SPEKTROFOTOMETRIAI MÉRÉSEK
|
|
- Artúr Dávid Takács
- 9 évvel ezelőtt
- Látták:
Átírás
1 SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), első kérdésünk valószínűleg az lesz, hogy mi ez az anyag, milyen összetevők alkotják. Ha használni, előállítani, biztonságosan kezelni akarjuk, a következő fontos kérdés, hogy mennyi van az egyes komponensekből, mennyi az összetevők koncentrációja. E két egyszerű kérdés megválaszolására az elmúlt kb 300 év alatt egy igen gazdag tudományterület, az analitikai kémia fejlődött ki. Jóllehet, egy leendő villamosmérnök számára ez mérsékelten izgalmas szellemi kaland, azt mindenképpen hasznos tudnunk, hogy a fenti kérdésekre milyen jellegű választ kaphatunk, hogyan kérdezzünk, hogy ők a kérdést, mi a választ használni tudjuk. Ezen kívül a gyakorlat során megismerkedhetünk egy optikai elven működő műszer használatával, fő funkcionális egységeivel. A spektroszkópia, spektrofotometria az egyik legelterjedtebb anyagvizsgálati módszer. Az igen sokféle technikai megoldás közös alapja az, hogy az anyagok atomi- molekuláris szintű energia-átmenetei kvantáltak és ezek az energiaszintek jellemzőek az adott anyagra. Az egyes energia-átmenetekhez meghatározott hullámhosszak tartoznak a E=hν=hc/λ összefüggés alapján. Az 1. ábrán a H atom lehetséges energia-átmenetei láthatók. Ezek közül az un. Balmer sorozat tartozik a látható tartományba, a nagyobb energiájú UV, a kisebb infrasugárzás. Mint az már ismert, a színképelemzés két alapváltozata az emissziós és az abszorpciós fotometria. Legegyszerűbbek és legelterjedtebbek a látható fénnyel történő mérések, de a szerves molekulák vizsgálatára az infravörös tartományba eső rezgési színképeket használják, és nagyon sok módszer van, amely a belső pályán lévő elektronok UV vagy RTG szinthez tartozó átmeneteit használja mérésre. Az anyagok spektroszkópiai szempontból fontos tulajdonsága a színük, amely szoros összefüggésben van molekula-szerkezetükkel. Színesnek akkor nevezünk egy anyagot, ha a ráeső fényből szelektíven abszorbeál, vagy szelektíven ver vissza. Ha pl. valamely anyag a fehér fényből a vöröset nyeli el, akkor a többi spektrumszín keverékét, vagyis a zöldet engedi át vagy veri vissza. (A zöld a vörös kiegészítő színe.) Lehetséges az is, hogy az anyag az ultraibolya vagy az infravörös tartományban abszorbeál, ezt szemünk nem érzékeli, az ilyen anyagokat színtelennek látjuk. 1. ábra A H atom energiaszintjei és a lehetséges átmenetek Lényeges a különbség a gázhalmazállapotú minták és az un. kondenzált fázisok (folyadék és szilárd állapot) között. Szabadon levő atomok, molekulák esetében (azaz gáz halmazállapotban) az eddig bemutatott kép igaz, a gerjesztő energia néhány diszkrét érték lehet (az elemek energiaszintjei határozott értékek, és minden 1
2 kémiailag azonos atomé teljesen megegyezik) ennek következtében az elnyelt (kibocsátott) fény is csak a megfelelő hullámhosszúságú lehet. Ezért a gázok abszorpciós spektruma vonalas. Kondenzált rendszerekben, így oldatokban is a közvetlen környezet, az erős kölcsönhatás a szomszédokkal azt eredményezi, hogy az energiaszint-rendszer zavart szenved, torzul. Minden egyes atomnak egy kicsit más az aktuális szomszédsága, ezért az energiaszint-rendszere is egy kicsivel eltér a többitől, statisztikusan ennek az a következménye, hogy energiasávok alakulnak ki. Ezért az elnyelt (kibocsátott) fény is egy hullámhosszsávra terjed ki. Az abszorpciós sáv szélessége és helye is befolyásolható a szomszédos idegen molekulákkal.az oldószer