Környezetvédelmi mérések fotoakusztikus FTIR műszerrel
|
|
- Fanni Ballané
- 9 évvel ezelőtt
- Látták:
Átírás
1 Környezetvédelmi mérések fotoakusztikus FTIR műszerrel *Ritz Ferenc A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül a füstgázok fő alkotórészeire valamint a környezeti levegő néhány legfontosabb szennyezőjére készültek célműszerek. A többi mérési feladatra a helyszínen való mintavétel és a laboratóriumban gázkromatográffal, vagy tömegspektrométerrel való elemzés jelentette a megoldást. A levegőt szennyező vegyi anyagok megengedett legnagyobb töménységét (koncentrációját) jogszabályok rögzítik. Három fő szabályozási terület van, amely egyúttal három fő mérési helyzetet is jelent: 1. a kibocsátás (emisszió), 2. a munkahelyi légtér és 3. a környezeti levegő általában (immisszió). A korszerű módszerek közé tartozik: az elektrokémiai érzékelés, a kémiai reakciók, a spektroszkópia és a gázkromatográfia. Ezek közül most külön kiemeljük a spektroszkópiai mérési módszereket. Az egyéb módszerekről olvashatnak összefoglalót "A gázveszély-jelző műszerekben használt mérési módszerek ismertetése" című cikkben, ami az MMK 66. számában jelent meg. Spektroszkópia Az analitikai spektroszkópia az anyag és az elektromágneses sugárzás kölcsönhatását kísérő jelenségeket (emisszió, abszorpció, fluoreszcencia, reflexió) hasznosítja az anyag minőségi és mennyiségi összetételének meghatározására. Kémiailag nem egynemű(heterogén) anyagok esetén elementáris vagy molekuláris összetétel megállapítása lehet a célkitűzés. A kémiailag egynemű anyagok atomjainak és atomcsoportjainak spektroszkópiai meghatározása és ezen keresztül a vegyületek molekuláinak felismerése ugyancsak az analitikai spektroszkópia feladatköre. Molekulaspektroszkópiai módszerek A spektrum az anyag által elnyelt, vagy kibocsátott sugarak intenzitásának alakulása a hullámhossz, illetve a hullámszám (cm -1 -ben) függvényében. Molekulaspektrumot készíthetünk * Richter G. Rt. Környezetvédelmi O.
2 emisszióban, vagy abszorpcióban, de a legtöbb esetben az emissziós spektrumot nem tudjuk előállítani, mert gerjesztés közben a vegyületek elbomlanak. A szervetlen anyagok vizsgálatánál használják főként az emissziós molekulaspektroszkópiát. (pl. AES, ICP-AES) Az abszorpciós spektrum úgy jön létre, hogy az anyagra elektromágneses sugárzást bocsátunk, mivel az anyag a fény különböző hullámhosszúságú összetevőiből különböző mennyiségeket nyel el. Az abszorpciós spektrofotométerek az anyagok áteresztőképességét (transzmittancia) mérik a hullámhossz, hullámszám vagy a frekvencia függvényében. Az elnyelési helyek és intenzitások az anyagok jellemző sajátságai. Ultraibolya(UV) és látható fény(vis) spektrofotometria A molekulák fényelnyelését az UV és VIS spektrumintervallumban (általában 190 és 800 nanométer között) az elektroneloszlás megváltozása kíséri. A fényenergia a molekulában bizonyos elektronokat nagyobb energiájú gerjesztett pályára juttat. Ha két atom között kötés jön létre, a kötő elektronpár már nem az egyes atomokhoz, hanem a molekulához tartozik. A molekulában létrejönnek kötő (bonding), lazító (antibonding) és nem kötő (non bonding) molekulapályák, amelyek az adott molekuláról egy jellegzetes energiatérképet nyújtanak. Az ultraibolya és látható spektrofotométerek felépítése és működése Kétsugaras spektrofotométer esetén