VASOXID TARTALMU BOROSZILIKÁT ÜVEGEK VIZSGÁLATA



Hasonló dokumentumok
Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD)

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern fizika laboratórium

Modern Fizika Labor Fizika BSC

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

A fény tulajdonságai

Diffrakciós szerkezetvizsgálati módszerek

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

Műszeres analitika II. (TKBE0532)

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA

JASCO FTIR KIEGÉSZÍTŐK - NE CSAK MÉRJ, LÁSS IS!

Mikroszerkezeti vizsgálatok

XII. Erdélyi Tudományos Diákköri Konferencia Kolozsvár, 2009 május 15-17

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze

ELTE Fizikai Intézet. FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp

Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november

Modern fizika laboratórium

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

Molekulaspektroszkópiai módszerek UV-VIS; IR

Abszorpciós fotometria

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Abszorpciós fotometria

Szerkezetvizsgálat ANYAGMÉRNÖK ALAPKÉPZÉS (BSc)

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja. Archeometriai műhely ELTE TTK 2013.

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Abszorpciós spektrometria összefoglaló

Röntgen-gamma spektrometria

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

Atomfizika. Fizika kurzus Dr. Seres István

Fényhullámhossz és diszperzió mérése

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Röntgensugárzás. Karakterisztikus röntgensugárzás

Az elektromágneses hullámok

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Kvalitatív fázisanalízis

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

1. Röntgensugárzás és méréstechnikája

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

A nanotechnológia mikroszkópja

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

A diffúz reflektancia spektroszkópia (DRS) módszerének alkalmazhatósága talajok ásványos fázisának rutinvizsgálatában

Atomfizika. Fizika kurzus Dr. Seres István

Abszorpció, emlékeztetõ

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia március 18.

Lövedékálló védőmellényekben alkalmazott ballisztikai kerámia azonosítása az atomsíkok közti rácssíktávolságok alapján

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Röntgendiffrakciós fázisanalízis gyakorlat vegyész és környezettudomány Lovas A. György

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Röntgensugárzást alkalmazó fıbb tudományterületek

10. mérés. Fényelhajlási jelenségek vizsgála

Távérzékelés, a jöv ígéretes eszköze

Polimorfia Egy bizonyos szilárd anyag a külső körülmények függvényében különböző belső szerkezettel rendelkezhet. A grafit kristályrácsa A gyémánt kri

Abszolút és relatív aktivitás mérése

Modern Fizika Labor. 21. PET (Pozitron Annihiláció vizsgálata) Fizika BSc. A mérés száma és címe: A mérés dátuma: nov. 15.

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Fény kölcsönhatása az anyaggal:

Röntgensugárzás. Röntgensugárzás

Abszorpciós spektroszkópia

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

LABORATÓRIUMI PIROLÍZIS ÉS A PIROLÍZIS-TERMÉKEK NÉHÁNY JELLEMZŐJÉNEK VIZSGÁLATA

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Abszorpciós fotometria

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Fókuszált ionsugaras megmunkálás

SPEKTROFOTOMETRIAI MÉRÉSEK

Kondenzált anyagok fizikája 1. zárthelyi dolgozat

Fókuszált ionsugaras megmunkálás

Sugárzások kölcsönhatása az anyaggal

NAGYFELBONTÁSÚ REPÜLÉSI IDŐ DIFFRAKTOMÉTER A BUDAPESTI NEUTRON KUTATÓKÖZPONTBAN

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia május 6.

19. A fényelektromos jelenségek vizsgálata

Az Amptek XRF. Exp-1. Experimeter s Kit. Biztonsági útmutatója

Színképelemzés. Romsics Imre április 11.

Röntgendiagnosztikai alapok

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Röntgenanalitikai módszerek I. Összeállította Dr. Madarász János Frissítve 2016 tavaszán

Abszorpciós fotometria

Számítástudományi Tanszék Eszterházy Károly Főiskola.

