Molekulaspektroszkópiai módszerek UV-VIS; IR
|
|
- Erika Sipos
- 9 évvel ezelőtt
- Látták:
Átírás
1 Molekulaspektroszkópiai módszerek UV-VIS; IR
2 Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek Molekulaspektroszkópiai módszerek Atomspektroszkópiai módszerek Molekulaspektroszkópiai módszerek Elementáris összetétel Molekuláris összetétel
3 Az elektromágneses sugárzás természete Elektromágneses sugárzás olyan energia, amely a térben nagy sebességgel terjed legközismertebb megjelenési formája a fény és a sugárzó hő kevésbé közismert változatai a - és Röntgen sugarak, az ultraibolya, a mikrohullámú és a rádiófrekvenciás sugárzás Analitikai kémia által alkalmazott spektroszkópiai módszerek UV, VIS, IR tartományt használják leggyakrabban elemzésre Röntgensugárzást: pl.: a szerves kémiában, a szerkezetkutatásban pl. fehérje-térszerkezet meghatározása
4 Maggerjesztések Ionizáció Elektrongerjesztés Molekularezgések gerjesztése Molekulákforgásának gerjesztése Magspingerjesztés A különféle energiájú és hullámhosszúságú elektromágneses sugarak sorozata az elektromágneses spektrum.
5 Az elektromágneses sugárzás főbb spektrális tartományai és az energia-átmenetek típusai
6
7 Az elektromágneses sugárzás természete Az elektromágneses sugárzás nagyon sokféle módon léphet kölcsönhatásba az anyaggal, Spektroszkópiai módszerek, amelyek az elektromágneses sugárzás előállításával alkalmazásával mérésével foglalkoznak.
8 Az elektromágneses sugárzás természete A fényt egyszerre jellemzik hullám és részecskesajátságok A sugárzás terjedésének sebessége: v = A sugárzás frekvenciája (a kibocsátó forrás határozza meg) változatlan A sebesség a közeg anyagi minőségétől függ Vákuumban az elektromágneses sugárzás terjedési sebessége (c) maximális Levegőben c = = 3.00 x 10 8 m/s = 3.00 x cm/s Ha az elektromágneses sugárzás vákuumból egy másik közegbe lép, a sebessége csökken, frekvenciája változatlan marad
9 ~ ~ Az elektromágneses sugárzás természete Einstein-féle ekvivalencia elv szerint a foton energiája E foton h Ahol h: Planck állandó: 6, Js c h az elektromágneses sugárzásban hullámként terjedő energia más részecskéknek, testeknek átadható a fotonnak az energiáját energiakvantumnak vagy kvantumnak nevezzük
10 A fényenergia és az anyag kölcsönhatása A fényenergia és az anyag kölcsönhatása során az energia felvétel a sugárzás hullámhosszától függően okoz változást az anyagban. Az anyagok belső energiaváltozása kvantált. E = E foton
11 Fény és anyag kölcsönhatása A molekula teljes energiaváltozása, az elektromágneses sugárzásból felvett teljes energia nagysága : E = E elektron + E rezgési + E forgási A háromféle típusú energiaváltozás mértéke között nagyságrendi eltérések vannak: E elektron 10 E rezgési 100 E forgás
12 Fény és anyag kölcsönhatása A kvantumelmélet kimondja, hogy az atomok és molekulák belső energiái csak meghatározott diszkrét értékek lehetnek, így a felvett és leadott fotonok energiája is csak valamilyen diszkrét értéket vehet fel. E foton E Így a kibocsátott foton energiája a kibocsátó részecske energiaszintjei közötti különbség, ill. a felvett foton energiája a részecske két energiaszintje közötti különbséget lehet. Egy adott elektromágneses sugárzás hullámhosszából az anyagi minőségre, 2 E a fotonok számából (fény intenzitás) pedig a kölcsönhatásban résztvevő részecskék számára, azaz a koncentrációra lehet következtetni 1