ugyanabból a fényforrásból származó sugárzást tükrök segítségével két sugárútba irányítják és egy mérő, illetve összehasonlító küvettán áthaladva a monokromátorba jut. A monokromátorból, illetve küvettákból kilépett sugarak a két sugárútból időben váltakozva jutnak az érzékelőre. Ezt a szaggatást forgó szektortükrök végzik. Az érzékelő jele erősítés után vagy optikai, vagy elektromos kompenzáció révén a mérő és összehasonlító sugárút intenzitásának hányadosát adja a hullámhossz, vagy a hullámszám függvényében. Ultraibolya és látható színképeket általában gáz-, illetve gőz- halmazállapotú vagy oldott mintákról készítünk. Gáz és gőzállapotú minta esetén az anyagot különböző gázküvettába töltjük. Könnyen illó folyadékoknál az anyagok 1-2 cseppjét a folyadékküvetta aljára helyezzük, megvárjuk, míg beáll az egyensúly a folyadék és gőze között, és ezután készítjük el a felvételt. Az oldatokat vízzel, vagy szerves oldószerekkel készíthetjük. Általában mólos, illetve µg/cm 3 töménységű oldatokkal dolgozunk. A felvételekhez 1 mm~5 cm rétegvastag-ságú kvarc és üveg küvettákat használunk. Az ultraibolya és látható tartomány színképei sokkal kevésbé jellemzőek a vizsgált anyagra, mint az infravörös tartományé, mivel itt kevés számú széles sáv jelenik meg. Ezért az UV és VIS
3 spektrumok alkalmazása minőségi elemzésre önmagában nem elegendő, a kapott információkat mindig ki kell egészíteni. A mennyiségi alkalmazás a Lambert-Beer törvényen alapul. A mérés során a sugárzás intenzitása a mintára jellemző hullámhossznál abszorpció miatt csökken. log (I0/I) = ε*l*c ahol ε az abszorpciós együttható l a rétegvastagság c a töménység I0 a küvettába belépő fény intenzitása I a küvettából kilépő fény intenzitása Az infravörös spektroszkópiáról Ezen módszerek közül az infravörös spektroszkópia népszerű a következő előnyei miatt: - érzékeny - rövid az átviteli ideje - nagymértékben közömbös a zavaró tényezőkkel szemben. A gáz érzékelésének leginkább megfelelő fényforrás amelyik az elektromágneses színképnek az infravörös tartományában, különösen 650 és 4000 cm -1 között bocsát ki sugárzást. Ez azt jelenti, hogy a hullámhossz (λ) 2,5~15 µm között van. A spektroszkópiában általában izzó fényforrást (magas hőmérsékletre hevített drótszálat) szoktak használni, amelynek fő előnye, hogy állandó, olcsó és hosszú élettartalmú. Színképelemzéshez keskeny sávszélességű besugárzás szükséges, ezért az izzólámpához olyan optikai rendszert kapcsolnak, amely szelektíven a kívánt hullámhosszúságú sávot engedi át. A rögzített hullámhosszú besugárzáshoz szűrőket használnak, folyamatos hangolást viszont diffrakciós rácsokkal, vagy interferometriával valósíthatnak meg. A molekulák atomjai folytonos mozgásban vannak, mivel azonban mozgásukat korlátozzák az atomok közötti kötések, az atomok oda-vissza rezegnek meghatározott rezgési móduszokban. A rezgések lehetnek normálrezgések, vegyértékrezgések vagy deformációs rezgések. Az infravörös sugárzás frekvenciája ugyanolyan nagyságrendű, mint a molekularezgéseké, kb Hz. Az infravörös sugárzás kölcsönhatásba léphet a molekulákkal, energiát adhat át nekik - akkor, és csakis akkor -, ha a rezgés frekvenciája pontosan ugyanakkora, mint a molekula rezgésének frekvenciája. Ha a molekula ennek a rezgésnek az energiáját elnyeli, akkor (abszorbeálja), nagyobb amplitúdóval fog rezegni.
