Szegedi Tudományegyetem ÁOK Sebészeti Műtéttani Intézet 2017. december 06-december 15. Referencia szám: AA1.0/2015; AB1.0/2015 Állatkísérletek Elmélete és Gyakorlata- B szint Function specific modules B 11/1 Állatkísérletek helyettesítése 1: "alternatív" módszerek. Dr. Tuboly Eszter SZTE Sebészeti Műtéttani Intézet 2017-2018-I. szemeszter
Az alternatívák szükségessége Élő modellek kiváltása Társadalmi megítélés, az igény egyre nő Szervezeti fellépések Törvényi szabályozás Költségek, ellenőrzés 2013. 03.11-étől Európai Unió megtiltotta a kozmetikai ipar számára folytatott állatkísérletek végzését SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing; 50 millió ) System toxicity test, in vitro bőrmodellek
In vitro modellek előnyei Csak a vizsgált mechanizmusra fókuszálnak Egyszerűbb kezelni, kisebb a kockázat, felelősség Sokszor szükségesek a publikáláshoz Időmegtakarítás, elemszám Dózisfüggés, toxicitás vizsgálatok! Néhány klinikai, élettani helyzet nem vizsgálható in vivo Hátrányok Nem feltétlenül költséghatékonyabb Nem igazán életszerű Sejttenyészet: fertőződés (mycoplasma) Komplex, szervszintű reakciók, vagy krónikus, szisztémás reakciók vizsgálatára nem alkalmas
A 3 R: Russell and Burch Replacement Reduction Refinement
A helyettesítés egyre hatékonyabb Kísérletek száma, amelyben in vitro alternatív módszereket alkalmaztak kísérleti állatok helyett
Az elemszámbecslést meghatározó (befolyásoló) tényezők A kutatás célja (becslés, hipotézis vagy ekvivalencia) A fő hatásmutató (outcome): kategórikus v. folytonos, egy vagy több, elsődleges, másodlagos.. és a hatásmutató eloszlásának - korábbi vizsgálatokon alapuló becslése I. fajta hiba valószínűsége,α A próba ereje (1-β) (1-II. fajta hiba valószínűsége) a választott értékelési módszer a klinikailag jelentősnek ítélt hatás A feltételek rögzítése után a mintaelemszámot a választott statisztikai próbának megfelelő módszerrel számítják ki
Lehetőségek élő állatmodellek helyettesítésére Csak kémiai komponensek Szöveti homogenizátum, izolált organellum Ex vivo kísérletek Sejt-és szövetkultúrák Mesterségesen növesztett szövetek, szervek ( organ-chip ) In silico modellek Invazív beavatkozás helyettesítése, minimal-invazivitásra törekvés Vér-és szövetminták helyett egyéb testnedvek (nyál, vizelet, etc) alkalmazása Humán önkéntes kísérletek (szimuláció)
Biokémiai tesztek-pl. humán placenta, vakcinaelőállítás Őssejt-vizsgálatok: MSC sejtek humán zsírszövetből Metszetek, immunkémiai technikák Szerv, szövet vagy sejtkultúrák, (pl. vérkészítmények is) Mikroorganizmusok (karcinogén ill. mutagén anyagok tesztelésére) Magasabbrendű növények Gerinctelen állatok (Drosophila, tengeri sün!) Néhány protozoa, metazoa parazita (dohányzás vizsgálatok) Komputer szimulációs modellek
Quantitative structure-activity relationships (QSARs)
Sejttenyésztés 1907 óta létező technika (Harrison, béka idegsejt kultúra) 50-es évektől kezdve elterjedt eljárás Áttörések: antibiotikumok, médium, tripszin Társaságok, sejt-és szövetbankok Izolált-és mai napig fenntartott sejtvonalak (HeLa) Tenyésztő eszközök rohamos fejlődése (gyógyszergyártás) Gén-és biotechnológia alappillére (klónozás) Rákkutatás (nanotechnológia) Őssejt-és génterápia (etikai kérdések) Szintetikus biológia (mesterséges szervek, programozott sejtek) Virológia (vakcinák készítése)