13 Fény és anyag kölcsönhatása Spektrum: az anyagi minőségre jellemző elnyelt (vagy kibocsátott) különböző intenzitású és hullámhosszú fénysugarak sorozata Ha a molekulát mikrohullám vagy távoli infravörös hullám éri csak a rotációs energia átmenetekben történik változás, a molekulaspektrum vonalas lesz analitikai, közeli analitikai sugárzás éri rotációs és vibrációs energia átmenetek történnek, ekkor a molekulaspektrum sávos lesz látható, ultraibolya spektrumtartomány éri elektronenergia átmenetek gerjesztődnek, e mellett a vibrációs és a rotációs szinteken is történik változás. A molekulaspektrum folytonos lesz Atomok abszorpciója (UV-VIS)
14 Színkép folytonos vonalas, fotografált sávos vonalas, regisztrált
15 Színképelemzés készülékei és röntgen tartomány optikai (UV-VIS) tartomány EMISSZIÓ optikai (UV-VIS) tartomány ABSZORPCIÓ infravörös Spektrométer Spektroszkóp Spektrográf Spektrométer Koloriméter Fotométer Spektrofotométer Spektrofotométer
16 Az abszorpciós spektrum maximuma a molekula szerkezetére, minőségére Intenzitása a mennyiségére utal. infravörös sugárzással kapcsolatos mérések az anyagi minőség meghatározására alkalmas módszerek UV, illetve VIS sugárzással kölcsönhatásba hozva, mennyiségi meghatározások végezhetők + Probléma: az oldószernek, küvetta falának is lehet fényelnyelése UV-VIS tartományban: víz, metanol, hexán, stb. gyakorlatilag nem abszorbeálnak IR tartományban: leginkább a (szén-tetrakloridot) és széndiszulfidot alkalmazzák.
17 I 0 Fényelnyelés törvényei I A I T I R I 0 = I A + I T + I R I 0 : beeső fény intenzitása I A : az elnyelt fény intenzitása I T : az áteresztett fény intenzitása I R : visszavert fény intenzitása Transzmittancia (áteresztési tényező): az áteresztett fény intenzitásának és a beeső fény intenzitásának hányadosa I T I 0 ahol: T = T% = 100 Abszorpció (fényelnyelési tényező): az anyag által elnyelt fény intenzitásának és a beeső fény intenzitásának hányadosa A = T + A = 1 Az anyag rétegvastagságának növekedésével az áteresztett fénysugár intenzitása nem egyenes arányban hanem exponenciálisa csökken. Ezért a transzmittancia tízes alapú negatív logaritmusát képezzük, ami már egyenes arányossággal változik a rétegvastagsággal, amit abszorbanciának [A] vagy régebbi nevén extinkciónak [E]nevezünk. I T I 0 I A I 0
18 Fényelnyelés törvényei 1 0 A lgt lg lg T I T Lambert-Beer törvény (híg oldatokra) I A lg I 0 c l I ahol: A: abszorbancia (más néven extinkció) I 0, I: a beeső és a kimenő fény intenzitása, ε: a moláris abszorpciós koefficiens (dm 3 /mol cm), c: a molkoncentráció (mol/dm 3 ), l: a rétegvastagság (cm), azaz a fénysugár mintában megtett úthossza
19 UV, VIS, IR Fotometria, spektrofotometria Mintán (oldatokon) keresztülhaladó fénysugarak elnyelődésének mértékével foglalkozik egy meghatározott hullámhosszúságra adjuk meg a jellemző fizikai mennyiségeket Spektrofotometria: a spektrálisan felbontott sugárzás intenzitásának mérésével foglalkozik A spektrokémiai analitikai módszerek az anyag által kibocsátott elektromágneses sugárzás intenzitásnak mérésén emissziós módszerek az anyag és elektromágneses sugárzás kölcsönhatása során jelentkező abszorpció mérésén alapulnak abszorpciós módszerek