4 Más szóval, ha egy széles spektrális tartalmú fény áthatol egy gázon, egyes frekvenciájú energia áramokat a gáz elnyel, a többit viszont keresztülbocsátja, anélkül, hogy elnyelné. Az elnyelt energiaáramnak frekvenciái megfelelnek a gázmolekulák rezgési móduszai természetes frekvenciáinak, vagy e rezgések felharmonikusainak. Az elnyelt fény mennyisége egyenesen arányos a gáz töménységével. Kisszámú, ismert gáz rendszeres, mennyiségi elemzéséhez általában elegendő, ha a mintát azokon a hullámhosszokon besugározzuk, amelyeken a kérdéses gázok erősen elnyelnek. Gázokról általában 10 cm-es küvettában készíthetünk felvételt. Kis gázkoncentrációk is mérhetők, ha az abszorpciós úthosszt megnöveljük. Tükrök segítségével ez a 100 m-t is elérheti. Ha az elnyelt, illetve áteresztett fénymennyiséget minden egyes hullámhosszon megmérjük, infravörös színképet kapunk. A spektrumot előállító műszerek általános neve spektrofotométer. Az elnyelt fény mennyisége kétféle módon, a transzmittancia (áteresztés), illetve az abszorpció (elnyelés) százalékában fejezhető ki. Mindegyik vegyületnek egyedi infravörös színképe van. Csaknem minden ismert vegyület színképét összegyűjtötték különböző kézikönyvekbe, és egy anyag azonosságát bizonyíthatják azzal, ha a színképét egybevetik ezekkel a mérvadó spektrumokkal. A számítógépes könyvtárak segítségével ma már egy ilyen vizsgálat sokkal gyorsabban elvégezhető, mint régebben. Az IR és az FTIR spektrofotométerek összehasonlítása: HAGYOMÁNYOS sok mozgó alkatrész a teljes spektrum 10~15 perc nem alkalmas kinetikai* mérésre a felbontást növelni csak a rés szűkítésével lehet (érzékenység csökken) A frekvenciapontosság ellenőrzése csak referencia spektrum segítségével szórt fény a rendszeren belül FOURIER transzformációs csak egy tükör mozog egy spektrum felvétel 1 sec alkalmas kinetikai* mérésre nincsenek rések He-Ne lézer belső kalibrációs rendszer biztosítja a frekvenciapontosságot nincs szórt fény
5 a minta és az IR forrás közelsége miatt hőérzékenység a minta IR emisszióját is méri az érzékelő a minta távol van az IR sugárforrástól nem zavar a minta emisszió * kinetikai: időben változó töménység Az FTIR spektrofotométerek optikai részének központi egységét, az interferométert a múlt század végén fejlesztették ki (A. A. Michelson) és néhány évvel később ismertté vált a matematikai összefüggés (Fourier transzformáció) az interferométerrel készült interferogramm és az IR spektrum között. A Fourier transzformációs elven működő spektrofotométerek érzékenysége elméletileg nagyobb, mint a diszperziós elven működő készülékeké, mivel a jel-zaj viszony azzal, hogy a készülék érzékelője egyidejűleg észleli a teljes spektrumot, jelentősen megnő. Ezt az egyidejű észlelést nevezzük a módszer multiplex jellegének. Ahhoz, hogy ez a módszer jelentősen elterjedjen, szükség volt néhány fejlesztésre: - a He-Ne lézer alkalmazása - a gyors Fourier transzformációs (FFT) algoritmus (Cooley-Tukey, 1965) A fotoakusztikus spektroszkópiáról A transzmissziós infravörös gázelemzőket szinte bármilyen összetevő mérésére alkalmassá lehet tenni, de inkább csak emissziómérésre használatosak. Ehhez képest előrelépés a fotoakusztikus detektálás, ezzel nagyobb érzékenység és stabilitás érhető el. Minden spektroszkópiai módszer olymódon nyújt mennyiségi és minőségi információt, hogy megméri azt a