NAGYFELBONTÁSÚ REPÜLÉSI IDŐ DIFFRAKTOMÉTER A BUDAPESTI NEUTRON KUTATÓKÖZPONTBAN

Folyadékszcintillációs spektroszkópia jegyz könyv

Modern fizika vegyes tesztek

Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek

1. Atomspektroszkópia

Folyékony mikrominták analízise kapacitívan csatolt mikroplazma felhasználásával

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált

4. Szervetlen anyagok atomemissziós színképének meghatározása

Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések

Modern Fizika Labor. 17. Folyadékkristályok

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél

Átírás:

VASOXID TARTALMU BOROSZILIKÁT ÜVEGEK VIZSGÁLATA Bevezetés Az aluminoboroszilikát üvegeknek összetételüktől függően számos felhasználásuk van. Szenzorokat, kórházi eszközöket, laboratóriumi felszereléseket, üvegedényeket gyártanak belőle.[1,2]. Az üveg kristályosodás nélkül szilárdult, túlhűtött folyadékoldat, amelyben fémoxid komponensek vannak feloldva. Az üvegek szerkezete a folyadékok állapotához hasonlóan véletlenszerűen alakul ki az olvadt ömledékből a megszilárdulás pillanatában, azzal a különbséggel, hogy (a folyadékoktól eltérően) a szilárd üveget alkotó atomok hőmozgása gátolt. A folyékony ömledék és az üvegszerűen megszilárduló anyag közötti állapot folytonos, nincs közöttük éles határ: a szilárd kristályos anyagoktól eltérően az üvegeknek nincs határozott olvadáspontjuk, csupán a viszkozitásuk változik (igen széles határok között) hevítés és hűtés hatására [3]. Munkámnak célja az volt, hogy az elkészített üvegmintában milyen egységek (SiO 2, B 2 O 3, Al 2 O 3, stb.), rácsszerkezetek alakulnak ki. Az üveg összetételét azért választottam ki, éppen így mert szerettem volna ha nano méretű magnetit kristályok válnának ki. Ennek érdekében vasat 1:1 arányban adtam minden mintához, viszont változtattam a Si-B arányát a mintákban. Kíváncsi voltam arra, hogy a vas hogyan befolyásolja a különböző arányban levő Si és B összetevők jelenlétében az üveg kristályosodását. Van 3 minta amit a Si-B arány szempontjából vizsgáltam és másik 3 ahol a vas befolyását a kristályosodásra. Mindegyik minta 16 mol % vasat tartalmaz, az első három minta csak Fe 2 O 3 -at tartalmaz, akkor van egy minta ami 8 mol % Fe 2 O 3 és 8 mol % FeO-t tartalmaz, illetve két minta ami csak FeO-t tartalmaz. Összetételtől függetlenül mágneses mérések, UV-Vis, diffrakciós és mikroszkópos vizsgálatok voltak elvégezve az üvegeken. Vizsgálati módszerek Röntgendiffrakciós vizsgálat A röntgensugárzás elhajlásával (diffrakciójával) kapott intenzitásmaximumok térbeli helyzetéből és relatív erősségéből meghatározható az ismeretlen kristályos anyagok kristályszerkezete, illetve az amorf (üvegszerű) anyagok koordinációs viszonyai, rövid távú szerkezete. A rendezetlen szerkezetű anyagok vizsgálatára a röntgenpordiffrakció alkalmas. A diffrakciós mérés akkor pordiffrakciós, ha a besugárzott térrészben nagyszámú, véletlenszerűen orientált kristályrészecske található [4]. A röntgendiffraktométer működési elve A röntgendiffraktométer sugárforrása egy röntgencső. Ebben egy izzó wolfram katódból elektronok lépnek ki, amelyek nagy feszültség hatására a vákuumban felgyorsulnak, és az