20 Spektrofotometria Spektrofotométer: az abszorpciós spektrofotometriában felhasznált készülékek Fő részei fényforrás fényfelbontó egység, rés mintatartó érzékelő adatgyűjtő és feldolgozó egység
21 UV-VIS Spektrofotometria Fényforrás ultraibolya tartományban kisfeszültségű hidrogén vagy deutérium lámpa látható tartományban wolfrám szálas vagy wolfrám-halogén izzólámpa a fényforrással szembeni követelmény a mérés alatt állandó intenzitású spektrumot adjon az adott hullámhossz tartományban Fényfelbontó egység a fényforrás spektrumát monokromatikus nyalábokra bontja a monokromátor fő része a prizma vagy a rács lencsék és a tükrök, A prizma az UV tartományban kvarcból, a VIS tartományban üvegből készült Az optikai rácsok a fényáteresztők, a reflexiósok, stb. csoportjába sorolhatók. Gyakran alkalmazzák az ún. Échlette reflexiós rácsot, (előnye a kicsi fényveszteség)
22 UV-VIS Spektrofotometria Mintatartó UV tartományban kvarc VIS tartományban üveg A küvetták a rétegvastagságban is különbözhetnek egymástól. (1 cm-eseket használják ált., az 5 cm-es vastagságúak ált. gázküvetták) Érzékelő (detektor) a fényintenzitás mérésére alkalmasak Fotocellák (a) Fotoelektronsokszorozók (b) Fényelemek Fotodiódák
23 I. (a) SPEKTROFOTOMETRIA 1 1 fényforrás (a) SPEKTROFOTOMETRIA 2 mono- kromátor Deutérium lámpa Volframszálas lámpa MINTA MŰSZER detektor UV tartomány ( nm) VIS tartomány ( nm) jelfeldolgozó 2 kevert (polikromatikus) fényt felbontja hullámhossz szerint Részei : belépő rés gyűjtő lencse fényfelbontó prizma gyűjtő lencse kilépő rés tükör rács tükör fénytörésen alapul interferencián alapul A prizma, vagy rács forgatásával a kilépő résen csak λ 1, v. λ 2, v. λ 3 hullámhosszú fény jön ki.
24 I. (a) SPEKTROFOTOMETRIA 1 fényforrás 2 monokromátor MŰSZER SPEKTROFOTOMETRIA 3 Összehasonlító oldat MINTA SPEKTROFOTOMÉTEREK TÍPUSAI : 4 5 detektor jelfeldolgozó fotocsővel (a) Egyfényutas (egysugármenetes) spektofotométerek : Ref. Minta A ref A össz (b) Kétfényutas (kétsugármenetes) spektofotométerek : tükör Ref. Minta
25 I. MOLEKULASPEKTROSZKÓPIA (b) (Emissziós) FLUORESZCENCIA MŰSZER 3 MINTA monokromátor detektor jelfeldolgozó monokromátor fényforrás xenon lámpa Két monokromátor : 1. monokromátor : - különböző hullámhosszúságú fénnyel gerjesztünk - a gerjesztő fényre merőleges irányban emittált fényt a 2. monokromátor : - hullámhossz szerint szétválasztja. fluoreszcenciás spektrum
26 Infravörös (IR) spektroszkópia Vegyületek rezgéseinek gerjesztésén alapul Abszorpció feltétele: 1. sugárzás frekvenciája = a molekula rezgési frekvenciája (rezgés amplitúdója megnő) 2. az adott rezgés során dipólusmomentum változás következzen be. (dipólusmomentum: két töltés különbségétől és a két töltés központjának távolságától függ).
27 Rezgési módok: Vegyértékszög változik meg Kötéstávolság változik meg szimmetrikus asszimmetrikus ollózó kaszáló bólogató torziós IR IR IR IR IR IR Vegyértékrezgések Deformációs rezgések A szerves vegyületekben előforduló CH 2 csoport jellemző rezgési átmenetei A szimmetrikus vegyértékrezgés nem IR aktív, mert a rezgés során nem lép fel dipólusmomentum (polarizáció) változás.