fénymennyiséget, amelyet az anyag elnyel. A fotoakusztikus spektroszkópia (a továbbiakban PAS) egyszerűen ugyanezt méri- érzékenyebb módszerrel. A PAS-on alapuló gázérzékelőket mind szabad téren, mind zárt térben széleskörűen alkalmazzák. A tipikus példák: a légkör mérgező és szennyező gáztartalmának folyamatos figyelése (monitorálása), gáznemű szennyezők azonosítása és levegőminta vétele olyan helyeken, mint például laboratóriumok, termelőüzemek, vegyszerraktárak. A fotoakusztikus hatás néven ismert jelenség lényege: egy zárt edényben levő minta hangkibocsátása szaggatott fény abszorpciójának hatására. Ha egy gázt fénnyel sugárzunk be, az a beeső fényenergiának a töménységétől függő, arányos részét nyeli el. Az elnyelt fényenergia hő formájában azonnal felszabadul, ez pedig nyomásnövekedést okoz. Ha a beeső fényt adott
6 frekvenciával modulálják, a nyomásnövekedés a moduláló frekvenciával azonos periódusú lesz. Mint ismeretes, nyomáshullámokat, vagy hanghullámokat mikrofon segítségével könnyűszerrel mérhetünk. A kibocsátott hang intenzitása több tényezőtől függ; az anyag természetétől és töménységétől, továbbá a beeső fény intenzitásától. Egy fotoakusztikus mérési elrendezés lényeges részei: (1) a gázmintát befogadó mérőcella (2) fényforrás (3) a fényt moduláló valamilyen eszköz (rendszerint chopper) (4) a hangot mérő érzékelő (rendszerint mikrofon) (5) valamilyen jelfeldolgozó eljárás. Az elnyelt fénymennyiség vagy a felszabaduló hőenergiának, vagy pedig az ezzel kapcsolatos nyomásnövekedésnek a mérése útján határozható meg. Mindkét paraméter arányos az elnyelő részecskék koncentrációjával. Mivel a kalorimetriás érzékelőknek hosszú az átviteli idejük és nem elég érzékenyek, szívesebben mérik a nyomásváltozást. A lüktető nyomást kitűnően érzékeli egy mikrofon, amely nagy érzékenységgel, stabilitással és széles dinamika-tartománnyal rendelkezik. A PAS mérések során kondenzátor mikrofonokat használnak, amelyek nagypontosságúak, stabilak, megbízhatóak és rendkívül jól meghatározott tulajdonságokkal rendelkeznek. A kondenzátor mikrofon egy vékony fémmembránból áll, amelyet a merev hátlaphoz szoros közelségbe szerelnek. Ez a kettő együtt levegő dielektrikumú kapacitást alkot, amelynek értéke a lemezek közötti távolsággal együtt változik. A mikrofonon belüli nyomás csaknem állandó, mert ürege-egy kis lyuk kivételével-zárt. Ahogyan a mérőcellában a nyomás nő és csökken, úgy mozog kifelé és befelé a hajlékony membrán, és ennek megfelelően változik a kapacitás értéke a lemezek között. A kapacitást úgy mérhetik, ha a mikrofonra állandó töltést alkalmaznak, és mérik a fellépő feszültségváltozást. Ez a váltakozó feszültség pontos lenyomata a mérőcellában kialakuló nyomásingadozásoknak. Ha a mérendő gáz töménysége a cellában 10-9 (ppb!), akkor a hőmérséklet emelkedése 10-8 K nagyságrendű, a nyomásváltozás ennek hatására 10-5 Pa, a mikrofon membránja pedig m- rel mozdul el. A bemutatandó készülék leírása A műszer egy BRÜEL & KJAER 1301 típusú, fotoakusztikus érzékeléssel működő FTIR spektrométer. A 1301 típusú gázelemző nagypontosságú, megbízható és stabil mérő-műszer mikroprocesszoros felépítéssel. A műszert egyszerre hét gáz mérésére állíthatjuk be a megfelelő infravörös sávok kiválasztásával. A 1301 érzékelési küszöbe a gáz anyagától függ, jellemzően
7 egyszázad ppm sávba esik. A mérési eredmények megbízhatóságát az önellenőrző rendszer biztosítja, a pontosságot az szavatolja, hogy a műszer képes a hőmérséklet, a vízgőz hatása és más ismert gázok hatásának kiküszöbölésére (kompenzálására). A gép a mérési eredményeket automatikusan eltárolja, később kinyomtatható, vagy a spektrum összevethető a számítógép spektrum-könyvtárával. Hordozható, és nem igényel sem bemelegedési időt, sem újrakalibrálást a szállítás után, ami különösen alkalmassá teszi a szennyezés helyszínén történő vizsgálatok elvégzésére. Zárt és nyílt térben egyformán jól használható. Mivel a fotoakusztikus gázelemző mérőkamrája csak mintegy három köbcentiméteres, ennek átöblítése gyors, és a műszer egész mérete is kedvező lehet. A gázelemző hordozhatósága feleslegessé teszi mintagyűjtő szerkezetek alkalmazását, egyúttal a minta tárolásával bevitt hibákat is kiküszöböli. A módszer további előnye, hogy a levegőminta beszívása után egy perccel már eredményt kapunk a képernyőn. Mintegy másfél percenként egy új mintát feldolgozva folyamatokat követhetünk a műszerrel. A mérési és dokumentálási szakaszban sincs feltétlenül szükség számítógépre, a műszernek saját grafikus képernyője és floppy meghajtója van, nyomtató csatlakoztatható. Egy teljes mérési ciklus: 1. ábra. A PAS készülék optikai és mintavételi rendszerének sémája 1. A szivattyú friss levegőmintát szív a két szűrőn keresztül a mérőrendszerbe, ezzel kiöblíti a régi mintát. 2. Az új mintát a be- és kimenő szelepekkel bezárjuk a mérőkamrába. 3. Az infravörös fényforrás fényét tükrökkel összegyűjtjük, a tükörrendszerben egy mozgó tükör nagyon kis szögben rezeg, így folyamatosan változtatja a fény hullámhosszát és interferogramot hoz létre. A két tükör felületéről visszaverődő sugarak a sugárosztón áthaladva, illetve visszaverődve egyesülneka mozgó tükörnek az álló tükörhöz viszonyított pillanatnyi helyzetétől függően- konstruktív ill. destruktív interferencia fellépése közben. Az infravörös fény az interferométerből a cella ablakán
8 keresztül a mérőkamrába jut. Az infravörös forrás, az interferométer és a mérőkamra sugármenetében még egy félvezető lézer is működik, amelynek interferenciája szinkronizálja a folyamatot. 4. A fényt a mérendő gáz molekulái elnyelik, ettől a gáz hőmérséklete nő. Mivel a fény villog, a hőmérséklet és a nyomás is periodikusan nő és csökken, tehát hang keletkezik a lezárt cellában. 5. A hangintenzitást a cellába szerelt két mikrofon méri, a jel a gáz koncentrációjával arányos lesz. 6. Az elektromos jelet Fourier transzformálva kapjuk az elnyelési spektrumot. Ebből a különböző gázok jellegzetes elnyelési sávját kijelölve koncentráció értékeket számolhatunk. A készülékkel így (mivel a mérési ciklus egészen rövid) a mintavételi hely koncentráció-idő diagramját is fel tudjuk venni. Az alábbiakban bemutatunk néhány mérési eredményt, amelyek a fentiekben ismertetett készülékkel készültek. 2. ábra Egy szennyvízkezelő zárt kiegyenlítőtartálya légterének elemzése. A koncentrációnövekedést a tartály töltésének "beindítása" okozta, vagyis a víz "levegőztetése".
9 3. ábra Egy vákuumszivattyú légzőjén mért emisszió alakulása az idő függvényében. Látható az egyes anyagmozgatási, technológiai lépések "eredménye" 4. ábra A tiszta levegő (a Mátra egyik nevesincs csúcsán felvett spektrum) és egy szennyvízkezelő légterében felvett spektrum közötti különbség.