Vizsgálati lehetőségek Az adott sejt életfolyamatainak nyomon-követése, patofiziológia(sejtanalízis) sejt-sejt kölcsönhatások, a sejtkommunikáció vizsgálata (neuronok) a sejtek különböző kémiai anyagokra adott válaszának analízise (gyógyszerfejlesztés) különböző sejteredetű fehérje termékek előállítására (biotechnológiaiipar) tissue engineering céljára Sejttenyészetek eredete: szöveti explantok ("explant kultúrák") sejtszuszpenzió("szuszpenziós kultúrák")
Sejttenyészetek típusai Primer tenyészetek: embrionális ill. felnőtt szövetből korlátozott ideig tarthatók fenn élettartamuk véges (hetek, néhány hónap) előnyük: a sejtek nem tekinthetők módosított ill transzformált sejteknek, mivel a tenyésztés kezdő lépéseként alkalmazott enzimatikus, vagy mechanikus disszociáción kívül a sejteket más hatás nem éri. hátrányuk: a kultúrák korlátozott élettartama minden egyes preparátum kicsit eltér egymástól, teljesen homogén idegen sejtet nem tartalmazó tiszta tenyészetről nem beszélhetünk. Sejtvonalak: abnormális, gyakran transzformált sejtek homogén sejtpopuláció élettartamuk korlátlan Leggyakrabban rákkutatási célok Könnyebb velük dolgozni, már nem kell izolálni
Ami nélkül nem megy Laminaris fülke HEPA filter-steril levegő-áramot biztosít Horizontális A levegő horizontálisan, a tenyésztő irányába áramlik veszélyes anyagokkal való munkára nem alkalmas Vertikális A levegő felülről lefelé áramlik veszélyes anyagokkal való munkára ez a típus a legalkalmasabb CO 2 Inkubátorok(5-10 %, 100%-os páratartalom) Fáziskontraszttal ellátott invert mikroszkóp
Ablaktalan, fertőtlenített helység (meszelés) Steril öltözet UV-védelem Speciális tenyésztőedények Saját eszközök Vízfürdő, hűtőszekrény Alkohol, fertőtlenítés Speciális tápfolyadék (médium) Ionikus homeosztázis Vitaminok, kofaktorok, fémek Energia, Fehérjék, lipidek Bakteriocid-fungicid koktél
A tenyésztőedények felületének kezelésére használjuk: Kollagen (kötőszöveti fehérje) Fibronectinek (sejtfelszíni és plazma fehérjék) Laminin (heteromer glycoprotein) Poly L-lysine (erősen pozitív töltésű polikationos polimer) Poly-L-Ornithin (polikationos poliaminosav) A tenyésztést segítő, a sejttenyésztő oldatokhoz adott szuplementumok: Foetal bovine vagy calf serum Növekedési faktorok Insulin Sub-culturing
Alkalmas sejttípusok Általában bármilyen sejt, bármilyen gazdából a legigényesebbek az izom-és idegsejtek Vérsejtek: a keringési rsz.-be kerülve már nem osztódnak, rövid élettartam Fibroblaszt (kötőszövet): jól szaporodnak, generációs idejük rövid,gyorsan nőnek Epithel (hám): egyszerű dolgozni velük, gyorsan nőnek Embrionális sejtek: jól szaporodnak, kényesebbek Sejtvonalak: már régóta fenntartott sejtek, rengeteg információ, már izolált sejtek (HeLa, HEK, CHO)
Sejtkultúra előállítása Izolálás: szerv kiválasztása sejtciklus, sejtorganellum, sejtkapcsolatok, mozgás alapján, esetleg anyagi és metodikai korlát miatt Konkrét állatmodell mellé in vitro bizonyítékok neonatalis v. adult sejtek,embrionális sejtek, esetleg hibridómák, transzformált sejtek Kezdeti sejtszám, életképesség ideje, növekedés üteme különböző A felnőtt sejtek csak adherens módon képesek növekedni: laminin, vagy kollagén plate, coated-plate (akár recept alapján)
Szövetek szétválasztása sejtekké: emésztőenzimekkel vagy mechanikusan (hőfok, időtartam!), nyírőerő minimalizálása (potter) Mosás, szűrés Sejtek médiumba ágyazása, kezelése Sejtnövesztés inkubátorban Sejtszámolás időről-időre (epetri) Minden típus esetén szükséges a rendszer kititrálása Kevert kultúrák esetén figyelem a fibroblasztokra Passzálás Viabilitási-tesztek Proteomika, fagyasztás-felengedés (DMSO!)