28 Az IR sugárzás tartományai Közeli infravörös tartomány (NIR = Near Infrared, cm -1 ): ebben a tartományban főképp a felhangok és a kombinációs sávok jelennek meg Analitikai infravörös tartomány ( cm -1 ): vegyérték és deformációs rezgések tartománya. - Ujjlenyomat tartomány (deformációs rezgések) ( cm -1 ): adott vegyületre jellemző és egyedi. - Vegyértékrezgések tartománya ( cm -1 ): Jellegzetes csoportok rezgései találhatók meg itt. Ez a tartomány így nem a vegyületre, hanem a bennük található csoportokra karakterisztikus Távoli infravörös tartomány (FIR = Far Infrared, cm -1 ): nehézatomok vegyérték- és deformációs rezgései, torziós rezgések, kristályrács rezgései, némely forgási átmenet.
29 Ujjlenyomat tartomány: A molekula teljes vázszerkezetére jellemző elnyelési sávok. Segítségével a molekulák azonosíthatók. Spektrumkönyvtárak kialakítása.
30 Infravörös (IR) fotométer felépítése és jellegzetességei Probléma: UV és VIS tartományban használt detektorok és fényfelbontó egységek nehezen vagy egyáltalán nem alkalmazhatók. Speciális detektorok alkalmazása és rács/prizma helyett interferométer és Fourier-transzformációs kiértékelés (FTIR) A spektrumot két lépésben kapjuk első lépés egy ún. interferogram felvétele második lépésben ezt az interferogramot alakítjuk át energiaspektrummá Fourier-transzformációval. Optikai elemeik: kősóból, lítium-fluoridból, kálium-bromidból Sugárforrás: színterelt, C-ra hevített szilicium-karbid rúd (Globar izzó) használható széles hullámhossz-tartományban. Használatos még a Nernst izzó (cirkónium-, ittrium- és erbium oxid) Érzékelő: pl. termoelem
31 Infravörös (IR) spektroszkópia alkalmazásai Vegyület azonosítása spektrumkönyvtárak alapján (ujjlenyomat spektrum segítségével). Minőségi azonosítás, szerkezet meghatározás. Mennyiségi meghatározás szilárd és gázfázisú mintából. Légszennyezés mérés (szerves gőzök, akár 1 ppm nagyságrendben), légszennyező gázok (SO 2, CO, CO 2, NH 3 ) mérése Teljes funkciós csoport analízis. IR spektrométer + mikroszkóp (pl. szövetek vizsgálata, törvényszéki analitika). Biomolekulák (pl. fehérjék) másodlagos szerkezetének vizsgálata. Ipari alkalmazások: műanyagok azonosítása, faanyagok fizikai/kémiai paramétereinek vizsgálata. Kőolaj, fenol szennyezések
32 Köszönöm a figyelmet!
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
A fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
Abszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
Abszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind
Abszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés A spektroszkópia, spektrofotometria az egyik legelterjedtebb anyagvizsgálati módszer. Az igen sokféle mérési technika közös alapja az, hogy az anyagok molekuláris,-
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Abszorpciós fotometria
2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,
Az infravörös (IR) sugárzás. (Wikipédia)
FT-IR spektroszkópia Az infravörös (IR) sugárzás (Wikipédia) Termografikus kamera (Wikipédia) Termografikus fényképek (Wikipédia) Termografikus fényképek (Wikipédia) IR spektroszkópia Tartomány: 10-12800
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel A gyakorlat célja: Megismerkedni az UV-látható spektrofotometria elvével, alkalmazásával a kationok, anionok analízisére.