anódnak ütköznek. Az ütközés hatására egyrészt egy folytonos spektrumú fékezési sugárzás, másrészt az anód anyagára jellemző, vonalszerű karakterisztikus sugárzás keletkezik, amelynek csúcsa azoknak a röntgenfotonoknak felel meg, amelyek akkor keletkeznek, amikor a katódról érkező elektron által a K héjról kilökött elektron helye az M héjról töltődik be. A K α csúcs az L- ről K-ra való elektronátmenetnek felel meg. Ez a csúcs két nagyon közeli csúcsot tartalmaz, K α1 és K α2 - t, a K héj két elektronállapotának megfelelően. A röntgencsőből kissé divergens nyaláb lép ki, amelyet résekkel korlátoznak. A fókuszáló kör a mintából egy körívet metsz ki, amelynek pontjaiban az adott pontbeli érintővel párhuzamos síkokról reflektálódó nyalábok a résnél találkoznak. A fókuszáló kör által a mintából kimetszett körív (Bragg-reflexió esetén a detektorba jutó intenzitás) akkor a legnagyobb, ha a minta síkja a fókuszáló körre illeszkedik. Forgás közben a detektor begyűjti a különböző szögekben szórt röntgen fotonokat. A mérés során a mintára eső, és a mintáról a detektor irányába szórt nyalábnak a minta felületével bezárt szöge egyenlő marad. Az ilyen felépítésű diffraktométernél a detektorba csak a minta felületével közel párhuzamos rácssíkról reflektálódó sugárzás jut. Mivel porminta esetén a kristályszemcsék véletlenszerű irányítása miatt minden lehetséges rácssík előfordul a minta felületével párhuzamosan, a pordiffraktogramon a kristályszerkezetnek megfelelő összes reflexió megjelenik. Ahhoz, hogy minden egyes rácssík-sereghez a diffraktogram csak egy csúcsa tartozzék, a röntgensugárzást monokromatizálni kell. A röntgencső spektrumából a nemkívánatos részt (közvetlenül a röntgencső után elhelyezett) szűrő és monokromátor segítségével küszöböljük ki. A monokromátor kiszűri a mintáról rugalmatlanul szóródó sugárzást is, ezzel csökkentve a hátteret. A mérések vezérlését és adatok begyűjtését számítógép végzi [5-14]. A röntgen pordiffraktogramok kiértékelése Egy pordiffraktogram kiértékelésénél először is meg kell határoznunk a diffrakciós csúcsokhoz tartozó Bragg-szöget. Egy csúcs pozíciójának meghatározására a mért vonal legnagyobb intenzitású pontjához tartozó szöget, vagy a diffrakciós profilra illesztett analitikus görbe maximumának helyét vesszük, majd a Bragg-egyenlet segítségével (a λ hullámhossz ismeretében) kiszámoljuk a csúcsokhoz tartozó d hkl értékeket. 2d hkl sinθ=λ θ a k 0 és k által bezárt szög fele (Bragg-egyenlet). Az egyenlet megadja, hogy adott λ hullámhosszú röntgensugárzás és d hkl rácssiktávolság esetén a besugárzási irányhoz (k 0 ) képest milyen 2θ szögben kapjuk a szórt sugárzás intenzitásmaximumait. Minta előkészítése a méréshez A mintákat hidraulikus préssel összetörtem, achát mozsárban összemozsaráltam, golyós malom segítségével finom porrá őröltem. A prést, mozsarat, a golyós malom belsejét minden minta után gondosan megtisztítottam, hogy kiküszöböljem a szennyeződéseket. Kvarc mintatartóra aceton

és ragasztóanyag segítségével, az aceton elpárolgása közben rászáradt a finom por. Ezután elvégeztük a méréseket. UV-Vis spektroszkópia A módszer a elektronátmeneteket gerjesztő energiák mérésével foglalkozik ultraibolya (UV) és látható (Vis) tartományban. A gerjesztéshez szükséges energiát valamely adott hullámhosszúságú fény elnyelt fotonjának energiája szolgáltatja. hυ= E=E2-E1= hυ/λ=28635/λ(nm) kcal/mól, ahol h=6,6237 10-27 erg s, c=2,9978 10 10 cm/s A leggyakrabban használt UV-Vis spektrofotométerek mérési tartománya 200-800 nm közötti. A műszert, amellyel a méréseket végeztem UV-Vis spektrofotométernek nevezik. A spektrofotométerbe helyezett (szilárd, folyadék vagy gáz) mintán adott hullámhosszú fény keresztülhalad át, végigpásztázva a mérési tartományt. A spektrofotométer minden egyes hullámhossz tartományban rögzíti a minta fényelnyelésének nagyságát. Az eredmény az UV-Vis spektrum, amely az abszorbanciát a hullámhossz függvényében ábrázolja. A minta maximális elnyelésének megfelelő hullámhossz a minta jellemző paramétere, jelölése λ max [15-19]. A minta előkészítése Az Uv-Vis színképek elkészítéséhez az előzőleg csiszolókorongon levékonyított mintát bőrön tovább vékonyítottam, majd csiszolóporként Cr 2 O 3 -ot használva felfényeztem. Csiszolás és fényezés után a minta vastagsága 0.4-0.7 mm volt. A méréseket Jasco V-650 UV-Vis spektrofotométerrel végeztem a 200-900 nm hullámhossztartományban. Mivel a minták mérete kisebb volt az optikai ablak által megköveteltnél, a méréséhez megfelelő optikai ablakot biztosító, saját készítésű maszkot használtam. Ezután elvégeztem a méréseket. Eredmények kiértékelése Röntgendiffraktogram kiértékelése

R20 (nagyon kevéssé kristályos) 2θ (fok) d (Å) I (a.u.) Ásványfázis 33.42 3.11 67.22 1.62 SiO 2 R21 (kevéssé kristályos) 2θ (fok) d (Å) I (a.u.) Ásványfázis 41.73 2.51 38.75 2.70 hematit R23 (erősen kristályos, a domináns magnetit fázis mellett megjelenik kevés hematit is) 2θ (fok) d (Å) I (a.u.) Ásványfázis 35.00 2.98 25 magnetit 38.75 2.70 19 hematit 41.35 2.53 40 magnetit 50.40 2.10 22 magnetit 62.80 1.72 16 magnetit 63.70 1.70 15 magnetit 67.15 1.62 20 magnetit 74.10 1.48 22 magnetit R24 annak ellenére, hogy a mikroszkóp alatt látszik benne a kristályos fázis, a krisztallitok nagyon kis mérete miatt (nanokristályok) a diffraktogramon nem látható.

Röntgendiffraktogrammok R20 100 intensity [a.u.] 80 60 40 20 0 10 20 30 40 50 60 70 80 90 100 diffraction angle 2θ [ degree ] R21 30 intensity [a.u.] 25 20 15 10 5 0 10 20 30 40 50 60 70 80 90 100 difraction angle 2θ [ degree ] R23

60 55 intensitatea [u.a.] 50 45 40 35 30 25 20 15 10 0 10 20 30 40 50 60 70 80 90 100 unghi de difractie 2θ [ grade ] R24 30 intensity [ a.u.] 25 20 15 10 5 0 10 20 30 40 50 60 70 80 90 100 difraction angle 2θ [ degree ]

UV-Vis spektrumok 5.0 4.8 Abs 4.6 R20 4.4 4.2 4.0 100 200 300 400 500 600 700 800 900 Hullam hossz 5.0 4.8 R21 Abs 4.6 4.4 4.2 4.0 100 200 300 400 500 600 700 800 900 nm

5.0 4.8 R22 4.6 Abs 4.4 4.2 4.0 100 200 300 400 500 600 700 800 900 nm 5.0 4.8 Abs 4.6 R23 4.4 4.2 4.0 100 200 300 400 500 600 700 800 900 nm

5.0 4.8 R24 Abs 4.6 4.4 4.2 4.0 100 200 300 400 500 600 700 800 900 nm Mikroszkópos képek R20 (FeO ~8 mol% + ~Fe 2 O 3 8 mol%, SiO 2 ~33.5 mol%, B 2 O 3 ~33.5 mol%)

R21 (FeO 8 mol% + Fe 2 O 3 8 mol%, SiO 2 35 mol%, B 2 O 3 30 mol%) R22 (FeO 8 mol% + Fe 2 O 3 8 mol%, SiO 2 40 mol%, B 2 O 3 25 mol%)

R23 (Fe 2 O 3 16 mol%) R24 (FeO 16 mol%)

Mágneses szuszceptibilitás eredményeinek táblázata Üvegtípus - Θp CM µeff xfe3+ xfe2+ R20 5 0.8819 5.49 0,48 0,52 R21 6 0.8897 5.44 0,56 0,44 R22 7 0.8784 5.41 0,54 0,46 R23 12 1.3307 5.76 0,62 0,38 R24 13.5 0.5413 5.2 0,42 0,58 Az üvegminták összetételének táblázata Üvegtípus Komponensek (mol%) SiO2 B2O3 Na2O Al2O3 Fe2O3 FeO R20 32,4 34,4 14 3,7 7,8 7.8 R21 35,0 30,0 15 4,0 8,0 8,0 R22 40,0 25,0 15 4,0 8,0 8,0 R23 40,0 25,0 15 4,0 16,0 - R24 40,0 25,0 15 4,0-16,0

A mágneses szuszceptibilités mérések és az UV-Vis mérések igazolták az üveg mágnesességét, 1:1 arányban van jelen a Fe 2+ és Fe 3+ ion a mintában. Van különbség a kristályosodásban az R20 és R23, nagy külőnbség van, pedig a vas oxid aránya ugyanolyan. Az R20 szinte teljesen üveg, kevés kristályos fázis található, a mikroszkópos mérések igazolták csupán a kristályok létezését. Az R23 as minta kristályos, magnetit kristályok találhatóak benne. Mérete mikron nagyságú. Az R24 es mintában nano kristályoktalálhatóak amelyet a mikroszkóp bizonyított be. Bibliográfia 1. http://www.alibaba.com/showroom/borosilicate_glass.html? src=google&albch=google&albcp=search_minerals-metals- Materials&albkw=Borosilicate-Glass_None&albag=Product_Non-metallic-Mineral- Products_Borosilicate-Glass_None&albmt=exact&albst=Search 2. http://www.finemech.com/glassware.shtml? gclid=ckncvos37picfrjhzwoduxl6bg 3. http://hu.wikipedia.org/wiki/%c3%9cveg 4. http://szft.elte.hu/~gubicza/szilfizjegyzet/rontgendiffrakcio.pdf, Gubicza Jenő, Zsoldos Lehel Röntgendifrakció 5. Ch. Kittel: Bevezetés a szilárdestfizikába, Műszaki Könyvkiadó, Budapest, 1981. 6. J. M. Schultz: Az anyagvizsgálat diffrakciós módszerei, Műszaki Könyvkiadó, Budapest, 1987. 7. B. E. Warren: X-ray diffraction, Dover Publications, New York, 1990. 8. http://www.icdd.com (The International Centre for Diffraction Data). 9. http://www.ccp14.ac.uk/solution/indexing/index.html (Methods, Problems and Solutions for Powder Diffraction Indexing). 10. J. I. Langford, D. Louer: Rep. Prog. Phys. 59 (1966) 131. 11. A. Taylor: X-ray metallography, John Wiley and Sons, New York, 1961. 12. D. M. Pool, H. J. Axon: J. Inst. Met. 80 (1952) 599.

13. J. I. Langford, D. Louer, P. Scardi: J. Appl. Cryst. 33 (2000) 964. 14. http://www.ccp14.ac.uk/ccp/webb-mirrors/lmgp-laugierr-bochu 15. Darvasi Jenő Analitikai Mérőműszerek és Mérési Módszerek a Modern UV-Vis Spektrometriában Kolozsvári Egyetemi Kiadó Kolozsvár,2006 16. Cordoş E., Frenţiu T., Ponta M., Darvasi E., Analiza prin spectrometrie de absorbţie moleculară în ultraviolet-vizibil, Institutul Naţional de Optoelectronică, Bucureşti, 2001 17. Kékedy L., Műszeres analitikai kémia. Válogatott fejezetek. Erdélyi Múzeum-Egyesület, Kolozsvár,1995 18. Kovács K. A fény elméletben és gyakorlatban. Dacia könyvkiadó, Kolozsvár, 1985 19. Owen T. Fundamentals of Modern UV-Visible Spectroscopy. Hewlett Packard, 1996