szolvát burka (vizes oldatban hidrát burka) jelentősen eltolhatja az abszorpciós sáv helyzetét. Pl a jód ibolya színnel oldódik azokban az oldószerekben, amelyekben nem szolvatálódik, és barna vagy sárga színű, ha igen. Másik példa a réz ion: hidratáltan kék, vízmentes környezetben színtelen. Színes oldatok fényabszorpciója : Az oldatban az oldott ionok vagy molekulák kölcsönhatásba lépnek a megvilágító fény fotonjaival, s azokból energiát nyelnek el. A molekulák energiafelvétele a fényintenzitás csökkenését vonja maga után. Az, hogy milyen hullámhossz-sávokban történik meg az elnyelés (milyen az oldaton átengedett fény spektrális összetétele) az oldat anyagi minőségétől, intenzitása pedig a koncentrációtól, az átvilágított réteg vastagságától és természetesen az anyagi minőségtől függ (Bouguer - Lambert -Beer törvény) I = I 10 0 α cl ahol : I I 0 az átengedett fény intenzitása; a belépő fény intenzitása; c az oldat koncentrációja, (mól/ l) ; l a rétegvastagság (az edény szélessége); α a moláris abszorpciós (extinkciós) koefficiens (függ az anyagi minőségtől, valamint a hőmérséklettől, nyomástól és a megvilágító fény hullámhosszától). Vezessük be a lg (I 0 /I) = A (abszorbancia, régebben extinkció) fogalmát: A = α l c. α a definíció értelmében megegyezik annak a rétegvastagságnak a reciprok értékével, amelyen áthaladva a fényintenzitás eredeti értékének tizedére csökken. Azok az anyagok, melyeknek az abszorpciós koefficiense a színkép látható részében (380 és 780 nm között) állandó, színtelenek (fehérek, szürkék vagy feketék), azok viszont, amelyek abszorpciós koefficiense a láthatón belül különböző hullámhosszon más és más - vagyis szelektíven abszorbeál - színesek. Az I / I 0 hányadost áteresztésnek (transzmittanciának) nevezzük. Ennek értéke 0 és 1 (vagyis 0 és 100% transzmisszió) között változhat. A százalékban mért áteresztés negatív logaritmusa az abszorpció A= - lgt ill. 100 I/I 0 = T% 2
3 Spektrofotométerek általános felépítése Az általunk használt műszerek egy fényutasak. Ezek blokkvázlata az alábbi A fényforrás általában halogénlámpa, amellyel megfelelő stabilitású, folytonos sugárzást lehet előállítani a látható és IR tartományban. Az UV-ben is működő spektrofotométerekben még egy deutérium-lámpa is van, amely kb 200 és 450 nm között szolgáltat folytonos sugárzást. A fényt felbontó elem vagy monokromátor feladata, hogy a folytonos sugárzásból kiválaszthassunk egy hullámhosszt (egy szűk sávot), amely a mintánk elnyelési sávjába esik, hiszen a spektrum összes többi hullámhossza csak fölösleges zaj a detektor számára. Monokromatikus fény előállításának több módja lehet - prizmás monokromátorral (pl. Spektromom 195) a prizma a fehér fényt elemeire bontja, a prizma kismértékű forgatásával elérhetjük, hogy a kívánt hullámhosszúságú fény jusson ki a kilépő résen. - interferenciaszűrővel üvegre párologtatott vékony dielektrikumréteg-rendszer, amelyen a rétegvastagságtól függő interferencia következtében szűk hullámhossztartományra van áteresztés a többi visszaverődik. - optikai ráccsal az optikai rácsról visszaverődő fénysugarak interferenciájának következtében minden hullámhosszra más szögben lesz erősítés, így a prizmához hasonló színfelbontást kapunk. A különbség annyi, hogy a ráccsal előállított spektrum egyenletes lépésközű, míg a prízmánál a felbontás a kék tartomány felé nagyobb, a vörös felé kisebb. A kiválasztott hullámhosszúságú fényt itt is a rács elfordításával juttathatjuk a kilépő résre. (Pl. egészen jó optikai rács a CD ) A monokromatikus fény a kilépő rés után a mérendő oldattal töltött küvettán halad keresztül. A küvetta igen tiszta üvegből (az UV-ban használt kvarcüvegből) készült, pontosan párhuzamosra csiszolt falú edény, amelyben a fényút is pontosan adott, általában 1,000 cm. A fotodetektor többféle megoldású lehet (leggyakrabban félvezető fotodióda, ritkábban fotocella). Bármelyikre igaz, hogy spektrális érzékenysége nem állandó. (Ez az egyik ok, amiért minden hullámhosszon újra kell állítani a nulla pontot.) A szélesebb hullámhossz-tartományban dolgozó készülékekben két fotodetektort is használhatnak, egyik az UV és a látható alsó fele, másik a látható hosszabb hullámhosszú tartománya és esetleg a közeli IR érzékelésére. A félvezető fotodetektorok olcsóbbá válása tette lehetővé egy új spektrofotométer típus kialakítását. Ebben egy (jellemzően 512 elemből álló) diódasor érzékeli a kilépő fényt, amely az un. polikromátorból érkezik. Azaz a rács / prizma felbontja a fényt, de nem kell kiválasztani egy hullámhosszt, hanem a diódasor, és a hozzá kapcsolt elektronika egyszerre elemezheti a teljes áteresztési spektrumot. 3
4 Mérési elvek A Lambert-Beer törvény alapján, ha ismerjük az extinkciós koefficienst, elvileg közvetlen koncentrációmérést is végezhetnénk, azonban ehhez minden paraméter pontos (hiteles) mérése lenne szükséges. Ezért gyakorlatilag csak összehasonlító módszerrel szoktak a spektrofotometriában mérni. 1. Az első lépés az, hogy beállítjuk a használt hullámhosszt. Ez az, ahol a mérendő anyag abszorpciója a legnagyobb, mert itt lesz legjobb a mérés érzékenysége. (Ezt a λ-t tudhatjuk spektroszkópiai kézikönyvekből, vagy megkereshetjük magunk. Úgy történik, hogy a műszerünk által átfogható hullámhossz tartományban nm-es lépésekkel végigmérjük az anyagunk elnyelését és ebből egy λ - A grafikont, abszorpciós spektrumot rajzolunk. Az az alkalmas hullámhossz, ahol a görbének maximuma van, de az abszorpció nem haladja meg a 2-t.) 2. Ezután a műszer alappontjainak beállítása történik zárt résnél a 0 % transzmisszió (= végtelen abszorpció) beállítása. A zárt réssel egyenértékű a nyitott küvettaház fedél. a nulla koncentrációhoz tartozó nulla abszorpció (=100%T) beállítása. Tiszta(!) küvettába desztillált vizet töltve a fényintenzitást egy rés segítségével addig szabályozzuk, míg A = 0 lesz. (amíg hullámhosszt nem váltunk, ezt a két pontot sem változtatjuk.) 3. Egy vagy néhány kalibráló (standard) oldatot készítünk, amelyek abszorpcióját mérve egy kalibráló egyenest rajzolunk. (A standard oldat akkor alkalmazható jól, ha koncentrációja a mérendő oldatok nagyságrendjébe esik és a nem mérendő komponensekből is kb. ugyanannyit tartalmaz, mint az ismeretlenek, mert néha ezek is befolyásolhatják a minta elnyelését). 4. A mérendő mintákat sorban megmérjük, abszorpciójukat lejegyezzük és a kalibrációs egyenesből leolvassuk a koncentrációkat. Sok olyan anyag van, amelynek oldata színtelen, vagy alig színes, ezek közvetlen mérése nem lehetséges. Ugyanakkor szinte mindegyikhez található olyan (általában szerves) reagens, amellyel reagáltatva már jó abszorpciójú oldatot kapunk. Pl. a Fe 3+ halványsárga, kb. 0,1 mólos oldata még éppen mérhető egyszerű spektrofotométerben, de ha SCN (rodanid) ionokkal reagálhatjuk az érzékenység kb mól/l-re nő. Ugyanez rézzel is megvalósítható, az egyszerű rézsók vizes oldata világoskék, kb 0,01 mól/l-es oldat még éppen mérhető. Ha ammónium-hidroxidot adunk hozzá, mélykék Cu[(NH 3 ) 4 ] 2+ (réztetrammin) komplex ion keletkezik, amelynél a kimutatási határ egy nagyságrenddel kisebb. A műszeren (és a kalibrációs grafikonon) az A skála nagyjából 0,02 és 2 között használható, ennek megfelelően a legkisebb és a legnagyobb mérhető koncentráció között is alig két nagyságrendnyi különbség van (A és c lineáris kapcsolata miatt). Ez nagyon szűk mérési tartomány lenne, de van pár egyszerű mód a méréshatár eltolására mindkét irányba. A töményebb oldatokat viszonylag könnyű a mérhető tartományba hígítani, hígabb oldatoknál az ügy nehezebb, lehet a küvetta hosszát 4-5 cm-re növelni, ha ez nem elégséges, akkor valamilyen érzékenyebb reagenst kell keresni, esetleg más speciális megoldást lehet alkalmazni. 4
5 Mérési feladat 1. Abszorpciós spektrum felvétele A következő oldatokat 1-1 küvettába töltjük: 1. desztillált víz (a minden hullámhosszon szükséges nullázáshoz) 2. 0,1 mol/l CuSO4 (rézszulfát) 3. 0,01 mol/l [Cu(NH3)4](OH)2 (réz-tetrammin-hidroxid) 4. szerves színezék oldat Kihasználva az adott műszer hullámhossz-tartományát, hullámhosszon mérjük meg az oldatok abszorpcióját. Az A = 0 (T = 100%) pontot desztvízzel minden új hullámhosszra be kell állítani. Közös grafikonon ábrázoljuk a három oldat A-ját λ függvényében! 2. Koncentrációmérés Az előzőleg mért oldatok közül a rézszulfát oldattal folytatjuk a koncentráció meghatározását. Két un. standard oldatot használunk, ezekből készítünk kalibrációs egyenest, és egy ismeretlen oldatot kapunk, amelynek meghatározzuk a koncentrációját. Az előzőleg megmért abszorpciós spektrumból kiválasztunk egy vagy két olyan hullámhosszt, amely a réz meghatározására alkalmas és ezeken a hullámhosszokon megmérjük a két standard oldat, valamint az ismeretlen koncentrációjú oldat abszorpcióját. A két standard oldat adataiból kalibrációs egyenest rajzolunk, ha több hullámhosszon mértük ugyanazon oldatainkat, minden hullámhosszra külön egyenest, és ezek segítségével kiszámítjuk az ismeretlen koncentrációkat. Természetesen, ha több ismeretlen oldatunk lenne, ettől kezdve már csak azokat kellene sorozatban mérni, a többi megelőző lépés legfeljebb akkor kell, ha néha ellenőrizni akarjuk a műszer stabilitását Ellenőrző kérdések Mi a magyarázata, ha egy anyag; színes, átlátszó, fehér, fekete? Atomszerkezeti és optikai értelmezést is adjunk! Mi a spektroszkópia anyagszerkezeti alapja, milyen alaptípusait ismeri? Mi a különbség a szabad molekulák és a kondenzált fázisok fényelnyelése között? Értelmezze a Lambert-Beer- törvényt! Spektrofotométerek fő funkcionális elemei, azok feladata, működési elvük. Sorolja fel a diódasoros fotométer néhány várhatóan előnyös tulajdonságát a hagyományoshoz képest! Mi a spektrofotometriás koncentrációmérés menete? Hogyan lehet a mérési tartományt tágítani? Mi a feltétele, hogy két anyag egy oldatból meghatározható legyen? Mi ennek a menete? Hogy nézne ki egy T - c grafikon? 5
6 Jegyzőkönyv Spektrofotometria Mérést végezte: név, neptun kód, laborcsoport Gyakorlatvezető: Mérés ideje: Érdemjegy: Táblázat a hullámhossz -- abszorpció függvény felvételéhez λ Cu 2+ [Cu(NH 3 ) 4 ] 2+ Abszorpciós spektrum 2 1,8 1,6 1,4 abszorpció 1,2 1 0,8 0,6 0,4 0, hullámhossz Táblázat a kalibrációs egyenesek elkészítéséhez Cu 2+- λ 1 = λ 2 = 0,1 mol/l 0,02 mol/l ismeretlen λ 1 = λ 2 = abszorpció 2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 Kalibrációs grafikon Az ismeretlen koncentrációja: mol/l koncentráció A jegyzőkönyv tartalmazza a mérés elméletének rövid, (saját fogalmazású) összefoglalását, a mérés során szerzett tapasztalatokat, az eredmények értékelését. 6
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés A spektroszkópia, spektrofotometria az egyik legelterjedtebb anyagvizsgálati módszer. Az igen sokféle mérési technika közös alapja az, hogy az anyagok molekuláris,-
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
A fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
SPF UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Szalicilsav meghatározása egy vizes
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
Abszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel A gyakorlat célja: Megismerkedni az UV-látható spektrofotometria elvével, alkalmazásával a kationok, anionok analízisére.
Molekulaspektroszkópiai módszerek UV-VIS; IR
Molekulaspektroszkópiai módszerek UV-VIS; IR Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Abszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
Abszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
UV-VIS spektrofotometriás tartomány. Analitikai célokra: nm
UV-VIS spektrofotometriás tartomány nalitikai célokra: 00-800 nm Elektron átmenetek és az atomok spektruma E h h c Molekulák elektron átmenetei és UVlátható spektruma Elektron átmenetek formaldehidben
23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan
23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan 1. Bevezetés Sav-bázis titrálások végpontjelzésére (a mőszeres indikáció mellett) ma is gyakran alkalmazunk festék indikátorokat.
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
Abszorpciós fotometria
2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
A környezetvédelem analitikája SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása.
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Foszfátionok meghatározása vizes
Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
KÖNYEZETI ANALITIKA BEUGRÓK I.
KÖNYEZETI ANALITIKA BEUGRÓK I. 1.Mit nevezünk egy mérőműszert illetően jelnek és zajnak? jel az, amit a műszer mutat, amikor a meghatározandó komponenst mérjük vele zaj az, amit a műszer akkor mutat, amikor
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2019.03.11. mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele különböző ph-jú
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás Módosított változat
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2018.03.19. Módosított változat mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele
Mérési jegyzőkönyv. 1. mérés: Abszorpciós spektrum meghatározása. Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium
Mérési jegyzőkönyv 1. mérés: Abszorpciós spektrum meghatározása A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2012.02.08. A mérést végezte:
Fény, mint elektromágneses hullám, geometriai optika
Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző
2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN
1 2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN 01/2005:20224 Az infravörös spektrofotométereket a 4000 650 cm -1 (2,5 15,4 µm) közti, illetve néhány esetben egészen a 200 cm
Abszorbciós spektroszkópia
Abszorbciós spektroszkópia (Nyitrai Miklós; 2011 január 31.) A fény Elektromágneses hullám kölcsönhatása anyaggal Az abszorbció definíciója Az abszorpció mérése Speciális problémák, esetek Alkalmazások
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai
Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer
Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera
Abszorpciós fotometria
A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
1. Szerves anyagok oldatbeli abszorpciós színképének meghatározása
Környezeti spektroszkópia. 1. Oldatok abszorpciós színkép mérése, PTE Fiz. nt. 21, Német Béla Spektroszkópiai mérések. Fizikus MSc. Alkalmazott fizikus szakirány Környezettudományi MSc, Környezetfizika
Modern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
Színek 2013.10.20. 1
Színek 2013.10.20. 1 Képek osztályozása Álló vagy mozgó (animált) kép Fekete-fehér vagy színes kép 2013.10.20. 2 A színes kép Az emberi szem kb. 380-760 nm hullámhosszúságú fénytartományra érzékeny. (Ez
Fényhullámhossz és diszperzió mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja
Természetvédő 1., 3. csoport tervezett időbeosztás
Természetvédő 1., 3. csoport tervezett időbeosztás 4. ciklus: 2012. március 08. Optikai mérések elmélet. A ciklus mérései: 1. nitrit, 2. ammónium, 3. refraktometriax2, mérőbőrönd. Forgatási terv: Csoport
FLUORESZCENCIA SPEKTROSZKÓPIA
FLS FLUORESZCENCIA SPEKTROSZKÓPIA A GYAKORLAT CÉLJA: A fluoreszcencia spektroszkópia módszerének megismerése és alkalmazása kininszulfát meghatározására vizes közegű oldatmintákban. A MÉRÉSI MÓDSZER ELVE
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Spektroszkópia. Atomspektroszkópia. Atomabszorpciós spektroszkópia(aas) abszorpció emisszió szóródás Beer Lambert törvény.
Könyezet minősítése gyakrolat segédanyag 1 Könyezet minősítése gyakrolat segédanyag 2 Spektroszkópia Alapfogalmak Atomabszorpciós spektroszkópia(aas) abszorpció emisszió szóródás Beer Lambert törvény Atomspektroszkópia
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
A környezetvédelem analitikája SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása.
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
SPEKTROSZKÓPIA: Atomok, molekulák energiaállapotának megváltozásakor kibocsátott ill. elnyeld sugárzások vizsgálatával foglalkozik.
SPEKTROFOTOMETRI SPEKTROSZKÓPI: omok, molekulák energiaállapoának megválozásakor kibosáo ill. elnyeld sugárzások vizsgálaával foglalkozik. Más szavakkal: anyag és elekromágneses sugárzás kölsönhaása eredményeképp
1. Atomspektroszkópia
1. Atomspektroszkópia 1.1. Bevezetés Az atomspektroszkópia az optikai spektroszkópiai módszerek csoportjába tartozó olyan analitikai eljárás, mellyel az anyagok elemi összetételét határozhatjuk meg. Az
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Színképelemzés. Romsics Imre 2014. április 11.
Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok
Ecetsav koncentrációjának meghatározása titrálással
Ecetsav koncentrációjának meghatározása titrálással A titrálás lényege, hogy a meghatározandó komponenst tartalmazó oldathoz olyan ismert koncentrációjú oldatot adagolunk, amely a reakcióegyenlet szerint
Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek
A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsga kérdései a 4. Szakmai követelmények fejezetben megadott modulhoz tartozó témakörök mindegyikét tartalmazzák. Amennyiben a tétel kidolgozásához
Fény kölcsönhatása az anyaggal:
Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh
Milyen színűek a csillagok?
Milyen színűek a csillagok? A fényesebb csillagok színét szabad szemmel is jól láthatjuk. Az egyik vörös, a másik kék, de vannak fehéren villódzók, sárga, narancssárga színűek is. Vajon mi lehet az eltérő
Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.
Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
Sugárzásos hőtranszport
Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek
Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!
Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold
Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált
Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor
2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása
Spektroszkópiai mérések. Fizikus MSc. Alkalmazott fizikus szakirány Környezettudományi MSc, Környezetfizika szakirány 2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása 1. Elméleti
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel
FOTOMETRIA. nem kötő (nonbonding) kötő elektronok (bonding) kötő elektronok (bonding)
FOTOMETRI spektrum egy anyag által elnyelt, vagy kibocsátott sugarak intenzitásának alakulása a hullámhossz függvényében. biokémiában oldott anyagok molekulaspektrumát abszorpcióban vizsgáljuk. z abszorpciós
A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás
A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)
ATOMEMISSZIÓS SPEKTROSZKÓPIA
ATOMEMISSZIÓS SPEKTROSZKÓPIA Elvi jellemzők, amelyek meghatározzák a készülék felépítését magas hőmérsékletű fényforrás (elsősorban plazma, szikra, stb.) kis méretű sugárforrás (az önabszorpció csökkentése
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
Az infravörös spektroszkópia analitikai alkalmazása
Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai
A kálium-permanganát és az oxálsav közötti reakció vizsgálata
A kálium-permanganát és az oxálsav közötti reakció vizsgálata Vesztergom Soma mérési leírása alapján Mérésleírás a Fizikai kémia labor kémiatanároknak (kk5t4fzp) című kurzushoz... Bevezetés A mérés tekintetében
OKTATÁSI SEGÉDLET Környezeti analízis II. c.
OKTATÁSI SEGÉDLET a Környezeti analízis II. c. tantárgyhoz kapcsolódó laboratóriumi gyakorlat feladataihoz Nappali és levelező tagozatos környezetmérnök (BSc) szakos hallgatók számára Készítette: Dr. Bodnár
Modern Fizika Laboratórium Fizika és Matematika BSc 12. Infravörös spektroszkópia
Modern Fizika Laboratórium Fizika és Matematika BSc 1. Infravörös spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/0/01 Beadás ideje: 03/4/01 Érdemjegy:
Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elemanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Kémiai szenzorok 1/ 18 Elemanalitika Elemek minőségi és mennyiségi meghatározására
OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István
OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú
Elektromágneses hullámok, a fény
Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,
1.1 Emisszió, reflexió, transzmisszió
1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.
7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan
7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan A gyakorlat célja: Megismerkedni az analízis azon eljárásaival, amelyik adott komponens meghatározását a minta elégetése
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont
1. feladat Összesen: 7 pont Gyógyszergyártás során képződött oldatból 7 mintát vettünk. Egy analitikai mérés kiértékelésének eredményeként a következő tömegkoncentrációkat határoztuk meg: A minta sorszáma:
Spektrofotometria. (Fábián István által összeállított silabusz átdolgozott kiadása)
Spektrofotometria (Fábián István által összeállított silabusz átdolgozott kiadása) Debreceni Egeytem Szervetlen és Analitikai Kémiai Tanszék 2009 Tartalomjegyzék 1 A fényelnyelésről 3 2 A spektrofotometriás
10. mérés. Fényelhajlási jelenségek vizsgála
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő 2012.10.15 (engedélyezett késés) 10. mérés Fényelhajlási jelenségek vizsgála Bevezetés: A mérések során a fény hullámhosszából adódó jelenségeket
AER MEDICINALIS. Levegő, gyógyászati
Aer medicinalis Ph.Hg.VIII. Ph.Eur.6.3-1 01/2009:1238 AER MEDICINALIS Levegő, gyógyászati DEFINÍCIÓ Nyomás alatt lévő környezeti levegő. Tartalom: 20,4 21,4 %V/V oxigén (O 2 ). SAJÁTSÁGOK Küllem: színtelen
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Felhevített tárgyak több száz fokos hőmérsékletet elérve először vörösen majd még magasabb hőmérsékleten sárgán izzanak, tehát fényt (elektromágneses hullámokat a látható tartományban)
5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
A tisztítandó szennyvíz jellemző paraméterei
A tisztítandó szennyvíz jellemző paraméterei A Debreceni Szennyvíztisztító telep a kommunális szennyvizeken kívül, időszakosan jelentős mennyiségű, ipari eredetű vizet is fogad. A magas szervesanyag koncentrációjú
Környezet diagnosztika fizikai módszerei-4; Lambert-Beer törvény; PTE FI-10; dr. Német Béla
A szabad atomok fényelnyelése. Lambert-Beer törvény http://www.tankonyvtar.hu/kemia/atomabszorpcios-080904-8 http://hu.wikipedia.org/wiki/lambert Beer-törvény Története A törvényt Pierre Bouguer ismerte