUS SUGÁRZÁS SPEKTRUMA (Raleigh-Jeans) 17/48 TERMIKUS SUGÁRZÁS SPEKTRUMA 18/48

10 TERMIKUS SUGÁRZÁS SPEKTRUMA Mivel a hőmérséklet csökkentésével a kisugárzott energia rohamosan csökken, ezért pl. egy szobahőmérsékletű (300 K) 1 m 2 felületű tárgy néhány ezer évente emittál egy látható tartománybeli fonont. A testek bizonyos T hőmérsékleten elkezdenek láthatóan világítani mint pl. egy kályha vagy kemence. Draper pont vagy hőmérséklet az, ahol a testek elkezdenek halvány vörösen világítani (kb. 798 K) K hőmérsékletű test vörösnek, 6000K-n pedig fehérnek látszik. Még magasabb hőmérsékleteken pedig kéknek. 19/48 PLANCK FÉLE SUGÁRZÁSI TÖRVÉNY 2hν 3 1 I(ν,T)dν = ( ) dν c 2 exp(hν/kt)-1 I(ν,T)dν egységnyi felületről időegység alatt egységnyi térszögbe a ν és a ν + dν frekvenciatartományban a T hőmérsékletű sugártó (pontosabban fekete test sugárzó) által kisugárzott energia 20/48

11 WIEN FÉLE ELTOLÓDÁSI TÖRVÉNY hc λ m = 4,965kT A hőmérséklet növekedésével a maximumhoz tartozó hullámhossz csökken. 21/48 WIEN FÉLE ELTOLÓDÁSI TÖRVÉNY 22/48

12 STEFAN-BOLTZMANN TÖRVÉNY A termikus sugárzó által kisugárzott energia (egységnyi felületről, egységnyi idő alatt) arányos az abszolút hőmérséklet negyedik hatványával) I = σ T 4 Itt σ a Stefan-Boltzmann állandó. 23/48 SZÍNHŐMÉRSÉKLET Hőmérséklet (K) Fényforrás 1700 Gyufaláng 1850 Gyertyaláng Izzólámpa 3350 Stúdió CP fény 3400 Sudiólámpák 4100 Holdfény, xenon lámpa 5000 Horizont nappali fényben Nappali fény, elektronikus villanó 6500 Nappali fény, borús 9300 Katódsugaras monitor A színhőmérséklet az emberi színérzéken alapul. 24/48

13 IZZÓLÁMPA FELÉPÍTÉSE Az izzólámpák leggyakrabban egy körtealakú és egy menetes fejből állnak. A burában középen egy spiralizált volfrám szál van vékony volfrám vagy molibdén tartókra felfüggesztve. 1 üvegbúra 2 vákuum vagy iners gáz (Ar, N 2 ) 3 volfrámszál 4 árambevezető 5 árambevezető 6 állvámy 7 üveg állvány 8 elektromos kontaktus 9 menetes fej 10 szigetelés 11 elektromos kontaktus 25/48 IZZÓLÁMPA MŰKÖDÉSE Az izzószál magas hőmérséklete ( C) következtében elektromágneses energiát sugároz, főként infravörös és kisebb részben látható fény tartományban. A volfrám jól közelíti az ideális feketetest tulajdonságait, ezért sugárzása nagyon közel esik a Plancktörvényből számolhatóval. Ebből adódóan a szál hőmérséklete egyértelműen megadja mind a kapott fény spektrumát, mind az elérhető maximális fényhasznosítást. A magas hőmérséklet egyúttal alacsony élettartamot is jelent, a megnövekedett párolgás miatt. Az elpárolgott volfrám a búrafalon lecsapódik, és rontja annak fényáteresztő képességét. A búra anyagát tekintve leggyakrabban lágyüveg, halogénizzók esetén keményüveg vagy kvarc. A búrát leszivattyúzzák, miáltal a szál és búra között javul a hőszigetelés. 26/48

14 KRIPTON LÁMPA Gáztöltésű lámpa: a gázatmoszféra alapvető célja, hogy meggátolja a W transzportját (volfrám párolgás), illetve az elpárolgott volfrámot visszajuttassa a szál testébe. Kriptonlámpa: Bródy Imre Hatásfoka jobb mint az argon-nitrogén töltésű lámpáé és hosszabb az élettartama. Fizikai (gázkinetika) háttér: Ne-N 2 -Ar-Kr sorrendben nő a mólsúly, és ezzel csökken a hővezetési együttható. 90 % Kr + 10 % N 2 : fehérebb fény, jobb fényhasznosítás 27/48 HALOGÉNLÁMPA A lámpa burájába halogén elemet (jód vagy bróm) juttatnak, többnyire szerves formában, pl.: dibróm-metán formájában. A spirál apró vastagságegyenetlenségei helyenként magasabb ellenállást eredményeznek. Ezeken a helyeken a hőmérséklet magasabb, a volfrám jobban párolog tovább gyorsítva a szál elvékonyodását. A halogén izzólámpákban az elpárolgott volfrám és a gáztérben jelenlévő halogén reakcióba lép és volfrám-jodidot (pontosabban volfrám- oxijodidot) alkot. A vegyület az izzószál környezetében elbomlik és a volfrám lerakódik a melegebb részeken. Ez a körfolyamat lehetővé teszi az izzószál hőmérsékletének emelését, ami kedvez a fényhasznosításnak, de növeli a kibocsátott UV sugárzást is. Ahhoz, hogy a halogén körfolyamata beinduljon, elengedhetetlen, hogy a bura elérjen egy bizonyos hőmérsékletet. Ezen a hőmérsékleten a lágyüvegek már képlékenyek, ezért a burát keményüvegből, vagy kvarcból készítik. 28/48

