UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
|
|
- Natália Siposné
- 8 évvel ezelőtt
- Látták:
Átírás
1 A környezetvédelem analitikája SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Foszfátionok meghatározása molibdenáttal kalibrációs egyenes alapján. A MÉRÉSI MÓDSZER ALAPELVEI Az ultraibolya (UV, 200 nm λ 400 nm) ill. látható (VIS, 400 nm λ 800 nm) fény elnyelésekor (abszorpciójakor) a molekulák elektroneloszlása megváltozik: kötő, lazító vagy nemkötő elektronjaik kisebb energiájú pályákról nagyobb energiájúakra ugranak át, azaz gerjesztődnek. Az ilyen elektronátmenetek tanulmányozásával foglalkozó spektroszkópiai módszert elektrongerjesztési (vagy elektron-) spektroszkópiának is nevezik. Egy molekula azon részleteit, amelyekben az elektronátmenetek létrejönnek (azaz elnyelik a fényt), kromoforoknak nevezzük. Azt az energiatartományt, amelynél egy adott kromofor elnyel, elnyelési sávnak nevezzük, ennek helye a spektrumban (vagyis a hozzá tartozó elektronátmenet energiája) elsősorban a kromofor anyagi minőségétől függ, de azt a kromoforral kölcsönhatásban levő egyéb csoportok is befolyásolják. Amikor egy anyag vizes oldatának fényelnyelését ábrázoljuk a besugárzó fény energiájának (hullámhosszának) függvényében, az ún. abszorpciós spektrumot kapjuk. Az abszorpciós spektrum mind minőségi, mind mennyiségi információkat hordoz, emiatt az analitikai kémia egyik leggyakrabban használt módszere. Ha besugárzunk egy oldatot egy I o intenzitású, adott hullámhosszúságú (monokromatikus) fénysugárral, annak intenzitása a fény abszorpciója miatt lecsökken I-re. A fényelnyelést egy mértékegység nélküli mennyiség, az abszorbancia jellemzi, ami definíció szerint I A = lg I Szokás még a fényelnyelést a transzmittanciával (más szóval transzmisszióval, T) is jellemezni, amely a minta fényáteresztő képességére jellemző, és az átengedett valamint a beeső fény intenzitásának hányadosaként szokás kifejezni (egyes esetekben százalékban): 0 T = I I 0 Tekintsünk egy olyan oldatot, amelyben csak egyfajta fényt abszorbeáló anyag van jelen. Az anyag koncentrációja (c) és az adott λ hullámhosszúságú sugárzásra mért abszorbancia (A λ ) közötti összefüggést a Lambert-Beer törvény írja le, amely szerint 1
2 A = λ c l λ ε ahol l a rétegvastagság (ez a mérések többségében 1 cm), és ε λ az adott kromoforra jellemző, az alkalmazott hullámhossztól függő mennyiség, az ún. moláris abszorbancia, az egységnyi (1 mol/l) koncentrációjú oldat egységnyi (1 cm) rétegvastagságnál mért abszorbanciája. A Lambert-Beer törvény érvényességi határain belül az abszorbancia additív tulajdonság, amely a vizsgált hullámhossznál az egymás mellett előforduló komponensek abszorbanciáinak összegeként adódik. Tehát egy n darab fényelnyelő komponenst tartalmazó oldatra A n λ = l ε λi c i i= 1 ahol ε λi az i-edik, c i koncentrációjú komponens moláris abszorbanciája az adott hullámhossznál. Abszorbanciamérés alapján, a moláris abszorbancia és a rétegvastagság ismeretében a Lambert-Beer törvény alkalmazásával a kromofor koncentrácója közvetlenül is meghatározható. Fontos megemlíteni, hogy a törvény kizárólag híg oldatokra (c < 10 3 mól/l) érvényes, töményebb oldatokra csak módosításokkal alkalmazható (pl. a törésmutató változását figyelembe kell venni). Eltéréseket okozhatnak még a törvénytől a kromofor különböző kémiai reakciói (pl. önasszociáció, protonálódási vagy komplexképződési egyensúlyok), valamint az oldószercsere is. Mennyiségi elemzés. UV-látható spektrofotometria alkalmazásával csak olyan anyagok mérhetők, amelyek a 200 nm λ 800 nm tartományban fényt nyelnek el. Ha a meghatározandó anyag nem is nyel el fényt, az valamilyen szelektív reakcióval általában fényelnyelővé tehető. A Fe(H 2 O) 6 3+ aquoionok csak nagyon gyenge fényelnyelést mutatnak a látható hullámhossztartományban, de megfelelően megválasztott komplexképzővel, pl. szalicilát ionnal, színessé tehetőek. Az ismeretlen oldat koncentrációjának pontos meghatározásához először mindig ki kell választani egy olyan hullámhosszat, amelyen a mintának értékelhető fényelnyelése van. Ezt a hullámhosszat általában úgy