A sejttenyésztő rémálma Befertőződés Kémiai anyagok által (lejárt médium) Biológiai ágensek: baktériumok, gomba (mycoplasmatesztek, alkohol, szájmaszk) Médiumban indikátor: fenolvörös: metabolikus aktivitást jelez a ph változása Fertőzésgyanúnál ki kell dobni a rendszert és mikrobiológiai vizsgálatot kérni Újra kell fertőtleníteni a helyiséget és az eszközöket Autokláv, inkubátor vízcseréje, alkohol Félévente speciális takarítás ajánlott
Szövettenyésztés Sejtek szövetekként történő növesztése egy speciális vázon (scaffold) Célja: pótolni a többé már nem funkcióképes szöveteket, javítani az adott szerv funkcióját Regeneratív medicína-szintetikus biológia-őssejt terápia Fontos az immunrendszer válaszának minimalizálása (graft vs. host) így a legjobbak az autológ sejtek Alkalmaznak allogén sejteket is (immunszupresszió, MHC mutációk) Xenogén sejtek (sertés, anti-inflammációs gének KI-a jövő útja?)
Scaffold Hálózatos polymer, különböző anyagokból készülhet (protein, poliszacharid, polipeptid) Lehetővé teszi a sejtek számára a növekedést, átjárható a tápanyagok számára, ECM képes rajta létrejönni Meg kell tartania a szövet eredeti 3D-s struktúráját Biztosítania kell a sejtek számára megfelelő mikrokörnyezetet Megengedi a sejtek migrációját
Egy ideális scaffold 3D Keresztkötéseket tartalmaz Pórusokat tartalmaz Biológiailag lebontható Megfelelő kémiai körülmények uralkodnak a felszínén Bírja a mechanikai terhelést Biokompatibilis Elősegíti a természetes gyógyulási folyamatokat Hozzáférhető Nagyüzemben gyártható
Leggyakoribb típusok Polymerek Kollagén Laminin Fibrin Decellularizált matrix(szív) Kristályos anyagok Hydroxyapatite Kálcium-foszfát Bioglass
Elkopott porcok helyettesítése Porcsejtek Kollagén váz Nem igényel kiterjedt érhálózatot
Csontnövesztés Őssejtek csontsejtekké történő differenciálódásával A parancs növekedési faktor függő Nem szabad túl nagynak lennie a váznak, különben a sejtek nem kapnak elég oxigént 3D Calcium- scaffold
Bőrnövesztés Kollagén-kitozán, vagy hialuronsav scaffold Egyszerre egyféle sejt, 3 sejtréteg Égési sérülteknél siker
Cukorbetegek ß-sejtjeinek pótlása In vivo Islet of Langerhans in pancreas
Mesterséges véredények By-pass műtéteknél használatos http://popularmechanics.com/popmec h/sci/tech/9805tumdom.html
Szív regenerációja Szívizomsejt, véredények Felnőtt szívizomsejtek tenyésztése nehézkes Természetes scaffold (decellularized matrix) Sokféle sejttípus, bonyolult terület
Lehetőségek májbetegeknek
Organ-on-chip
Eyetex TM system
Implantok használata
Bioprinting Feltaláló: Forgách Gábor (Missouri Egyetem) Hidro-gél alapú vázra élő sejtek felvitele Tintasugaras nyomtatófej juttatja rá a sejteket, több rétegben, körben is (3D) 2 nyomtatófejet használ: sejtek nyomtatása+gélszerű, tápanyagokban gazdag médium adagolása Kalibráció: lézerrel történik, szoftver irányít Véredények by-pass műtétekhez Távolabbi célok : teljes szervek nyomtatása, bőrpótlás, mint rutin kezelés
Köszönöm a figyelmet!!!