15 WOLFRÁM-HALOGÉN KÖRFOLYAMAT WI 2 WI 2 WI 2 burafal hőmérséklete a WI 2 kondenzációs hőmérséklete felett! reakciózóna I 2 I 2 I 2 W W W párolgás diffúzió T csökken hidegebb zóna W + nx WX n melegebb zóna 29/48 HALOGÉNLÁMPÁK TULAJDONSÁGAI Fényhasznosítás valamivel jobb Élettartam szélesebb határok közé tervezhető Jó fényminőség Bizonyos határok között szabályozható Nincs búrafeketedés Magasabb falhőmérséklet Naphoz közelálló színvisszaadás Drágább, mint a hagyományos izzó Törpefeszültség alkalmazása esetén segédeszközre (transzformátorra) van szükség. 30/48

16 GÁZKISÜLÉSES FÉNYFORRÁSOK Fizikai alapok: gázon vagy gőzök áram folyik át sugárzási jelenségek lépnek fel. A sugárzás az ütközések következtében magasabb energiaállapotokba gerjesztett vagy esetleg ionizált atomokból ered. A gázkisülés spektruma sávos/vonalas szerkezetű. A gázkisülésre vonatkozó gyakorlati követelmények: önnfentartó jó a hatásfoka színvisszaadása meggfelelő jól technologizálható, gyártható megfelelő élettartam Kisnyomású fényforrások Nagynyomású fényforrások 31/48 GÁZKISÜLÉSES FÉNYFORRÁSOK Működés alapja: ívkisülés, felhevített elektródból elektronok lépnek ki, ezek ütköznek a közeg atomjaival, és gerjesztik sugárzás hν ill. ionizálják őket. A + + e - Gerjesztett és ionizált anyag (plazma): Higanygőz fénycső, higanylámpa Nátriumgőz nátriumlámpa Egyéb fémek gőze fémhalogén lámpák Gáz xenonlámpa 32/48

17 KISNYOMÁSÚ FÉNYFORRÁSOK Nyomás: néhány száz Pa, áram: néhány A. Az ionizáció elektronütközésekből ered. Elektron-semleges atom ütközés: rugalmas ütközés, az atom gerjesztődik a kinetikus energia rovására, az atom ionizálódik, Az ionizációs valószínűség az elektronenergiától függ. Az atomok ionizációs energiái 10 néhány 10 ev nagyságúak. 33/48 FÉNYCSÖVEK A fénycsövek kisnyomású gázkisülési lámpák. A fémek (Hg) gőznyomása nagyságrendben 0,001 mbar, a Hg-é konkréten 0,005 mbar, a kisüléskor emittált UV sugárzást (Hg ún. rezonanciavonala 254 nm) fénypor alakítja át látható fénnyé. A fényporok a beeső nagyobb energiájú (rövidebb hullámhosszú) sugárzás hatására belső elektron energiaszintek közötti átmenetek révén látható tartománybeli fényt emittálnak (lumineszcencia). Ezek általában foszforvegyületek, vagy foszfort is tartalmazó keverékek. Fluoreszcencia: rövid lecsengésű folyamat Foszforeszcencia: hosszú lecsengésű folyamat Halofoszfát fénypor emissziós spektruma 34/48

18 FÉNYPOROK Fényük spektrális eloszlása akkor jó, ha egy hullámhossz környékén maximális az intenzitás, több maximum nincs, vagy kicsik. Általában keverékel, leggyakrabban foszforvegyületek, vagy foszfort is tartalmazó keverékek. Színes in-line TV képcső: háromsávos fénypor, melyeknek keskeny piros, kék és zöld sávú maximumai vannak. Piros: ittrium-oxid + Eu 3+ Kék: bárium-magnézium + aluminát + Eu 2+ Zöld: cérium-aluminát + Tb 3+ 35/48 KOMPAKT FÉNYCSŐ Kisnyomású Hg-gőz Fénypor: ritka földfémekkel aktívált (jobb fényhasznosítás és színvisszaadás) Méretcsökkentés: több csődarab egymás mellett. Normállámpa foglalat! 36/48

19 NAGYNYOMÁSÚ KISÜLŐLÁMPÁK Fényhasznosítás (lm/w) Élettartam (h) Higanylámpa Nátriumlámpa Fémhalogén lámpa higanylámpa fémhalogén lámpa nátriumlámpa 37/48 SZILÁRDTEST FÉNYFORRÁSOK, LUMINESZCENCIA A fénykibocsájtás és a világítás a lumineszcencia jelenségén alapul. A félvezetőkben a hibahelyek (szennyezők, adalékok, rácshibák) energiaszintjei szintén részt vesznek az optikai átmenetekben. A hibahelyek által a tiltott sávban létrehozott energiaszintek az abszorpciós és emissziós folyamatokban egyaránt részt vehetnek. Ha az elektron egy magasabb energiájú állapotba való gerjesztés után az alapállapotba visszakerülve a többletenergiáját sugárzás kibocsátásával veszti el, akkor a jelenséget lumineszcenciának nevezik. 38/48

20 LUMINESZCENCIA A gerjesztés módjától függően beszélhetünk foto-, katodo- és elektrolumineszcenciáról, mikor is a gerjesztés elegendően rövid hullámhosszúságú fénnyel, nagyenergiájú elektronsugárzással, illetve elektromos térbeli ütközési ionizációval, vagy injektált töltéshordozókkal történik. A gyakorlat számára a legfontosabb a pn átmenetben végbemenő töltéshordozó-injekció által keltett elektrolumineszcencia, mely a fénykibocsátó diódák illetve a lézerek alapvető működési mechanizmusát jelenti. 39/48 INJEKCIÓS LUMINESZCECIA foton emisszió vezetési sáv alja kiürülési tartomány szabad elektron p-tip Fermi nívó n-tip. Fermi nívó szabad lyuk vegyérték kötési sáv teteje az átmenetre helyezett feszültség 40/48

21 ELEKTROLUMINESZCENS VILÁGÍTÁS Az injekciós lumineszcenciát először szilícium-karbidon (SiC) Losev figyelte meg 1923-ban (O. V. Losev, Telegrafija i telefonija bez uprodov, 18, p. 45, 1923). SiC kristályra tűkontaktust helyezett, azon egyenáramot átfolyatva tapasztalta azt, hogy a kontaktus alatt a kristáy világítani kezd. Az injekciós elektrolumineszcens világítás szabadalma: magyar elsőbbség (Tungsram Rt. Újpest)! SiC elektrolumineszcens fényforrás (a mai világítódiódák őse ): Szigeti György és Bay Zoltán US patent No. 2,254,952 (1942) Bay Zoltán: szobra van Újpesten Szigeti György: emléktábla és bronz mellkép Csillebércen 41/48 ELEKTROLUMINESZCENS ANYAGOK, ZnS ZnS: széles tiltott sávja miatt inkább a dielektrikumokhoz sorolható. Leggyakoribb alkalmazási területe a lumineszcens elemek, képernyők gyártása. Finom porból vagy porlasztással készült rétegekbe vagy cinkfelesleget, vagy olyan aktivátorokat vezetnek be, amelyek biztosítják a megfelelő színű kisugárzást: 0,0001-3% Ag, Cu, Mn. Egy másik alkalmazási terület az infravörös tartományban áttetsző optikai elemek gyártása. Vegyület Olvadási pont K Tiltott sáv ev Elektron mozgékonyság m 2 /Vs Lyuk mozgékonyság m 2 /Vs ZnS ,7 0,014 0,0005 CdS ,4 0,024 0,005 CdSe ,8 0,06 0,005 HgSe ,6 1,8-42/48

22 ZnS ELEKTROLUMINESZCENS SPEKTRUMA ZnS:Mn narancsszínű-sárga ZnS:Cu zöld Elektromos térerő: 10 8 V/m azaz 1 µm vastag rétegen 100 V 43/48 ELEKTROLUMINESZCENS KRISTÁLY EGYSZERŰSÍTETT SÁVKÉPE fénypor szigetelõ réteg szigetelõ réteg 44/48

23 ELEKTROLUMINESZCENS CELLA ZnS elektroluminescens cella (Destriaux cella) felépítése. A cellára váltóáramot kapcsolva lehet a világítást gerjeszteni. 45/48 ELEKTROLUMINESZCENS KÉPMEGJELENÍTŐ 46/48

24 KATÓDLUMINESZCENCIA Elektronsugaras gerjesztés, vákuum: TV képernyők és számitógép monitorok (DE: technológiai váltás!) Színes TV képcső (árnyékmaszk, három elektronsugár, három fényporréteg)) Kék Kék Vörös ZnS:Ag ZnCdS:Cu,Al Y 2 O 3 :Eu 47/48 Ellenőrző kérdések Mi a radiometria és a fotometria? Rajzolja fel vázlatosan az emberi szem érzékenységi görbéjét! Vázolja a Wien-féle eltolódási törvényt grafikonon! Mi a szöveges megfogalmazása a törvénynek? Mutassa be az izzólámpa működését! Térjen ki a gáztöltés szerepére! Vázlatosan ismertesse a kisnyomású gázkisülőlámpák működését! Mi az injekciós lumineszcenca? Mutassa be a folyamatot sávszerkezet ábrán! 48/48

NEMKOHERENS FÉNYFORRÁSOK I TERMIKUS ÉS LUMINESCENS SUGÁRZÓK

NEMKOHERENS FÉNYFORRÁSOK I TERMIKUS ÉS LUMINESCENS SUGÁRZÓK NEMKOHERENS FÉNYFORRÁSOK I TERMIKUS ÉS LUMINESCENS SUGÁRZÓK BEVEZETÉS Fényforrások a fotonikában: információ bevitelére, továbbítására és rögzítésére szolgáló fotonok létrehozása (emissziója), információ

Részletesebben

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv?

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv? Ismertesse az optika fejlődésének legjelentősebb mérföldköveit! - Ókor: korai megfigyelések - Euklidész (i.e. 280) A fény homogén közegben egyenes vonalban terjed. Legrövidebb út elve (!) Tulajdonképpen

Részletesebben

MODERN FÉNYFORRÁSOK ÉS ÁLLOMÁNYVÉDELEM. - Világítástechnika a múzeumi és levéltári gyakorlatban -

MODERN FÉNYFORRÁSOK ÉS ÁLLOMÁNYVÉDELEM. - Világítástechnika a múzeumi és levéltári gyakorlatban - MODERN FÉNYFORRÁSOK ÉS ÁLLOMÁNYVÉDELEM - Világítástechnika a múzeumi és levéltári gyakorlatban - Tisztelt Hölgyeim és Uraim, kedves résztvevők! SLIDE1 Koltai György vagyok, és tisztelettel köszöntöm Önöket

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

Fejezetek az Információ-Technológia Kultúrtörténetéből. Az elektromos fényelőállítás története

Fejezetek az Információ-Technológia Kultúrtörténetéből. Az elektromos fényelőállítás története Fejezetek az Információ-Technológia Kultúrtörténetéből dr. Kutor László Az elektromos fényelőállítás története http://mobil.nik.bmf.hu/tantargyak/fi-tk.html Login név: fi-tk jelszó: fi-tk07 FI-TK 6/1 Az

Részletesebben

Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések

Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések Sugárzás kölcsönhatása az anyaggal Készítette: Fehértói Judit (Z0S8CG) Fábián Balázs (IT23JG) Budapest, 2014.04.15. 1 Bevezetés:

Részletesebben

Radiometria, fotometria, színmérés. Az anyagokat Prof. Schanda János jegyzeteiből összeállította: Várady Géza

Radiometria, fotometria, színmérés. Az anyagokat Prof. Schanda János jegyzeteiből összeállította: Várady Géza Radiometria, fotometria, színmérés Az anyagokat Prof. Schanda János jegyzeteiből összeállította: Várady Géza Radiometria, fotometria, színmérés A radiometria az optikai sugárzást fizikai mennyiségek formájában

Részletesebben

Lumineszcencia Fényforrások

Lumineszcencia Fényforrások Kiegészítés: színkeverés Lumineszcencia Fényforrások Alapszinek additív keverése Alapszinek kiegészítő szineinek keverése: Szubtraktív keverés Fidy udit Egyetemi tanár 2015, November 5 Emlékeztető.. Abszorpciós

Részletesebben

LCD kijelzők működése és típusai

LCD kijelzők működése és típusai LCD kijelzők működése és típusai Fotonikai eszközök BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY Alapvető fizikai mennyiségek Teljesítmény: energia adott idő alatt

Részletesebben

MÉRŐÉRZÉKELŐK FIZIKÁJA. Hang, fény jellemzők mérése. Dr. Seres István

MÉRŐÉRZÉKELŐK FIZIKÁJA. Hang, fény jellemzők mérése. Dr. Seres István MÉRŐÉRZÉKELŐK FIZIKÁJA Hang, fény jellemzők mérése Dr. Seres István Hangintenzitás: E I A W 2 Hangerősség: Kétféle szokásos mértékegysége van: Decibel skála Phon skála Dr. Seres István 2 http://fft.szie.hu

Részletesebben

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai

Részletesebben

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,

Részletesebben

Lumineszcencia alapjelenségek

Lumineszcencia alapjelenségek Lumineszcencia alapjelenségek (Nyitrai Miklós; 211 február 7.) Lumineszcencia Definíció: Egyes anyagok spontán fénykibocsátása, a termikus fényemissziótól függetlenül, elektrongerjesztést követően. Lumineszcens

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Fény kölcsönhatása az anyaggal:

Fény kölcsönhatása az anyaggal: Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen

Részletesebben

A fényforrások fejlődése 2015. október 9.

A fényforrások fejlődése 2015. október 9. A fényforrások fejlődése? Balázs László, PhD GE Lighting Égésen alapuló fényforrások Gázvilágítás Kína: fűtés és világtás földgázzal XVIII. sz. Fa és szén elgázosítása 1790 W. Murdoch első gázvilágítás

Részletesebben

Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01.

Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01. VILÁGÍTÁSTECHNIKA Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01. ANYAGOK FELÉPÍTÉSE Az atomok felépítése: elektronhéjak: K L M N O P Q elektronok atommag W(wolfram) (Atommag = proton+neutron protonok

Részletesebben

1. Atomspektroszkópia

1. Atomspektroszkópia 1. Atomspektroszkópia 1.1. Bevezetés Az atomspektroszkópia az optikai spektroszkópiai módszerek csoportjába tartozó olyan analitikai eljárás, mellyel az anyagok elemi összetételét határozhatjuk meg. Az

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 10. Elektrooptika, nemlineáris optika, kvantumoptika, lézerek Cserti József, jegyzet, ELTE, 2007. Az elektrooptika, a nemlineáris optikai és az

Részletesebben

A 2014. évi fizikai Nobel díj kapcsán. Vass László Percept kft www.percept.hu 2014. október 16.

A 2014. évi fizikai Nobel díj kapcsán. Vass László Percept kft www.percept.hu 2014. október 16. A 2014. évi fizikai Nobel díj kapcsán Vass László Percept kft www.percept.hu 2014. október 16. 2014. évi fizikai Nobel díj, 1/3 Isamu Akasaki Született: 1929, Chiran, Japan A Meijo University, Nagoya,

Részletesebben

A LED-EK ALKALMAZÁSÁNAK LEHETŐSÉGEI A MAGYAR HONVÉDSÉGBEN

A LED-EK ALKALMAZÁSÁNAK LEHETŐSÉGEI A MAGYAR HONVÉDSÉGBEN Végvári Zsolt 1 A LED-EK ALKALMAZÁSÁNAK LEHETŐSÉGEI A MAGYAR HONVÉDSÉGBEN A VILLAMOS VILÁGÍTÁS JÖVŐJE, A LED-ES FÉNYFORRÁSOK KATONAI ALKALMAZÁSÁNAK KÉRDÉSEI Absztrakt Napjaink vitathatatlanul legkorszerűbb

Részletesebben

Szilárdtest fényforrások alkalmazása a közvilágításban, látásfizikai alapok

Szilárdtest fényforrások alkalmazása a közvilágításban, látásfizikai alapok Mivel világítsunk? Szilárdtest fényforrások alkalmazása Dr. Schanda János professzor emeritusz Rövid összefoglalás A közvilágításban jelenleg alkalmazható szilárdtest fényforrások rövid áttekintése után

Részletesebben

Összehasonlító fénytechnikai vizsgálat

Összehasonlító fénytechnikai vizsgálat Összehasonlító fénytechnikai vizsgálat Vizsgálat helyszíne: Dunaújváros, Hunyadi János utca Fénytechnikai mérés időpontja: 2013. április 27. A fénytechnikai mérést készítette: FÁKO DATA Telefon:30/ 9331991,

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II:

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II: RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II: Üveg és PMMA struktúrák CO 2 és Nd:YAG lézeres megmunkálással Készítette: Nagy Péter dr. és Varga Máté A mérés célja: CO 2 és Nd:YAG lézerek fontosabb tulajdonságainak

Részletesebben

Anyagszerkezettan vizsgajegyzet

Anyagszerkezettan vizsgajegyzet - 1 - Anyagszerkezettan vizsgajegyzet Előadástémák: 1. Atomszerkezet 1.1. Atommag 1.2. Atomszám 1.3. Atomtömeg 1.4. Bohr-féle atommodell 1.5. Schrödinger-egyenlet 1.6. Kvantumszámok 1.7. Elektron orbitál

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar. Dr. Mizsei János NAPELEMEK

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar. Dr. Mizsei János NAPELEMEK Budaesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Dr. Mizsei János NAPEEMEK egédlet a Naelemek laboratórium tárgyhoz Kézirat, kizárólag a BME hallgatóinak használatára Budaest,

Részletesebben

Villamos tulajdonságok

Villamos tulajdonságok Villamos tulajdonságok A vezetés s magyarázata Elektron függıleges falú potenciálgödörben: állóhullámok alap és gerjesztett állapotok Több elektron: Pauli-elv Sok elektron: Energia sávok Sávelméletlet

Részletesebben

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása Az ionizáló sugárzások kölcsönhatása anyaggal, nehéz és könnyű töltött részek kölcsönhatása, röntgen és γ-sugárzás kölcsönhatása Az ionizáló sugárzások mérése, gáztöltésű detektorok (ionizációs kamra,

Részletesebben

Gerhátné Udvary Eszter

Gerhátné Udvary Eszter Az optikai hálózatok alapjai (BMEVIHVJV71) Optikai adó 2014.02.21. Gerhátné Udvary Eszter udvary@mht.bme.hu Budapest University of Technology and Economics Department of Broadband Infocommunication Systems

Részletesebben

A fényerősség egységének nemzeti etalonja

A fényerősség egységének nemzeti etalonja Optikai mérések Az Nemzeti Mérésügyi Hivatal egyik fontos feladata, hogy a magyar nemzetgazdaság számára biztosítsa a magyar előállítású termékek elfogadását a külföldi piacokon és a mérések egységességének

Részletesebben

Sugárzási alapismeretek

Sugárzási alapismeretek Sugárzási alapismeretek Energia 10 20 J Évi bejövő sugárzásmennyiség 54 385 1976-os kínai földrengés 5006 Föld széntartalékának energiája 1952 Föld olajtartalékának energiája 179 Föld gáztartalékának energiája

Részletesebben

Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06

Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06 The Green Company LUMI-HOD 107-B fólia Javaslatok az alkalmazásokra LUMI-HOD 107-B fólia Az LN egy új osztálya az újonnan kifejlesztett foszforeszkáló (sötétben világító) pigmenteknek, nagymértékben különböznek

Részletesebben

Kimenő üzemmód ; Teljesítmény

Kimenő üzemmód ; Teljesítmény állítható, ezért gyógyászati anyagként is használhatóak: leszűkült érbe húzva megakadályozza a vérrögök haladását miután a test hőmérsékletén rugóvá ugrik vissza. Hasonlóan széles körben használják az

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

Hibrid mágneses szerkezetek

Hibrid mágneses szerkezetek Zárójelentés Hibrid mágneses szerkezetek OTKA T046267 Négy és fél év időtartamú pályázatunkban két fő témakörben végeztünk intenzív elméleti kutatásokat: (A) Mágneses nanostruktúrák ab initio szintű vizsgálata

Részletesebben

A jövő anyaga: a szilícium. Az atomoktól a csillagokig 2011. február 24.

A jövő anyaga: a szilícium. Az atomoktól a csillagokig 2011. február 24. Az atomoktól a csillagokig 2011. február 24. Pavelka Tibor, Tallián Miklós 2/24/2011 Szilícium: mindennapjaink alapvető anyaga A szilícium-alapú technológiák mindenütt jelen vannak Mikroelektronika Számítástechnika,

Részletesebben

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást! 2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának

Részletesebben

Gamma-spektrometria HPGe detektorral

Gamma-spektrometria HPGe detektorral Gamma-spektrometria HPGe detektorral 1. Bevezetés A gamma-spektrometria az atommagból valamilyen magfolyamat következtében (radioaktív bomlás, mesterséges vagy természetes magreakció) kilépő gamma sugárzás

Részletesebben

Feladatok haladóknak

Feladatok haladóknak Feladatok haladóknak Szerkesztő: Magyarfalvi Gábor és Varga Szilárd (gmagyarf@chem.elte.hu, szilard.varga@bolyai.elte.hu) Feladatok A formai követelményeknek megfelelő dolgozatokat a nevezési lappal együtt

Részletesebben

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN 2007. február 6. 1 Pálinkás József: Fizika 2. XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN Bevezetés: Az előző fejezetekben megismertük, hogy a kvantumelmélet milyen jól leírja az atomok és a molekulák felépítését.

Részletesebben

Abszorbciós spektroszkópia

Abszorbciós spektroszkópia Abszorbciós spektroszkópia (Nyitrai Miklós; 2011 január 31.) A fény Elektromágneses hullám kölcsönhatása anyaggal Az abszorbció definíciója Az abszorpció mérése Speciális problémák, esetek Alkalmazások

Részletesebben

Dr. Nagy Balázs Vince D428

Dr. Nagy Balázs Vince D428 Műszaki Optika 2. előadás Dr. Nagy Balázs Vince D428 nagyb@mogi.bme.hu Izzólámpa és fénycső 30,0 25,0 20,0 15,0 10,0 5,0 0,0 350 400 450 500 550 600 650 700 750 2 Fényforrások csoportosítása Fényforrások

Részletesebben

H H 2. ábra: A diazometán kötésszerkezete σ-kötések: fekete; π z -kötés: kék, π y -kötés: piros sp-hibrid magányos elektronpár: rózsaszín

H H 2. ábra: A diazometán kötésszerkezete σ-kötések: fekete; π z -kötés: kék, π y -kötés: piros sp-hibrid magányos elektronpár: rózsaszín 3. DIAZ- ÉS DIAZÓIUMSPRTT TARTALMAZÓ VEGYÜLETEK 3.1. A diazometán A diazometán ( 2 2 ) egy erősen mérgező (rákkeltő), robbanékony gázhalmazállapotú anyag. 1. ábra: A diazometán határszerkezetei A diazometán

Részletesebben

Optikai kristályok előállítása, tulajdonságai, alkalmazása

Optikai kristályok előállítása, tulajdonságai, alkalmazása Optikai kristályok előállítása, tulajdonságai, alkalmazása Fotonikai eszközök Előadó: Jakab László BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY Optikai kristályok

Részletesebben

Az infravörös spektroszkópia analitikai alkalmazása

Az infravörös spektroszkópia analitikai alkalmazása Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai

Részletesebben

A középszintű fizika érettségi témakörei:

A középszintű fizika érettségi témakörei: A középszintű fizika érettségi témakörei: 1. Mozgások. Vonatkoztatási rendszerek. Sebesség. Az egyenletes és az egyenletesen változó mozgás. Az s(t), v(t), a(t) függvények grafikus ábrázolása, elemzése.

Részletesebben

3 He ionokat pedig elektron-sokszorozóval számlálja. A héliummérést ismert mennyiségű

3 He ionokat pedig elektron-sokszorozóval számlálja. A héliummérést ismert mennyiségű Nagytisztaságú 4 He-es izotóphígítás alkalmazása vízminták tríciumkoncentrációjának meghatározására a 3 He leányelem tömegspektrométeres mérésén alapuló módszerhez Az édesvízkészletek felmérésében, a rétegvizek

Részletesebben

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 MŰSZAKI ISMERETEK Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Az előadás áttekintése Méret meghatározás Alaki jellemzők Felületmérés Tömeg, térfogat, sűrűség meghatározása

Részletesebben

Kézi forgácsolások végzése

Kézi forgácsolások végzése Gubán Gyula Kézi forgácsolások végzése A követelménymodul megnevezése: Karosszérialakatos feladatai A követelménymodul száma: 0594-06 A tartalomelem azonosító száma és célcsoportja: SzT-018-30 KÉZI FORGÁCSOLÁSOK

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

S Z R É S T E C H N I K A

S Z R É S T E C H N I K A S Z R É S T E C H N I K A AZ ECOFILT MIKROFILTER Az Ecofilt Mikrofilter egy védjegy, ami kaszkádsz r t takar. Tekintsük át el ször e kaszkádsz r fizikai alapjait. A sz r két (vagy több) rétegb l áll. Az

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia E m S Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben = µ

Részletesebben

DUNAÚJVÁROSI FŐISKOLA ANYAGTUDOMÁNYI ÉS GÉPÉSZETI INTÉZET. Gyártástechnológia. Dr. Palotás Béla palotasb@mail.duf.hu.

DUNAÚJVÁROSI FŐISKOLA ANYAGTUDOMÁNYI ÉS GÉPÉSZETI INTÉZET. Gyártástechnológia. Dr. Palotás Béla palotasb@mail.duf.hu. DUNAÚJVÁROSI FŐISKOLA ANYAGTUDOMÁNYI ÉS GÉPÉSZETI INTÉZET Gyártástechnológia Hegesztési eljárások 1. Ömlesztő hegesztési eljárások Dr. Palotás Béla palotasb@mail.duf.hu Lánghegesztés Disszu-gáz: az acetilént

Részletesebben

Szigetelők Félvezetők Vezetők

Szigetelők Félvezetők Vezetők Dr. Báder Imre: AZ ELEKTROMOS VEZETŐK Az anyagokat elektromos erőtérben tapasztalt viselkedésük alapján két alapvető csoportba soroljuk: szigetelők (vagy dielektrikumok) és vezetők (vagy konduktorok).

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

Környezet. A munkakörnyezet ergonómiai. Területei: (Munkatevékenység) (Munkahely-elrendezés) (Használati eszközök) A. Fizikai környezetk

Környezet. A munkakörnyezet ergonómiai. Területei: (Munkatevékenység) (Munkahely-elrendezés) (Használati eszközök) A. Fizikai környezetk A munkakörnyezet ergonómiai értékelése 2 Környezet Területei: (Munkatevékenység) (Munkahely-elrendezés) (Használati eszközök) A. Fizikai környezet (B. Szociális környezet) A. Fizikai környezetk 3 1.1 Fénytani

Részletesebben

Nagy Gábor: HORDOZHATÓ ENERGIASZELEKTÍV SUGÁRZÁSMÉRİ SZONDA KIFEJLESZTÉSE PIN DIÓDA ALKALMAZÁSÁVAL

Nagy Gábor: HORDOZHATÓ ENERGIASZELEKTÍV SUGÁRZÁSMÉRİ SZONDA KIFEJLESZTÉSE PIN DIÓDA ALKALMAZÁSÁVAL ZRINYI MIKLÓS NEMZETVÉDELMI EGYETEM Nagy Gábor: HORDOZHATÓ ENERGIASZELEKTÍV SUGÁRZÁSMÉRİ SZONDA KIFEJLESZTÉSE PIN DIÓDA ALKALMAZÁSÁVAL című doktori (PhD) értekezésének szerzői ismertetője (TÉZISFÜZET)

Részletesebben

Szilárdtest fényforrások

Szilárdtest fényforrások Szilárdtest fényforrások elektrolumineszcens panelek, világító diódák (LED-ek), szerves elektrolumineszcencia (OLED) Schanda prof és Dr, Szabó Ferenc diáinak felhasználásával 1 Történeti áttekintés SiC:

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Az elektronikai technológia újdonságai

Az elektronikai technológia újdonságai HŐTÉSI MEGOLDÁSOK Az elektronikai technológia újdonságai Sinkovics Bálint 2009. október 13. BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY Hıterjedés a hıterjedés

Részletesebben

Alapfogalmak II. 2015.09.29. BME -VIK

Alapfogalmak II. 2015.09.29. BME -VIK Alapfogalmak II. 2015.09.29. BME -VIK 1 Ismétlés: Fényáram Besugárzott felületi teljesítmény da Megvilágítás környezetre dω Fényerősség térbeli eloszlásra = da ( cosα ) r 2 Sugárerős- ség E = dφ da I =

Részletesebben

Kötő- és rögzítőtechnológiák

Kötő- és rögzítőtechnológiák Kötő- és rögzítőtechnológiák Szilárd anyagok illeszkedő felületük mentén külső (fizikai eredetű) vagy belső (kémiai eredetű) erővel köthetők össze. Külső erőnek az anyagok darabjait összefogó, összeszorító

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgálati módszerek tételsor 1. A TOC (total organic carbon) meghatározás, az egyes méréseknek mi az elve? 2. Mi a Soxhlet extraktor működési elve, mire használják? 3. Kőszenek kénmegoszlása és mi

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

Ph 11 1. 2. Mozgás mágneses térben

Ph 11 1. 2. Mozgás mágneses térben Bajor fizika érettségi feladatok (Tervezet G8 2011-től) Munkaidő: 180 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia. A két feladatsor nem származhat azonos témakörből.)

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

1. Katalizátorok elemzése XRF módszerrel Bevezetés A nehézfémek okozta környezetterhelés a XX. század közepe óta egyre fontosabb problémává válik. Egyes nehézfémek esetében az emberi tevékenységekből eredő

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1)

Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1) Segédlet az Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1) tárgy hallgatói számára Készítette a BME Anyagtudomány és Technológia Tanszék Munkaközössége Összeállította: dr. Orbulov Imre Norbert 1 Laborgyakorlatok

Részletesebben

Szerves kémiai analízis TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

Szerves kémiai analízis TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ BSC ANYAGMÉRNÖK SZAK VEGYIPARI TECHNOLÓGIAI SZÁMÁRA KÖTELEZŐ TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2016 1 Tartalomjegyzék 1. Tantárgyleírás,

Részletesebben

A talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor

A talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor Bevezetés talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor z ember már õsidõk óta ki van téve a radioaktív sugárzásoknak 1 1 ( α, β, γ, n, p, ν, ~,... ). Egy személy évi sugárterhelésének

Részletesebben

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója? 1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján

Részletesebben

LED-es közvilágítás korszerűsítés közszolgáltatói megközelítésben

LED-es közvilágítás korszerűsítés közszolgáltatói megközelítésben BDK Budapesti Dísz- és Közvilágítási Kft. LED-es közvilágítás korszerűsítés közszolgáltatói megközelítésben? MEE Vándorgyűlés, 2014. 09.10. Debrecen Pap Zoltán BDK ügyvezető BDK Budapesti Dísz- és Közvilágítási

Részletesebben

Integrált áramkörök termikus szimulációja

Integrált áramkörök termikus szimulációja BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Villamosmérnöki és Informatikai Kar Elektronikus Eszközök Tanszéke Dr. Székely Vladimír Integrált áramkörök termikus szimulációja Segédlet a Mikroelektronika

Részletesebben

17. Kapcsolok. 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon.

17. Kapcsolok. 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon. Fotonika 4.ZH 17. Kapcsolok 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon. 27. Soroljon fel legalább négy optikai kapcsoló

Részletesebben

5. A fényforrások működtető elemei. 5.1 Foglalatok

5. A fényforrások működtető elemei. 5.1 Foglalatok 5. A fényforrások működtető elemei 5.1 Foglalatok A foglalatok a fényforrások mechanikai rögzítésén kívül azok áramellátását is biztosítják. A különböző foglalatfajták közül legismertebbek az Edison menetes

Részletesebben

41. A minıségügyi rendszerek kialakulása, ISO 9000 rendszer jellemzése

41. A minıségügyi rendszerek kialakulása, ISO 9000 rendszer jellemzése készült az UElektronikai gyártás és minıségbiztosításu c. tárgy elıadásainak diáiból 41. A minıségügyi rendszerek kialakulása, ISO 9000 rendszer jellemzése 1.Mik a teljeskörő minıségszabályozás (=TQM)

Részletesebben

A polimer elektronika

A polimer elektronika Tartalom A polimer elektronika Mi a polimer elektronika? Vezető szerves molekulák, ; a vezetés mechanizmusa Anyagválaszték: vezetők, félvezetők, fénykibocsátók szigetelők, hordozók Technológiák Eszközök

Részletesebben

Fényforrások. E hatására gáztérben ütközési ionizáció. Stefan-Boltzmann-tv. Wien-tv. Planck-tv. 4 tot

Fényforrások. E hatására gáztérben ütközési ionizáció. Stefan-Boltzmann-tv. Wien-tv. Planck-tv. 4 tot Fényforrások Fény (foton) kibocsátás: lktromos töltésk sbsségváltozása révén. Trmikus (fkt) sugárzó: magas hőmérséklt foton misszió Elktromos kisülés: Félvztő fényforrás: injkciós lktroluminszcncia Lézr

Részletesebben

RÖNTGEN-FLUORESZCENCIA ANALÍZIS

RÖNTGEN-FLUORESZCENCIA ANALÍZIS RÖNTGEN-FLUORESZCENCIA ANALÍZIS 1. Mire jó a röntgen-fluoreszcencia analízis? A röntgen-fluoreszcencia analízis (RFA vagy angolul XRF) roncsolás-mentes atomfizikai anyagvizsgálati módszer. Rövid idõ alatt

Részletesebben

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A mérés során a fényképen látható eszközök és anyagok álltak a versenyzők rendelkezésére:

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI

FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI I.Mechanika 1. Newton törvényei 2. Egyenes vonalú mozgások 3. Munka, mechanikai energia 4. Periodikus mozgások 5. Munka,energia,teljesítmény II.

Részletesebben

ATTOSZEKUNDUMOS IMPULZUSOK

ATTOSZEKUNDUMOS IMPULZUSOK ATTOSZEKUNDUMOS IMPULZUSOK Varjú Katalin Szegedi Tudományegyetem Optikai és Kvantumelektronikai Tanszék Generating high-order harmonics is experimentally simple. Anne L Huillier 1 Mivel a Fizikai Szemlében

Részletesebben

Fókuszált fénynyalábok keresztpolarizációs jelenségei

Fókuszált fénynyalábok keresztpolarizációs jelenségei Fókuszált fénynyalábok keresztpolarizációs jelenségei K házi-kis Ambrus, Klebniczki József Kecskeméti F iskola GAMF Kar Matematika és Fizika Tanszék, 6000 Kecskemét, Izsáki út 10. Véges transzverzális

Részletesebben

1. A Nap, mint energiaforrás:

1. A Nap, mint energiaforrás: A napelem egy olyan eszköz, amely a nap sugárzását elektromos árammá alakítja át a fényelektromos jelenség segítségével. A napelem teljesítménye függ annak típusától, méretétől, a sugárzás intenzitásától

Részletesebben

Konfokális mikroszkópia elméleti bevezetõ

Konfokális mikroszkópia elméleti bevezetõ Konfokális mikroszkópia elméleti bevezetõ A konfokális mikroszkóp fluoreszcensen jelölt minták vizsgálatára alkalmas. Jobb felbontású képeket ad, mint a hagyományos fluoreszcens mikroszkópok, és képes

Részletesebben

A közigazgatási ügyintézés társadalmi megítélése a magyarországi vállalkozások körében

A közigazgatási ügyintézés társadalmi megítélése a magyarországi vállalkozások körében A közigazgatási ügyintézés társadalmi megítélése a magyarországi vállalkozások körében Tanulmány a Miniszterelnöki Hivatal számára Készítette: Fact Intézet Szocio-Gráf Intézet Pécs, 2006. TARTALOM VEZETŐI

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet...

Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet... Fizika 12. osztály 1 Fizika 12. osztály Tartalom 1. Az egyenletesen változó körmozgás kinematikai vizsgálata.......................... 2 2. Helmholtz-féle tekercspár.....................................................

Részletesebben

Összesített Tanterv a 8 osztályos gimnáziumi részhez Fizikából FIZIKA TANTERV 7-8. évfolyam. Készítette: Bülgözdi László és Juhász Róbert

Összesített Tanterv a 8 osztályos gimnáziumi részhez Fizikából FIZIKA TANTERV 7-8. évfolyam. Készítette: Bülgözdi László és Juhász Róbert Összesített Tanterv a 8 osztályos gimnáziumi részhez Fizikából FIZIKA TANTERV 7-8 évfolyam Készítette: Bülgözdi László és Juhász Róbert Az alapfokú fizikaoktatás célja Keltse fel a tanulók érdeklődését

Részletesebben

Korszerű repülőgépek elektronikai védelmét biztosító új eljárások, eszközök

Korszerű repülőgépek elektronikai védelmét biztosító új eljárások, eszközök Dr. Vass Sándor alezredes Korszerű repülőgépek elektronikai védelmét biztosító új eljárások, eszközök Az elmúlt évtizedek háborús tapasztalatai egyértelműen igazolják, hogy a megsemmisítő eszközök találati

Részletesebben

LÁMPATESTEK TERVEZÉSE ESZTERGOMI FERENC MŰSZAKI IGAZGATÓ

LÁMPATESTEK TERVEZÉSE ESZTERGOMI FERENC MŰSZAKI IGAZGATÓ LÁMPATESTEK TERVEZÉSE ESZTERGOMI FERENC MŰSZAKI IGAZGATÓ HOFEKA kft. Lámpatestek Nagyfeszültségű távvezeték szerelvények Hofeka.hu A lámpatest olyan készülék, amely biztosítja a fényforrás tartós működtetéséhez

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)

Részletesebben

PÉCSI TUDOMÁNYEGYETEM. Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata. Unferdorben Márta

PÉCSI TUDOMÁNYEGYETEM. Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata. Unferdorben Márta PÉCSI TUDOMÁNYEGYETEM Fizika Doktori Iskola Nemlineáris optika és spektroszkópia program Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata PhD értekezés Unferdorben Márta Témavezető: Dr. Pálfalvi

Részletesebben

6. Ismertesse a tűzoltás módjait és a kézi tűzoltó készüléket! Tűzoltás eredményessége függ: - a tűzeset körűlményétől - a tüzet észlelő személy

6. Ismertesse a tűzoltás módjait és a kézi tűzoltó készüléket! Tűzoltás eredményessége függ: - a tűzeset körűlményétől - a tüzet észlelő személy 6. Ismertesse a tűzoltás módjait és a kézi tűzoltó készüléket! Tűzoltás eredményessége függ: - a tűzeset körűlményétől - a tüzet észlelő személy gyorsaságától, határozottságától - tűzjelzés eredményességétől

Részletesebben

FÉNYT KIBOCSÁTÓ DIÓDÁK ALKALMAZÁSA A KÖZÉPISKOLAI FIZIKAOKTATÁSBAN

FÉNYT KIBOCSÁTÓ DIÓDÁK ALKALMAZÁSA A KÖZÉPISKOLAI FIZIKAOKTATÁSBAN Kísérlet a Lenz-ágyúval. A verseny elôkészületei során többször jártam a Csodák Palotájában és azt tapasztaltam, hogy sokan egy óriási játszótérnek tekintik a kiállítást. Nyílván ez célja is a szervezôknek,

Részletesebben

Szegedi Tudományegyetem Természettudományi Kar Éghajlattani és Tájföldrajzi Tanszék FOGALOMTÁR 2. RÉSZ

Szegedi Tudományegyetem Természettudományi Kar Éghajlattani és Tájföldrajzi Tanszék FOGALOMTÁR 2. RÉSZ Szegedi Tudományegyetem Természettudományi Kar Éghajlattani és Tájföldrajzi Tanszék FOGALOMTÁR 2. RÉSZ Az Általános klimatológia gyakorlat 2. zh-jában szereplő fogalmak jegyzéke Szeged 2008 A 2. ZH-ban

Részletesebben