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), első kérdésünk valószínűleg az lesz, hogy mi ez az anyag, milyen
Abszorpciós fotometria
A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Az infravörös spektroszkópia elméleti és méréstechnikai alapjai http://hu.wikipedia.org/wiki/infravörös_spektroszkópia
Az infravörös spektroszkópia elméleti és méréstechnikai alapjai http://hu.wikipedia.org/wiki/infravörös_spektroszkópia 1. Az infravörös spektroszkópia spektrális tartományai és a vizsgálható molekuláris
Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.
Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,
Infravörös, spektroszkópia
Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény
KÖNYEZETI ANALITIKA BEUGRÓK I.
KÖNYEZETI ANALITIKA BEUGRÓK I. 1.Mit nevezünk egy mérőműszert illetően jelnek és zajnak? jel az, amit a műszer mutat, amikor a meghatározandó komponenst mérjük vele zaj az, amit a műszer akkor mutat, amikor
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Spektroanalitikai módszerek
Bevezetés Az anyag és EM sugárzás kölcsönhatását a spektroszkópiai (spektrokémiai, spektrometriai, stb.) módszerek vizsgálják. Hagyományosan a spektroszkópia kó azanyag(minta) általl elnyelt l vagy kibocsátott
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
SPF UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Szalicilsav meghatározása egy vizes
Színképelemzés. Romsics Imre 2014. április 11.
Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2019.03.11. mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele különböző ph-jú
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás Módosított változat
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2018.03.19. Módosított változat mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele
Fény, mint elektromágneses hullám, geometriai optika
Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző
2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN
1 2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN 01/2005:20224 Az infravörös spektrofotométereket a 4000 650 cm -1 (2,5 15,4 µm) közti, illetve néhány esetben egészen a 200 cm
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Foszfátionok meghatározása vizes
Spektrokémiai módszerek
Spektrokémiai módszerek Az anyag és az elektromágneses sugárzás közötti kölcsönhatáson alapuló analitikai kémia módszerek összessége Fényelnyelés abszorpció Fénykibocsátás - emisszió Elektromágneses sugárzás
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás
A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)
OPTIKA. Vozáry Eszter November
OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 6. előadás Egyéb molekulaspektroszkópiai módszerek: turbidimetria, nefelometria, polarimetria, refraktometria, luminescencia Dr. Andrási Melinda Debreceni Egyetem Természettudományi
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
Spektrokémiai módszerek
Spektrokémiai módszerek Az anyag és az elektromágneses sugárzás közötti kölcsönhatáson alapuló analitikai kémia módszerek összessége Fényelnyelés abszorpció Fénykibocsátás - emisszió Elektromágneses sugárzás
Infravörös spektroszkópiai analitikai módszerek
Infravörös spektroszkópiai analitikai módszerek Kémiai elemzések (min. és menny.) általános módszere: Jelképző folyamat keresése M(inta) + R(eagens) (kölcsönhatás, reakció) M(inta) + R(eagens) változás(ok)
2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása
Spektroszkópiai mérések. Fizikus MSc. Alkalmazott fizikus szakirány Környezettudományi MSc, Környezetfizika szakirány 2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása 1. Elméleti
2. ZH IV I.
Fizikai kémia 2. ZH IV. kérdések 2018-19. I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me=
Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek
A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsga kérdései a 4. Szakmai követelmények fejezetben megadott modulhoz tartozó témakörök mindegyikét tartalmazzák. Amennyiben a tétel kidolgozásához
Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD)
Röntgenanalitika Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD) A röntgensugárzás Felfedezése (1895, W. K. Röntgen, katódsugárcső,
FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
A környezetvédelem analitikája SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása.