10 5. ábra A készülék NEM alkalmas a nagyon kis koncentrációk mérésére, mert, mint az az 5. ábrából is látható, a refencia koncentráció (44 mg/m 3 benzol) tizedrésze (4,4 mg/m 3, ami az egészségügyi határérték közelében van) már "eltűnik" a háttér spektrumában. A legnagyobb háttérzavarást a levegő vízgőztartalma okozza. A mérés elvéből adódóan azonban szinte egyedül alkalmas olyan mérési feladat megoldására, amikor illékony szénhidrogének mellett ammóniát is meg kell határozni. Minden egyéb módszer csak külön mintavétel és elemzés után tudja ezt a kétféle anyagot meghatározni, és akkor is csak egy adott időtartamra vonatkozó átlagértéket ad. Ez a készülék viszont "in situ", azaz a keletkezés helyén és idejében ad koncentrációértékeket. Ezt illusztrálja a 6. ábra, ami egy készülékcsoport közös légzőjének emissziós mérési eredménye.
11 6. ábra Véggáztisztító készülék bemenő levegőáramának mérési eredménye. A csatlakozó készülékekből kilépő anyagok függvényében vagy csak benzol, vagy ammónia ÉS benzol együttesen kerül a készülékre. A fentiekben bemutatott készülék nagyon sokféle levegőszennyezettség mérési feladatra alkalmas, de tudomásul kell venni a korlátait is. Mint említettük, NEM alkalmas alacsony koncentrációk mérésére, éppen a zavaró háttér (páratartalom) hatása miatt. Az infravörös spektrumok széles, egymással is átfedő elnyelési sávjai miatt az anyag azonosítására kiegészítő mérések szükségesek. Nagyon jó eszköz viszont az emisszió mérésére, mégpedig ezen belül is a különböző üzemállapotok jellemzésére és a levegőszennyezés forrásainak pontosítására (idő és hely meghatározása).
12 Az idegen szavak magyarázata az 1. ábrából Interferometer Rotable platform IR-source Input mirror, Output mirror Beamsplitter Infra-red rays to measurement chamber Alignment mirror Fixed mirror Platform mirror Measurement chamber & pump system Optical window Microphone Inlet valve, Outlet valve Measurement chamber Infra-red rays from interferometer Pump Air outlet, Air shunt Shunt valve Flush valve Internal/External fine air-filter Sampling tube Coarse air-filter Air-inlet, sampling point Interferométer, (hullámok egymásrahatásából kialakuló "fény-kép" készítő eszköz). Forgatható sík tartó Infravörös fényforrás Belépő tükör, Kilépő tükör Fényelosztó test Infravörös fénysugár a mérőcellába Beállító tükör Állandó helyzetű tükör Tükörtartó sík Mérőcella és szivattyú rendszer Fényáteresztő ablak Mikrofon Belépő szelep, Kilépő szelep Mérőcella Infravörös fénysugár az interferométerből Szivattyú Levegő kilépés, Levegő megosztás Megosztó szelep Öblítőszelep Belső/Külső finom levegőszűrő Mintavevő cső Durva levegőszűrő Levegő belépés, mintavételi pont
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül
& Környezetvédelmi mérések fotoakusztikus FTIR mszerrel 1
& Környezetvédelmi mérések fotoakusztikus FTIR mszerrel 1 Ritz Ferenc Környezetvédelmi és Biztonságtechnikai Fosztály nyugdíjas munkatársa Richter Gedeon Nyrt., 1103 Budapest, Gyömri út. 19-21 1. Bevezetés
Molekulaspektroszkópiai módszerek UV-VIS; IR
Molekulaspektroszkópiai módszerek UV-VIS; IR Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek
A fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
Abszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés A spektroszkópia, spektrofotometria az egyik legelterjedtebb anyagvizsgálati módszer. Az igen sokféle mérési technika közös alapja az, hogy az anyagok molekuláris,-
Abszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind
2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN
1 2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN 01/2005:20224 Az infravörös spektrofotométereket a 4000 650 cm -1 (2,5 15,4 µm) közti, illetve néhány esetben egészen a 200 cm
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel A gyakorlat célja: Megismerkedni az UV-látható spektrofotometria elvével, alkalmazásával a kationok, anionok analízisére.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Mérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), első kérdésünk valószínűleg az lesz, hogy mi ez az anyag, milyen
Sugárzásos hőtranszport
Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
Az infravörös (IR) sugárzás. (Wikipédia)
FT-IR spektroszkópia Az infravörös (IR) sugárzás (Wikipédia) Termografikus kamera (Wikipédia) Termografikus fényképek (Wikipédia) Termografikus fényképek (Wikipédia) IR spektroszkópia Tartomány: 10-12800
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16
AER MEDICINALIS. Levegő, gyógyászati
Aer medicinalis Ph.Hg.VIII. Ph.Eur.6.3-1 01/2009:1238 AER MEDICINALIS Levegő, gyógyászati DEFINÍCIÓ Nyomás alatt lévő környezeti levegő. Tartalom: 20,4 21,4 %V/V oxigén (O 2 ). SAJÁTSÁGOK Küllem: színtelen
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Abszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
Fény, mint elektromágneses hullám, geometriai optika
Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Optikai spektroszkópia az anyagtudományban 7. Infravörös spektroszkópia
Optikai spektroszkópia az anyagtudományban 7. Infravörös spektroszkópia Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu Optikai spektroszkópia az anyagtudományban 7. 1 Molekularezgések Optikai
ATOMEMISSZIÓS SPEKTROSZKÓPIA
ATOMEMISSZIÓS SPEKTROSZKÓPIA Elvi jellemzők, amelyek meghatározzák a készülék felépítését magas hőmérsékletű fényforrás (elsősorban plazma, szikra, stb.) kis méretű sugárforrás (az önabszorpció csökkentése
A lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
KÖNYEZETI ANALITIKA BEUGRÓK I.
KÖNYEZETI ANALITIKA BEUGRÓK I. 1.Mit nevezünk egy mérőműszert illetően jelnek és zajnak? jel az, amit a műszer mutat, amikor a meghatározandó komponenst mérjük vele zaj az, amit a műszer akkor mutat, amikor
Méréstechnika. Hőmérséklet mérése
Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Az infravörös spektroszkópia elméleti és méréstechnikai alapjai http://hu.wikipedia.org/wiki/infravörös_spektroszkópia
Az infravörös spektroszkópia elméleti és méréstechnikai alapjai http://hu.wikipedia.org/wiki/infravörös_spektroszkópia 1. Az infravörös spektroszkópia spektrális tartományai és a vizsgálható molekuláris
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
Speciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
Kamarás Katalin. Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia
Bevezetés Fourier-transzformációs infravörös spektroszkópia Kamarás Katalin MTA Szilárdtestfizikai Kutató Intézet Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia
Abszorpciós fotometria
2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic
KS-502-VS ELŐNYPONTOK
KS-502-VS MIKROPROCESSZOR VEZÉRLÉSŰ NAGY HATÓTÁVOLSÁGÚ LEVEGŐ, GÁZMINTAVEVŐ GÁZMOSÓEDÉNYEKEN ÉS / VAGY SZORPCIÓS, VOC ÉS / VAGY PUF CSÖVEKEN TÖRTÉNŐ MINTAGÁZ ÁTSZÍVÁSRA Kalibrált mikró venturi térfogatáram-mérő.
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:
GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT
a NAT /2008 számú akkreditálási ügyirathoz
Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1523/2008 számú akkreditálási ügyirathoz Az ECO DEFEND Környezetvédelmi Mérnöki Iroda Kft. (1113 Budapest, Györök u. 19.) akkreditált mûszaki területe
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
1.1 Emisszió, reflexió, transzmisszió
1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.
Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.
Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
ÁLTALÁNOS METEOROLÓGIA 2.
ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK 06 Víz a légkörben világóceán A HIDROSZFÉRA krioszféra 1338 10 6 km 3 ~3 000 év ~12 000 év szárazföldi vizek légkör 24,6 10 6 km 3 0,013
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Terahertz spektroszkópiai mérések
0 Terahertz spektroszkópiai mérések Orvos és gyógyszerész hallgatóknak szerző: Dr. Orbán József oktatási intézmény: Pécsi Tudományegyetem Általános Orvosi Kar Biofizikai Intézet kutatóhely: MTA TKI Nagy
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Távérzékelés, a jöv ígéretes eszköze
Távérzékelés, a jöv ígéretes eszköze Ritvayné Szomolányi Mária Frombach Gabriella VITUKI CONSULT Zrt. A távérzékelés segítségével: különböz6 magasságból, tetsz6leges id6ben és a kívánt hullámhossz tartományokban
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai
A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája
Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható
KS-404 AUTOMATIZÁLT IZOKINETIKUS AEROSOL - PORMINTAVEVŐ MÉRŐKÖR, HORDOZHATÓ BELSŐTÉRI KIVITEL ISO 9096 STANDARD KÁLMÁN SYSTEM SINCE 1976
KS-404 AUTOMATIZÁLT IZOKINETIKUS AEROSOL - PORMINTAVEVŐ MÉRŐKÖR, HORDOZHATÓ BELSŐTÉRI KIVITEL ISO 9096 STANDARD KÁLMÁN SYSTEM SINCE 1976 ELŐNYPONTOK Kalibrált venturi térfogatáram-mérő. Négyféle mérési
állapot felügyelete állapot rendelkezésre
Forgógépek állapot felügyelete állapot megbízhat zhatóság rendelkezésre állás A forgógépek állapot felügyelete jelenti az aktuális állapot vizsgálatát, a további üzemeltetés engedélyezését ill. korlátozását,
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2019.03.11. mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele különböző ph-jú
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás Módosított változat
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2018.03.19. Módosított változat mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
Infravörös, spektroszkópia
Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény
A TÖMEGSPEKTROMETRIA ALAPJAI
A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására
Nemzeti Akkreditáló Hatóság. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (2) a NAT /2014 nyilvántartási számú akkreditált státuszhoz
Nemzeti Akkreditáló Hatóság SZŰKÍTETT RÉSZLETEZŐ OKIRAT (2) a NAT-1-1593/2014 nyilvántartási számú akkreditált státuszhoz A MEDIO TECH Környezetvédelmi és Szolgáltató Kft. (9700 Szombathely, Körmendi út
2. ZH IV I.
Fizikai kémia 2. ZH IV. kérdések 2018-19. I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me=
Makromolekulák szerkezetvizsgálati módszerei: IR, CD
Makromolekulák szerkezetvizsgálati módszerei: IR, CD Mi történhet, ha egy mintát fénnyel világítunk meg? megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR, CD spektr. Smeller László
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
Színképelemzés. Romsics Imre 2014. április 11.
Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok
9. Fotoelektron-spektroszkópia
9/1 9. Fotoelektron-spektroszkópia 9.1. ábra. Fotoelektron-spektroszkópiai módszerek 9.2. ábra. UP-spektrométer vázlata 9/2 9.3. ábra. N 2 -fotoelektron-spektrum 9.4. ábra. 2:1 mólarányú CO-CO 2 gázelegy
Az infravörös spektroszkópia analitikai alkalmazása
Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai
Optikai spektroszkópiai módszerek
Mi történhet, ha egy mintát fénnyel világítunk meg? Optikai spektroszkópiai módszerek megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR Smeller László kibocsátott fény Lumineszcencia
Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok
Lézerek Lézerek A lézerműködés feltételei Lézerek osztályozása Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Extrém energiák Alkalmazások A lézerműködés feltételei
Milyen színűek a csillagok?
Milyen színűek a csillagok? A fényesebb csillagok színét szabad szemmel is jól láthatjuk. Az egyik vörös, a másik kék, de vannak fehéren villódzók, sárga, narancssárga színűek is. Vajon mi lehet az eltérő
Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elemanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Kémiai szenzorok 1/ 18 Elemanalitika Elemek minőségi és mennyiségi meghatározására
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
. T É M A K Ö R Ö K É S K Í S É R L E T E K
T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!