választjuk meg, hogy az a célmolekula spektrumának valamelyik abszorpciós maximumában legyen. Ezt követően egy kalibráló oldatsorozat (ennek egyes tagjai pontosan ismert koncentrációban tartalmazzák a mérendő vegyületet) segítségével meghatározzuk az abszorbancia koncentrációfüggését. Ennek eredményeként előáll a kalibrációs görbe, amely alakja egyenes, ameddig a rendszer követi a Lambert-Beer törvényt. Ezt követően az analizálandó oldat mérését teljesen azonos módon elvégezzük, majd a kalibrációs görbéről (egyenesről) egyszerűen leolvasható az ismeretlen oldat koncentrációja. Az eljárás pontossága numerikus módszerek számítógépes alkalmazásával (lineáris regresszió) nagymértékben növelhető. A meghatározás pontosságát csökkenti, ha a kalibráló- és mintaoldatok háttérabszorbanciája jelentősen eltér, vagy mátrixhatás lép fel. Ilyen esetekben a standard addíciós módszert alkalmazhatjuk. A szalicilsav (C 6 H 4 OHCOOH, M r = 138,1) a Fe 3+ ionokkal a ph-tól és a komponensek arányától függően különböző összetételű komplexeket képez. Fe(III) ionok feleslegében például kizárólag egy ibolyaszínű FeL + részecske lesz jelen az oldatban, aminek a nm tartományban van egy elnyelési maximuma. Ebben a hullámhossztartományban sem a Fe(H 2 O) 6 3+ aquoionnak, sem a szalicilsavnak nincs jelentős fényelnyelése. Az általunk 2
3 használt körülmények között az abszorpciós spektrum maximumán mért fényelnyelés 5-80 mg/dm 3 szalicilsav koncentrációtartományban követi a Lambert-Beer törvényt. A Fe(III) és a szalicilsav közötti reakció nem pillanatszerű, emiatt a reagensek elegyítését követően legalább 15 percig várni kell, hogy az oldat színe állandósuljon (ezt követően az mintegy 4 órán át nem változik). A szalicilsav vízben kevéssé oldódik, ezért a szalicilsav törzsoldatot 1:10 arányú etanol víz elegyben készítjük el. A tapasztalat szerint az ilyen mértékű oldószercsere a képződő komplex abszorpciós spektrumát nem befolyásolja. SZÜKSÉGES ANYAGOK, ESZKÖZÖK ÉS MŰSZEREK 1,00 mg/cm 3 koncentrációjú standard szalicilsav oldat 1:10 MeOH-H 2 O elegyben kb. 1 m/v%-os FeCl 3 oldat (sósavra nézve 0,1 M oldat) desztillált víz 11 db 100,00 cm 3 -es mérőlombik (a kalibráló oldatsorozathoz és az ismeretlenhez) 1 db 10 cm 3 -es osztott pipetta (a kalibráló oldatsorozat készítéséhez) 1 db 20,00 cm 3 -es hasas pipetta (az ismeretlen oldat kiméréséhez) 1 db 5 cm 3 -es hasas pipetta (a FeCl 3 reagens kiméréséhez) 10 db összemért, 1 cm-es műanyag küvetta küvettatartóban elhelyezve 3 db 50 cm 3 -es főzőpohár (a pipettázás segítésére) 1 db üvegedény (a követták öblítéséhez) 1 db pipettázó labda 1 db üvegtölcsér papírtörlő JENWAY 6105 vagy Spektromom 195D típusú UV-Vis spektrofotométer 3
4 AZ ELVÉGZENDŐ FELADATOK ÉS A FELHASZNÁLANDÓ MŰSZEREK LEÍRÁSA Előkészítés. Először kapcsoljuk be a spektrofotométert a műszer hátulján található főkapcsolóval, mert a spektrofotométerek fényforrásának bemelegedéséhez általában 30 percre van szükség. A pontosan 1 mg/cm 3 koncentrációjú standard szalicilsav oldatból 100,00 cm 3 -es mérőlombikokba osztott pipettával olyan térfogatokat mérünk be, hogy szalicilsavra 0,00 0,07 mg/cm 3 koncentrációtartományban egy hat tagból álló kalibráló oldatsorozatot kapjunk. A lombikokba kb. 50 cm 3 desztillált vizet töltünk, majd az oldatok mindegyikéhez pipettával 5 cm 3 1 m/v%-os FeCl 3 oldatot adunk. Ezután a lombikokat desztillált vízzel jelre töltjük, alaposan összerázzuk. A kiadott ismeretlen szalicilsavtartalmú oldatot kvantitatíven bemossuk egy 100,00 cm 3 -es mérőlombikba, majd desztillált vízzel jelre töltjük, alaposan homogenizáljuk. Ebből a törzsoldatból mérjünk be 20 cm 3 -es részleteket hasas pipettával három 100,00 cm 3 -es mérőlombikba, és kezeljük azokat a kalibráló oldatsorozatnál leírtak szerint. A komplex abszorpciós spektrumának felvétele (csak a Jenway berendezéssel). A mérési üzemmód kiválasztására szolgáló MODE kapcsolóval állítsuk a berendezést ABS üzemmódra. Ekkor a kijelzőn a fényútban levő oldat abszorbanciája fog megjelenni. Töltsünk meg egy küvettát desztillált vízzel (vakoldat), egy másikat pedig egy közepes koncentrációjú szalicilát kalibráló oldattal, és helyezzük a küvettákat a küvettatartóba. Zárjuk a küvettatartó fedelét. A recés élű tárcsa kattanástól kattanásig való forgatásával mindig a kívánt küvetta helyezhető a fényútba. Fordítsuk a desztillált vizes küvettát a fényútba, és állítsuk a hullámhosszat 400 nm-re. Nyomjuk meg a CALIBRATE gombot. A kijelzőn 0,000 abszorbancia fog megjelenni, és ezzel egyrészt meghatároztuk az adott hullámhosszhoz tartozó I 0 értéket, másrészt (technikailag) a háttér abszorbanciát nullára állítottuk be az adott hullámhosszon. Fordítsuk a szalicilát tartalmú küvettát a fényútba, és jegyezzük fel a kijelzett abszorbancia értéket, ez természetesen már a szalicilátoldat háttérkorrigált abszorbanciája. Állítsuk a mérési hullámhosszat 410 nm-re, a vakoldatot tartalmazó küvettával a fényútban ismét korrigáljunk a háttérre (a CALIBRATE gomb megnyomásával) majd ismét mérjük meg a szalicilátoldat abszorbanciáját. Folytassuk a méréseket, a hullámhosszat 10 nm-enként változtatva 600 nm-ig. Ábrázoljuk a háttérkorrigált abszorbanciát a hullámhossz függvényében, és válasszuk ki az abszorpciós maximum helyét. Ha az időbe belefér, a gyakorlatvezető segítségével vegyük fel a komplex spektrumát a teljes látható hullámhossztartományban a laboratóriumban található UNICAM regisztráló spektrofotométerrel is. Ismeretlen szalicilátkoncentráció meghatározása a Jenway berendezéssel. A hullámhosszbeállítóval állítsuk be a mérési hullámhosszat a korábban meghatározott abszorpciós maximumra és a továbbiakban ne változtassunk a hullámhosszon. Helyezzük el a kalibráló ill. ismeretlen oldatokat tartalmazó küvettákat a küvettatartóban. Először a vak oldattal a fényútban a CALIBRATE gomb megnyomásával végezzük el a háttérkorrekciót. Ezt követően mérjük meg rendre a kalibráló oldatok, majd végül a három ismeretlen oldat abszorbanciáját. Ezt a komplett mérési sorozatot még kétszer ismételjük meg, minden sorozat kezdetén elvégezve a háttérkorrekciót. Az egyes kalibráló sorozatokra kapott abszorbanciaértékeket ábrázoljuk a szalicilátkoncentráció függvényében méréssorozatonként 4
5 külön-külön, majd olvassuk le a kalibráló egyenesről az ismeretlen koncentrációját. Ez összesen 3 3 adatot fog eredményezni, amelyet átlagolunk. A Spektromom 195D típusú műszer kezelése. A készülék küvettaterének fedelét nyissuk fel (ennek a fedélnek a nyitott állásában a fényérzékelőt sötételő védőburkolat záródik), ezt a fedelet a mérések szünetében célszerű nyitva tartani. A lámpakiválasztó kar (a készülék küvettatér felőli oldalán található LAMPS felirattal) betolt helyzetében a látható, kihúzott helyzetében az ultraibolya tartományban működő lámpa működik. A lámpák működését az előlapon a VIS vagy UV jelzőizzók igazolják vissza (az utóbbi kb. 1 perc késleltetéssel). A gyakorlat során a látható fénytartományban fog mérni. A WAVELENGTH feliratú hullámhossz állító gomb forgatásával állítjuk be a mérés 530 nm hullámhosszát. A mérésmód választó gombot a T% állásba forgatjuk. A beállított hullámhossznak megfelelő fotocellát is ki kell választanunk: a látható tartományban érzékeny fotocellát a DETECTORS feliratú kar betolásával választhatjuk ki. Ezután a küvettafedél nyitott állása mellett a DARK CURRENT gomb szabályozásával a kijelzőt nulla értékre állítjuk, amivel kikompenzáljuk a sötétáramot. A küvettatartót a mérendő oldatokat tartalmazó küvettákkal a küvettatérbe helyezzük. Megfigyeljük, hogy melyik (küvetta váltó tárcsa) állásnál lesz a fényútban az ún. összehasonlító ( vak ) oldatot tartalmazó küvetta. Az összehasonlító oldatot fényútba állítjuk és lecsukjuk a küvettaház fedelét. Ekkor a küvettán átjutó fény a fotocellára kerül. A fénynyaláb szélességét az átengedő rés állításával szabályozhatjuk, azaz a SLIT jelű gombot óvatosan elforgatjuk. Igyekszünk olyan résszélességet beállítani, amelynél a kijelző 100,0-as transzmittanciát mutat. A 100T% fine gombbal finomszabályzás is lehetséges. A 100T% fine gombot célszerű középső állásban vagy annak közelében tartani. Miután beállítottuk a 100%-os transzmittanciát, a küvettafedelet továbbra is zárva tartva, a mérendő küvettát juttatjuk a fényútba és leolvassuk a kijelzőn megjelenő transzmittancia értéket, amelyből az abszorbancia kiszámítható. Az egyes mérések között célszerű a sötétáram és a 100%-os transzmittancia értéket ellenőrizni, szükség esetén újból beállítani, hogy a készülék elektromos állapotának, melegedésének változása minél kisebb hibát okozzon. Az elvégzendő mérési feladatok megegyeznek a másik műszerrel kapcsolatban leírtakkal, kivéve, hogy a Spektromom készülék felépítéséből adódóan a spektrum felvételére nem alkalmas. BENYÚJTANDÓ ADATOK, EREDMÉNYEK A Fe(III)-szalicilátó komplex kísérletileg meghatározott abszorpciós spektruma A kalibrációs függvények milliméterpapíron ábrázolva Az ismeretlen szalicilsav törzsoldat koncentrációja mg/dm 3 és mol/dm 3 egységekben és a mért eredmény szórása A komplex moláris abszorbanciája az abszorpciós maximum helyén KÉRDÉSEK ÉS FELADATOK ÖNÁLLÓ FELKÉSZÜLÉSHEZ 1. Mi az abszorbancia és a transzmittancia definíciója, és mi a kettő közötti összefüggés? 2. Ismertesse a Lambert-Beer törvényt és nevezze meg a benne szereplő mennyiségeket és dimenziójukat! 5
6 3. Melyek a Lambert-Beer törvény érvényességének határai, soroljon fel eseteket, amikor a törvénytől eltérések lehetnek! 4. Definiálja az abszorpciós spektrum, az abszorpciós sáv és az abszorpciós maximum fogalmát! 5. Melyek az abszorpciós spektrofotométerek legfontosabb részei és a műszeres abszorbancia meghatározás legfontosabb lépései? 6. Mi a háttérkorrekció, miért van rá szükség, hogyan történik? 7. Milyen abszorbancia tartományban mér optimálisan egy spektrofotométer? 8. Ismertesse a szalicilsav spektrofotometriás meghatározásának alapelveit! 9. Kálium-dikromát oldat moláris abszorbanciája 410 nm-en 1100 dm 3 mol -1 cm -1 Oldatunk 1,00 dm 3 -ben 0,0230 gramm kálium-dikromátot tartalmaz. A beérkező fény hány százalékát nyeli el az oldat 1,7 cm vastag rétege? (a K 2 Cr 2 O 7 móltömege 294,2 gramm/mol; a helyes megoldás: 28,5%) 6
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
SPF UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Szalicilsav meghatározása egy vizes
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Foszfátionok meghatározása vizes
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
A környezetvédelem analitikája SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása.
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel A gyakorlat célja: Megismerkedni az UV-látható spektrofotometria elvével, alkalmazásával a kationok, anionok analízisére.
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind
23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan
23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan 1. Bevezetés Sav-bázis titrálások végpontjelzésére (a mőszeres indikáció mellett) ma is gyakran alkalmazunk festék indikátorokat.
A fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
Természetvédő 1., 3. csoport tervezett időbeosztás
Természetvédő 1., 3. csoport tervezett időbeosztás 4. ciklus: 2012. március 08. Optikai mérések elmélet. A ciklus mérései: 1. nitrit, 2. ammónium, 3. refraktometriax2, mérőbőrönd. Forgatási terv: Csoport
FLUORESZCENCIA SPEKTROSZKÓPIA
FLS FLUORESZCENCIA SPEKTROSZKÓPIA A GYAKORLAT CÉLJA: A fluoreszcencia spektroszkópia módszerének megismerése és alkalmazása kininszulfát meghatározására vizes közegű oldatmintákban. A MÉRÉSI MÓDSZER ELVE
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés A spektroszkópia, spektrofotometria az egyik legelterjedtebb anyagvizsgálati módszer. Az igen sokféle mérési technika közös alapja az, hogy az anyagok molekuláris,-
Ecetsav koncentrációjának meghatározása titrálással
Ecetsav koncentrációjának meghatározása titrálással A titrálás lényege, hogy a meghatározandó komponenst tartalmazó oldathoz olyan ismert koncentrációjú oldatot adagolunk, amely a reakcióegyenlet szerint
Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
2 O 5 /dm 3 (Hurrá, ehhez sem kellett
Számítási feladatok foszfát-meghatározáshoz 1.(Mintafeladat) a) Hány gramm KH PO -ot kell bemérni 50 cm törzsoldat készítéséhez ahhoz, hogy a törzsoldat koncentrációja P O 5 -re nézve 0,1 mg/cm legyen?
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
UV-VIS spektrofotometriás tartomány. Analitikai célokra: nm
UV-VIS spektrofotometriás tartomány nalitikai célokra: 00-800 nm Elektron átmenetek és az atomok spektruma E h h c Molekulák elektron átmenetei és UVlátható spektruma Elektron átmenetek formaldehidben
LÁNGATOMABSZORPCIÓS MÉRÉSEK
AAS LÁNGATOMABSZORPCIÓS MÉRÉSEK A GYAKORLAT CÉLJA: A lángatomabszorpciós spektrometria (FAAS) módszerének tanulmányozása és alkalmazása fémek vizes közegű mintában való meghatározására. A MÉRÉSI MÓDSZER
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), első kérdésünk valószínűleg az lesz, hogy mi ez az anyag, milyen
Beadandó A kalibrációs diagram az ismeretlen oldat százalékos összetételével (az eredeti 20 g bemérésre vonatkoztatva).
Anyagtartalom meghatározás Abbe-féle refraktométerrel Eszközök: Refraktométer, 2 db 100 cm 3 -es mérőlombik, kis főzőpohár minta beméréshez, üvegbot, vizsgálati anyag (NaNO 3, NaCl, NH 4 -acetát stb.)
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2019.03.11. mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele különböző ph-jú
Spektrofotometria. (Fábián István által összeállított silabusz átdolgozott kiadása)
Spektrofotometria (Fábián István által összeállított silabusz átdolgozott kiadása) Debreceni Egeytem Szervetlen és Analitikai Kémiai Tanszék 2009 Tartalomjegyzék 1 A fényelnyelésről 3 2 A spektrofotometriás
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás Módosított változat
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2018.03.19. Módosított változat mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele
Anyagtartalom meghatározás Abbe-féle refraktométerrel
Anyagtartalom meghatározás Abbe-féle refraktométerrel Eszközök: Refraktométer, 2 db 100 cm 3 -es mérőlombik, kis főzőpohár minta beméréshez, üvegbot, vizsgálati anyag (NaNO 3, NaCl, NH 4 -acetát stb.)
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
ELTE TTK Analitikai Kémiai Tanszék Műszeres analitika gyakorlat. Készülék: Perkin-Elmer Lambda 15 spektrofotométer.
MOLEKULA SPEKTROFOTOMETRIA Spektrofotometriás gyakorlatok során spektrumok felvétele, majd ezek segítségével, illetőleg figyelembevételével mennyiségi meghatározás képezi a feladatokat. A mérésekhez az
Spektrofotometria. (Dr. Fábián István által összeállított silabusz átdolgozott kiadása)
Spektrofotometria (Dr. Fábián István által összeállított silabusz átdolgozott kiadása) A gyakorlaton bemutatott és alkalmazott Jasco V-770 UV-Vis-NIR spektrofotometriás készülék a GINOP-2.3.2-15-2016-00008
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi
1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont
1. feladat Összesen: 7 pont Gyógyszergyártás során képződött oldatból 7 mintát vettünk. Egy analitikai mérés kiértékelésének eredményeként a következő tömegkoncentrációkat határoztuk meg: A minta sorszáma:
Abszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Abszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Mérőlombik kalibrálás. Mérőlombik kalibrálás. Név: Dátum: Név: Dátum: 2016.
Név: Dátum: 2016. Név: Dátum: 2016. Mérőlombik kalibrálás Mérőlombik kalibrálás A mérőlombik névleges térfogata: Mérési adatok cm 3. Jele: A víz hőmérséklete: ⁰C, sűrűsége g/cm 3. A tiszta, SZÁRAZ, üres
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
1. feladat Összesen: 7 pont. 2. feladat Összesen: 8 pont
1. feladat Összesen: 7 pont Hét egymást követő titrálás fogyásai a következők: Sorszám: 1. 2. 3. 4. 5. 6. 7. Fogyások (cm 3 ) 20,25 20,30 20,40 20,35 20,80 20,30 20,20 A) Keresse meg és húzza át a szemmel
Molekulaspektroszkópiai módszerek UV-VIS; IR
Molekulaspektroszkópiai módszerek UV-VIS; IR Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai
A gyakorlat leírása. A mérési feladat
A gyakorlat leírása Szükséges anyagok: 0,00 mol dm -3 koncentrációjú AgNO 3 oldat 0,00 mol dm -3 koncentrációjú KCl oldat 0,5 mol dm -3 koncentrációjú KNO 3 oldat 0,05 mol dm -3 koncentrációjú Ca(NO 3
A TITRÁLÁSOK GYAKORLATA
A TITRÁLÁSOK GYAKORLATA készült a DE és SZTE Szervetlen és Analitikai Kémiai tanszékeinek oktatási segédanyagai, illetve Lengyel B.: Általános és Szervetlen Kémiai Praktikum alapján Előkészületek a térfogatos
Mérési jegyzőkönyv. 1. mérés: Abszorpciós spektrum meghatározása. Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium
Mérési jegyzőkönyv 1. mérés: Abszorpciós spektrum meghatározása A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2012.02.08. A mérést végezte:
Mérőlombik kalibrálás. Mérőlombik kalibrálás. Név: Dátum: Név: Dátum: 2017.
Név: Dátum: 2017. Név: Dátum: 2017. Mérőlombik kalibrálás Mérőlombik kalibrálás A mérőlombik névleges térfogata: Mérési adatok cm 3. Jele: A víz hőmérséklete: ⁰C, sűrűsége g/cm 3. A tiszta, SZÁRAZ, üres
UV-VIS SPEKTROFOTOMETRIA
UV-VIS SPEKTROFOTOMETRIA 1 (Gyakorlati segédlet a műszeres analitika gyakorlathoz) Összeállította: Tóth László DE-TTK Szerves Kémia Tanszék 2019. UV-VIS SPEKTROFOTOMETRIA 1. Bevezetés Fény és anyag kölcsönhatásán
Természetvédő 1., 3. csoport tervezett időbeosztás. A ciklus mérései: lángfotometria, AAS, Ca + Ök, lúgosság
Természetvédő 1., 3. csoport tervezett időbeosztás 1. ciklus: 2011. október 06 november 27. A ciklus mérései: lángfotometria, AAS, Ca + Ök, lúgosság Forgatási terv: 10. 06. 10. 13. 10. 20. 10. 27. 1. csoport
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
Indikátor izobesztikus pontjának és koncentrációjának meghatározása
Indikátor izobesztikus pontjának és koncentrációjának meghatározása Mérési elv: a sav-bázis indikátorok savas és lúgos formájának spektruma metszi egymást. Ez az izobesztikus pont. Ezen a hullámhosszon
Ivóvíz savasságának meghatározása sav-bázis titrálással (SGM)
Ivóvíz savasságának meghatározása sav-bázis titrálással (SGM) I. Elméleti alapok: A vizek savasságát a savasan hidrolizáló sók és savak okozzák. A savasságot a semlegesítéshez szükséges erős bázis mennyiségével
FOTOMETRIA. nem kötő (nonbonding) kötő elektronok (bonding) kötő elektronok (bonding)
FOTOMETRI spektrum egy anyag által elnyelt, vagy kibocsátott sugarak intenzitásának alakulása a hullámhossz függvényében. biokémiában oldott anyagok molekulaspektrumát abszorpcióban vizsgáljuk. z abszorpciós
KÖNYEZETI ANALITIKA BEUGRÓK I.
KÖNYEZETI ANALITIKA BEUGRÓK I. 1.Mit nevezünk egy mérőműszert illetően jelnek és zajnak? jel az, amit a műszer mutat, amikor a meghatározandó komponenst mérjük vele zaj az, amit a műszer akkor mutat, amikor
GYAKORLATI VIZSGATEVÉKENYSÉG
BUDAPESTI MŰSZAKI SZAKKÉPZÉSI CENTRUM PETRIK LAJOS KÉT TANÍTÁSI NYELVŰ VEGYIPARI, KÖRNYEZETVÉDELMI ÉS INFORMATIKAI SZAKKÖZÉPISKOLA Szakképesítés azonosító száma, megnevezése: A gyakorlati vizsga B) vizsgarészhez
Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel
Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Név: Neptun kód: _ mérőhely: _ Labor előzetes feladatok 20 C-on különböző töménységű ecetsav-oldatok sűrűségét megmérve az
11. Spektrofotometria
11. Spektrofotometria Czirók András 2013. április Tartalomjegyzék 1. Bevezetés 2 2. Egyensúlyi állandó meghatározása ekvimoláris oldatok keverékeiből 3 3. Egyensúlyi állandó meghatározása eltérő töménységű
Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából
Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából ELTE TTK Szerves Kémiai Tanszék 2015 1 I. Elméleti bevezető 1.1. Gyógyszerkönyv A Magyar gyógyszerkönyv (Pharmacopoea Hungarica) első
Kémia OKTV döntő forduló II. kategória, 1. feladat Budapest, 2011. április 9.
Oktatási Hivatal Kémia OKTV döntő forduló II. kategória, 1. feladat Budapest, 2011. április 9. A feladat elolvasására 15 perc áll rendelkezésre. A feladathoz csak a 15 perc letelte után szabad hozzákezdeni.
XXXVI. KÉMIAI ELŐADÓI NAPOK
Magyar Kémikusok Egyesülete Csongrád Megyei Csoportja és a Magyar Kémikusok Egyesülete rendezvénye XXXVI. KÉMIAI ELŐADÓI NAPOK Program és előadás-összefoglalók Szegedi Akadémiai Bizottság Székháza Szeged,
Elektro-analitikai számítási feladatok 1. Potenciometria
Elektro-analitikai számítási feladatok 1. Potenciometria 1. Vas-só részlegesen oxidált oldatába Pt elektródot merítettünk. Ennek az elektródnak a potenciálját egy telített kalomel elektródhoz képest mérjük
OKTATÁSI SEGÉDLET Környezeti analízis II. c.
OKTATÁSI SEGÉDLET a Környezeti analízis II. c. tantárgyhoz kapcsolódó laboratóriumi gyakorlat feladataihoz Nappali és levelező tagozatos környezetmérnök (BSc) szakos hallgatók számára Készítette: Dr. Bodnár
KONDUKTOMETRIÁS MÉRÉSEK
A környezetvédelem analitikája KON KONDUKTOMETRIÁS MÉRÉSEK A GYAKORLAT CÉLJA: A konduktometria alapjainak megismerése. Elektrolitoldatok vezetőképességének vizsgálata. Oxálsav titrálása N-metil-glükamin
MŰSZERES ANALÍZIS. ( a jelképzés és jelfeldologozás tudománya)
MŰSZERES ANALÍZIS ( a jelképzés és jelfeldologozás tudománya) Az vizsgált mintában fizikai kölcsönhatás vagy kémiai átalakulás során végbemenő fizikai-kémiai változásokból műszerek segítségével következtetünk
Általános Kémia GY, 2. tantermi gyakorlat
Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu
Vizes oldatok ph-jának mérése
Vizes oldatok ph-jának mérése Név: Neptun-kód: Labor elızetes feladat Mennyi lesz annak a hangyasav oldatnak a ph-ja, amelynek koncentrációja 0,330 mol/dm 3? (K s = 1,77 10-4 mol/dm 3 ) Mekkora a disszociációfok?
Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia
Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 02/28/2012 Beadás ideje: 03/05/2012 Érdemjegy:
1. Szerves anyagok oldatbeli abszorpciós színképének meghatározása
Környezeti spektroszkópia. 1. Oldatok abszorpciós színkép mérése, PTE Fiz. nt. 21, Német Béla Spektroszkópiai mérések. Fizikus MSc. Alkalmazott fizikus szakirány Környezettudományi MSc, Környezetfizika
5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
Természetvédő 1., 3. csoport tervezett időbeosztás
Természetvédő 1., 3. csoport tervezett időbeosztás 3. ciklus: 2012. január 05. Elektro-analitika elmélet. 2012. január 12. Titrimetria elmélet 2012. január 19. március 01. A ciklus mérései: 1. ph-mérés,
A kálium-permanganát és az oxálsav közötti reakció vizsgálata
A kálium-permanganát és az oxálsav közötti reakció vizsgálata Vesztergom Soma mérési leírása alapján Mérésleírás a Fizikai kémia labor kémiatanároknak (kk5t4fzp) című kurzushoz... Bevezetés A mérés tekintetében
1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?
Számítások ph-val kombinálva 1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk? Mekkora az eredeti oldatok anyagmennyiség-koncentrációja?
Környezet diagnosztika fizikai módszerei-4; Lambert-Beer törvény; PTE FI-10; dr. Német Béla
A szabad atomok fényelnyelése. Lambert-Beer törvény http://www.tankonyvtar.hu/kemia/atomabszorpcios-080904-8 http://hu.wikipedia.org/wiki/lambert Beer-törvény Története A törvényt Pierre Bouguer ismerte
Víztechnológiai mérőgyakorlat 2. Klórferőtlenítés törésponti görbe felvétele. Jegyzőkönyv
A mérést végezte: NEPTUNkód: Víztechnológiai mérőgyakorlat 2. Klórferőtlenítés törésponti görbe felvétele Jegyzőkönyv Név: Szak: Tagozat: Évfolyam, tankör: AABB11 D. Miklós Környezetmérnöki Levlező III.,
6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban
6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.
Számítások ph-val kombinálva
Bemelegítő, gondolkodtató kérdések Igaz-e? Indoklással válaszolj! A A semleges oldat ph-ja mindig éppen 7. B A tömény kénsav ph-ja 0 vagy annál is kisebb. C A 0,1 mol/dm 3 koncentrációjú sósav ph-ja azonos
7. Festékelegyek elválasztása oszlopkromatográfiás módszerrel. Előkészítő előadás 2015.03.09.
7. Festékelegyek elválasztása oszlopkromatográfiás módszerrel Előkészítő előadás 2015.03.09. A kromatográfia A módszer során az elválasztandó anyagot áthajtjuk egy mozgó fázisban egy álló fázison keresztül
VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola
A versenyző kódja:... VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI
800-5000 Hz U. oldat. R κ=l/ra. 1.ábra Az oldatok vezetőképességének mérése
8 gyak. Konduktometria A gyakorlat célja: Az oldat ionos alkotóinak összegző, nem specifikus mérése (a víz tisztasága), a konduktometria felhasználása titrálás végpontjelzésére. A módszer elve Elektrolitok
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
Abszorbciós spektroszkópia
Abszorbciós spektroszkópia (Nyitrai Miklós; 2011 január 31.) A fény Elektromágneses hullám kölcsönhatása anyaggal Az abszorbció definíciója Az abszorpció mérése Speciális problémák, esetek Alkalmazások
A diffúz reflektancia spektroszkópia (DRS) módszerének alkalmazhatósága talajok ásványos fázisának rutinvizsgálatában
A diffúz reflektancia spektroszkópia (DRS) módszerének alkalmazhatósága talajok ásványos fázisának rutinvizsgálatában Készítette: Ringer Marianna Témavezető: Szalai Zoltán 2015.06.16. Bevezetés Kutatási
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Mérőlombik kalibrálás. Mérőlombik kalibrálás. Név: Dátum: 2015. Név: Dátum: 2015.
Név: Dátum: 2015. Név: Dátum: 2015. Mérőlombik kalibrálás Mérőlombik kalibrálás A mérőlombik névleges térfogata: Mérési adatok cm 3. Jele: A víz hőmérséklete: ⁰C, sűrűsége g/cm 3. A tiszta, SZÁRAZ, üres
2.4.27. VIZSGÁLAT NEHÉZFÉMEKRE NÖVÉNYI DROGOKBAN ÉS NÖVÉNYI DROGKÉSZÍTMÉNYEKBEN
Ph.Hg.VIII. - Ph.Eur.8.2.-1 07/2014:20427 2.4.27. VIZSGÁLAT NEHÉZFÉMEKRE NÖVÉNYI DROGOKBAN ÉS NÖVÉNYI DROGKÉSZÍTMÉNYEKBEN Figyelmeztetés: a zárt, nagynyomású roncsolóedények és a mikrohullámú laboratóriumi
A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel
A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina
Oldatkészítés, ph- és sűrűségmérés
Oldatkészítés, ph- és sűrűségmérés A laboratóriumi gyakorlat során elvégzendő feladat: Oldatok hígítása, adott ph-jú pufferoldat készítése és vizsgálata, valamint egy oldat sűrűségének mérése. Felkészülés
Műszaki analitikai kémia. Alapfogalmak a műszeres analitikai kémiában
Műszaki analitikai kémia Alapfogalmak a műszeres analitikai kémiában Dr. Galbács Gábor A koncepció 1. Valamilyen külső fizikai hatás (elektromágneses sugárzás, hevítés, elektromos feszültség, stb.) alá
100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 50%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
Hulladékos csoport tervezett időbeosztás
Hulladékos csoport tervezett időbeosztás 3. ciklus: 2012. január 16 február 27. január 16. titrimetria elmélet (ismétlés) A ciklus mérései: sav bázis, komplexometriás, csapadékos és redoxi titrálások.
1.1. Reakciósebességet befolyásoló tényezők, a tioszulfát bomlása
2. Laboratóriumi gyakorlat A laborgyakorlatok anyagát összeállította: dr. Pasinszki Tibor egyetemi tanár 1.1. Reakciósebességet befolyásoló tényezők, a tioszulfát bomlása A reakciósebesség növelhető a
2.2.23. Atomabszorpciós spektrometria Ph.Hg.VIII. - Ph.Eur.6.0-1
2.2.23. Atomabszorpciós spektrometria Ph.Hg.VIII. - Ph.Eur.6.0-1 2.2.23. ATOMABSZORPCIÓS SPEKTROMETRIA 01/2008:20223 ALAPELV Atomabszorpció akkor jön létre, amikor egy alapállapotú atom adott hullámhossszú
ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :
ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra : H 2 O H + + OH -, (2 H 2 O H 3 O + + 2 OH - ). Semleges oldatban a hidrogén-ion
Engedélyszám: 18211-2/2011-EAHUF Verziószám: 1. 2446-06 Műszer és méréstechnika követelménymodul szóbeli vizsgafeladatai
1. feladat Csoporttársával szóbeli beszámolóra készülnek spektrofotometria témakörből. Ismertesse a mai kémiai automatákba épített fotométerek fő részeit, a lehetséges mérési tartományt! Ismertetőjében