Az elektromágneses spektrum és a lézer
Az elektromágneses spektrum és a lézer A fény Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2010. szeptember Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm
Koherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok
Newton kísérletei a fehér fénnyel. Sir Isaac Newton ( )
Newton kísérletei a fehér fénnyel Sir Isaac Newton (1642 1727) Az infravörös sugárzás felfedezése 1781: Herschel felfedezi az Uránuszt 1800: Felfedezi az infravörös sugárzást Sir William Herschel (1738
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet
Fény kölcsönhatása az anyaggal:
Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
Spektroszkópia. Atomspektroszkópia. Atomabszorpciós spektroszkópia(aas) abszorpció emisszió szóródás Beer Lambert törvény.
Könyezet minősítése gyakrolat segédanyag 1 Könyezet minősítése gyakrolat segédanyag 2 Spektroszkópia Alapfogalmak Atomabszorpciós spektroszkópia(aas) abszorpció emisszió szóródás Beer Lambert törvény Atomspektroszkópia
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós
Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Kamarás Katalin. Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia
Bevezetés Fourier-transzformációs infravörös spektroszkópia Kamarás Katalin MTA Szilárdtestfizikai Kutató Intézet Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia
Környezet diagnosztika fizikai módszerei-4; Lambert-Beer törvény; PTE FI-10; dr. Német Béla
A szabad atomok fényelnyelése. Lambert-Beer törvény http://www.tankonyvtar.hu/kemia/atomabszorpcios-080904-8 http://hu.wikipedia.org/wiki/lambert Beer-törvény Története A törvényt Pierre Bouguer ismerte
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
12. Infravörös spektroszkópia
12. Infravörös spektroszkópia Czirók András 2013. április Tartalomjegyzék 1. Bevezetés 2 2. A kétutas spektrométer működési elve 3 2.1. A berendezés fényútja............................ 3 2.2. Fényforrás...................................
Távérzékelés, a jöv ígéretes eszköze
Távérzékelés, a jöv ígéretes eszköze Ritvayné Szomolányi Mária Frombach Gabriella VITUKI CONSULT Zrt. A távérzékelés segítségével: különböz6 magasságból, tetsz6leges id6ben és a kívánt hullámhossz tartományokban
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Felhevített tárgyak több száz fokos hőmérsékletet elérve először vörösen majd még magasabb hőmérsékleten sárgán izzanak, tehát fényt (elektromágneses hullámokat a látható tartományban)
ATOMEMISSZIÓS SPEKTROSZKÓPIA
ATOMEMISSZIÓS SPEKTROSZKÓPIA Elvi jellemzők, amelyek meghatározzák a készülék felépítését magas hőmérsékletű fényforrás (elsősorban plazma, szikra, stb.) kis méretű sugárforrás (az önabszorpció csökkentése
Koherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel *Ritz Ferenc A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre,
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Szójabab és búza csírázási folyamatainak összehasonlítása NIR spektrumok segítségével
Szójabab és búza csírázási folyamatainak összehasonlítása NIR spektrumok segítségével Bartalné Berceli Mónika BME VBK ABÉT NIR Klub, Budapesti Corvinus Egyetem, 2015. október 6. 2. Búza összetétele (sz.a.)
Speciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
UV-VIS spektrofotometriás tartomány. Analitikai célokra: nm
UV-VIS spektrofotometriás tartomány nalitikai célokra: 00-800 nm Elektron átmenetek és az atomok spektruma E h h c Molekulák elektron átmenetei és UVlátható spektruma Elektron átmenetek formaldehidben
Tantárgy neve. Környezetfizika. Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0
Tantárgy neve Környezetfizika Tantárgy kódja FIB2402 Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Dr. Varga
Sugárzások kölcsönhatása az anyaggal
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő
1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor
A fény és az anyag kölcsönhatása
A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és
Az infravörös spektroszkópia analitikai alkalmazása
Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai
Terahertz spektroszkópiai mérések
0 Terahertz spektroszkópiai mérések Orvos és gyógyszerész hallgatóknak szerző: Dr. Orbán József oktatási intézmény: Pécsi Tudományegyetem Általános Orvosi Kar Biofizikai Intézet kutatóhely: MTA TKI Nagy
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá