GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

Hasonló dokumentumok
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

Hipotézis vizsgálatok

[Biomatematika 2] Orvosi biometria

Hipotézis vizsgálatok

Statisztika Elıadások letölthetık a címrıl

Statisztika elméleti összefoglaló

Bevezetés a hipotézisvizsgálatokba

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás

Többváltozós lineáris regressziós modell feltételeinek

Normális eloszlás paramétereire vonatkozó próbák

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Matematikai statisztikai elemzések 4.

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

egyetemi jegyzet Meskó Balázs

Matematikai statisztikai elemzések 4.

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József

Nemparaméteres próbák

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.

VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Dr. Karácsony Zsolt. Miskolci Egyetem november

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?

Kettőnél több csoport vizsgálata. Makara B. Gábor

Adatok statisztikai értékelésének főbb lehetőségei

Függetlenségvizsgálat, Illeszkedésvizsgálat

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

y ij = µ + α i + e ij

GVMST22GNC Statisztika II.

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

Kabos: Statisztika II. ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Excel segédlet Üzleti statisztika tantárgyhoz

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

Biostatisztika Összefoglalás

KÖVETKEZTETŐ STATISZTIKA

Eloszlás-független módszerek 13. elıadás ( lecke)

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biostatisztika Összefoglalás

Kiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.

Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n

Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018

Normális eloszlás tesztje

Az első számjegyek Benford törvénye

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Több valószínűségi változó együttes eloszlása, korreláció

Biostatisztika VIII. Mátyus László. 19 October

Korreláció és lineáris regresszió

A Statisztika alapjai

Matematikai statisztika c. tárgy oktatásának célja és tematikája

A konfidencia intervallum képlete: x± t( α /2, df )

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

Kísérlettervezés alapfogalmak

Illeszkedésvizsgálati módszerek összehasonlítása

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre

Hipotézisvizsgálat R-ben

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26

Varianciaanalízis 4/24/12

Statisztikai módszerek 7. gyakorlat

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

[Biomatematika 2] Orvosi biometria

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

A pont példájának adatai C1 C2 C3 C

Variancia-analízis (VA)

STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)

Átírás:

GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő értéket adunk meg Hipotézisvizsgálat Feltételezett paraméter Álĺıtás helyességét igazoljuk Hipotézis Egy v több sokaságra vonatkozó álĺıtás. Vonatkozhat eloszlásra, v az eloszlás egyes paramétereire.

Null- és alternatív hipotézis Nullhipotézis (H 0 ) és alternatív- (v. ellen-) hipotézis (H 1 ): Kölcsönösen kizárják egymást A nullhipotézis rendszerint egyszerű Egy hipotézis lehet Egyszerű: egyenlőség Összetett: több hipotézis összessége Példák: H 0 : µ = m 0 H 1 : µ m 0 H 0 : µ = m 0 H 1 : µ < m 0 Alapvetően a nullhipotézisről döntünk Az ellenhipotézis segítségével Pontosan 1 hipotézist fogadunk el (Ha a nullhipotézist elutasítjuk, az ellenhipotézist elfogadjuk)

Statisztikai próba 1/3 Statisztikai próba Eljárás, mely során a minta alapján döntünk a nullhipotézis elfogadásáról, vagy elutasításáról. Próbafüggvény A mintaelemek olyan függvénye melynek valószínűségeloszlása megadható biz adatok ismeretében ha elfogadjuk a nullhipotézist.

Statisztikai próba 2/3 Példa: z-próbafüggvény Ha H 0 : µ = m 0 az alapsokaság normális eloszlású a minta független, azonos eloszlású a sokaság szórása ismert, σ standard normális eloszlású. z = µ m 0 σ n

Statisztikai próba 3/3 A próbafüggvény konkrét mintára kiszámított értéke eshet a [c a ; c f ] elfogadási tartományba (ekkor H 0 -t elfogadjuk), vagy a komplementer elutasítási (v kritikus) tartományba (ekkor H 0 -t elutasítjuk). Szignifikanciaszint A próbafüggvény kritikus tartományba esésének valószínűsége A kritikus tartomány elhelyezkedése szerint lehet bal oldali kétoldali jobb oldali

Kritikus tartományok és értékek

Kritikus tartományok és értékek 2

Vizsgálati hibák A döntés valószínűségi kockázattal jár Ha H 0 igaz, mégis elvetjük ez az elsőfajú hiba. Valószínűsége α a próba szignifikanciaszintje. Ha H 0 nem igaz mégsem vetjük el ez a másodfajú hiba. Valószínűsége β. igaz elfogadott hipotézis hipotézis H 0 H 1 H 0 helyes döntés elsőfajú hiba 1 α α H 1 másodfajú hiba helyes döntés β 1 β A másodfajú hiba súlyosabb, hiszen ekkor a hibás eredmény korrigálására nincs lehetőség. Erőfüggvény 1 β (másodfajú hiba elkerülésének valószínűsége) az egyszerű alternatív hipotézishez tartozó ismérvértékek függvényében.

Vizsgálati hibák 2

A statisztikai hipotézisvizsgálat menete 1 A H 0 null- és H 1 alternatív hipotézis megfogalmazása. 2 A megfelelő próbafüggvény megkeresése. 3 A szignifikanciaszint megválasztása. 4 Az elfogadási és visszautasítási tartományok meghatározása. 5 Mintavétel, a mintajellemzők és ebből a próbafüggvény értékének meghatározása 6 Döntünk a H 0 és H 1 hipotézisekről.

Egymintás z-próba H 0 : µ = m 0 H 1 : µ < m 0 vagy H 1 : µ > m 0 vagy H 1 : µ m 0 A sokaság normális eloszlású; a σ szórás ismert. z = µ m 0 σ n Konkrét mintában: z 0 = x m 0 σ n Az elfogadási tartomány határai a következők: Alternatív hipotézis µ < m 0 [ µ m 0 ] µ > m 0 Elfogadási tartomány [z α ; [ z α ; z 1 α ] ; z 2 2 1 α ] Használható bármely véges szórású, nagy elemszámú független minta esetén is (becsült szórással).

Egymintás t-próba H 0 : µ = m 0 H 1 : µ < m 0 vagy H 1 : µ > m 0 vagy H 1 : µ m 0 A sokaság normális eloszlású; a σ szórás nem ismert. t = µ m 0 Konkrét mintában: t 0 = x m 0 s σ n Az elfogadási tartomány határai a következők: Alternatív hipotézis µ < m 0 µ m 0 µ > m 0 [ Elfogadási tartomány t szf α ; [ [ ] t szf α ; t1 szf ] ] α ; t szf 1 α 2 2 n

Szórásra vonatkozó próba H 0 : σ = σ 0 H 1 : σ < σ 0 vagy H 1 : σ > σ 0 vagy H 1 : σ σ 0 A sokaság normális eloszlású. χ 2 = (n 1) σ2 σ 2 0 Konkrét mintában: χ 2 = (n 1) s2 σ0 2, mely szf = n 1 szabadságfokú χ 2 eloszlást követ. Az elfogadási tartomány határai a következők: Alternatív hipotézis σ < σ 0 [ [ σ σ 0 ] σ > σ 0 ] Elfogadási tartomány [χ 2 α,szf ; χ 2 α 2,szf ; χ2 1 [0; α 2,szf χ 2 1 α,szf

Sokasági arányszámmal (valószínűséggel) kapcs próba P meghatározott típusú egyedek előfordulásának valószínűsége. Azt vizsgáljuk, hogy ez az arány megfelel-e egy feltételezett P 0 aránynak (azaz H 0 : P = P 0 ). Legyen { 1 ha megvan a tulajdonság, ξ i = 0 ha nincs. Ekkor M(ξ i ) = P 0 és D(ξ) = P 0 (1 P 0 ), illetve p = ξi n, M( p) = P P 0, D( p) = 0 (1 P 0 ) n. Ebből: z P0 = p P 0 P 0 (1 P 0 ) n standardizált; nagy n esetén pedig közel normális.

Kétmintás statisztikai próbák Két sokaság összehasonĺıtása a hipotézis a két ismérv összehasonĺıtására vonatkozik. Pl: két technológia, férfiak/nők, falu/város összehasonĺıtása A két sokaságot két véletlen, független minta képviseli

Várható értékek különbségének vizsgálata Két sokaság: µ 1, σ 1 és µ 2, σ 2 ; véletlen független minták. H 0 : µ 1 = µ 2 H 1 : µ 1 < µ 2 vagy H 1 : µ 1 µ 2 vagy H 1 : µ 1 > µ 2 Ha mindkét sokaság normális eloszlású és a szórások ismertek: M( µ 1 µ 2 ) = 0, és D( µ 1 µ 2 ) = D( µ 1 ) + D( µ 2 ) = σ2 1 (függetlenség), így n 1 + σ2 2 n 2 z = µ 1 µ 2, konkrét mintára: z σ 2 0 = 1 n 1 + σ2 2 n 2 x 1 x 2 σ 2 1 n 1 + σ2 2 n 2 standard normális eloszlást követnek. Ha a szórás nem ismert, de a minta nagy, σ helyett σ, ill. σ helyett s használatos.

Várható értékek különbségének vizsgálata kis minta (kétmintás t-próba) Kis minta esetén, ha normális eloszlású sokaságok az ismeretlen szórások egyenlősége feltételezhető Ekkor t = (n1 1) σ 2 1 +(n 2 1) σ 2 2 n 1 +n 2 2 µ 1 µ 2, 1 + 1 n1 n2 ill.: t 0 = (n1 1)s 2 1 +(n 2 1)s 2 2 n 1 +n 2 2 x 1 x 2 1 + 1 n1 n2 szf = n 1 + n 2 2 szabadságfokú Student t-eloszlást követ.

Két sokasági arányra vonatkozó próba H 0 : P 1 P 2 = ε 0 Két nagy minta esetén a próbafüggvény: z p = ˆp 1 ˆp 2 ε 0 ˆp1 (1 ˆp 1 ) n 1 + ˆp 2(1 ˆp 2 ) n 2, ill.: z 0(p) = p 1 p 2 ε 0 p1 (1 p 1 ) n 1 + p 2(1 p 2 ) n 2

Két sokasági szórás egyezőségére vonatkozó (F -) próba A szórások egyezését kétmintás t-próbánál feltételezzük itt ellenőrizzük. A sokaság eloszlása (jó közeĺıtéssel) normális H 0 : σ 1 = σ 2 A próbafüggvény: F = σ 1 σ 2 szf 1 = n 1 1 és szf 2 = n 2 1 szabadságfokú F eloszlást alkot. Táblázatból c f olvasható ki, F szf 1 szf 2 (p) = 1 F szf 2 szf 1 (1 p) Alt. hipotézis: [ σ 1 < σ 2 [ [ σ 1 σ 2 ] [ σ 1 < σ 2 ] Elfogadási tart. F szf 1 szf 2 (α) ; F szf 1 szf 2 ( α ); F szf 1 szf 2 2 (1 α 2 ) 0; F szf 1 szf 2 (1 α)

Egyéb vizsgálatok Eddig: paraméterek helyességét vizsgáltuk. Most: magát az eloszlást Illeszkedésvizsgálat Egy valószínűségi változó eloszlására vonatkozó hipotézis vizsgálata. 1 Ha az eloszlás paramétereire is van feltételezés: tiszta illeszkedésvizsgálat. 2 Ha csak az eloszlás típusára: becsléses illeszkedésvizsgálat.

Illeszkedésvizsgálat 1 Kategóriák Előfordulási gyakoriság Előfordulási ismérvértéke a mintában a konkrét mintában valószínűség X 1 ν 1 n 1 P 1.... X i ν i n i P i.... X k ν k n k P k Összesen n n 1 H 0 : P(X i ) = P i minden i-re H 1 : létezik olyan i, hogyp(x i ) P i Ekkor M(ν i ) = np i, az eltérés kifejezhető mint (ν i np i ) 2.

Illeszkedésvizsgálat 2 χ 2 = k i=1 (ν i np i ) 2 np i = k i=1 (ν i νi )2 νi, ami szf = k b 1 szabadságfokú χ 2 -eloszlást követ b = becsült paraméterek száma a P i -k meghatározásánál k = a kategóriák száma. H 1 esetén a próbafüggvény nagyobb jobb oldali kritikus tartomány. [ ] Az elfogadási tartomány 0, χ 2 1 α(szf ). Konkrét minta esetén χ 2 0 = k i=1 (n i νi )2 νi,

Függetlenségvizsgálat Függetlenségvizsgálat Azon nullhipotézis vizsgálata, hogy két ismérv független egymástól. Ha a teljes sokaságot ismerjük Statisztika I. Itt: mintából. H 0 : P ij = P i P j minden i, j-re H 1 : létezik olyan i, j, hogyp ij P i P j χ 2 = s t i=1 j=1 (ν ij np i P j ) 2 np i P j = konkrét mintára: = s t (ν ij νij )2 i=1 j=1 s ν ij t (n ij nij )2 n i=1 j=1 ij ami χ 2 eloszlás s t 1 szabadságfokkal. Elfogadás, ha a [0; χ 2 1 α(p) ] tartományba esik.

Varianciaanaĺızis Varianciaanaĺızis Több azonos szórású normális eloszlású mintát vizsgál várható érték egyezésre. A sokaságot M részsokaságra bontjuk nominális skála alapján, ezekből mintát veszünk. ξ ij = µ + β j + ε ij ξ ij : j-edik sokaságból jövő i-edik megfigyelés µ: az egész sokaság várható értéke β j : sokasági hatás; a j részsokaságra jellemző konstans ε ij : véletlen ingadozás N(0, σ) szerint.

Varianciaanaĺızis 2 H 0 : µ i = µ j minden i, j-re H 1 : létezik olyan i, j, hogyµ i µ j M j=1 nj i=1 (ξ ij ˆµ) 2 alapján a próbafüggvény F = ˆ σ 2 K M j=1 (n j 1)ˆσ 2 j n M ami szf 1 = M 1 és szf 2 = n M szabadságfokú F -eloszlás, ha H 0 igaz. H 1 esetén az érték nagyobb jobb oldali kritikus tartomány.

Összefoglalás próba H 0 próbafüggvény pf. eloszl. elfogadási tartomány ] Egymintás z µ = m 0 z = µ m 0 N(0, 1) [z α2 ; z σ 1 α2 n [ ] Egymintás t µ = m 0 z = µ m 0 t (n 1) t (n 1) α ; t (n 1) σ 1 α n 2 2 ] Szórásra v. σ = σ 0 χ 2 = (n 1) σ2 σ 0 2 χ 2 α,(n 1) [χ 2 α2,szf ; χ21 α2 ],szf p P Arány P = P 0 z P0 = 0 N(0, 1) [z α2 ; z P0 (1 P 0 ) 1 α2 Kétmintás z µ 1 = µ 2 n ] z = µ 1 µ 2 σ 1 2 N(0, 1) [z α2 ; z 1 α2 + σ2 2 n 1 n 2 [ ] Kétmintás t µ 1 = µ 2 µ 1 µ 2 t (n 1 +n 2 2) t (n 1 +n 2 α 2) ; t (n 1 +n 2 2) 1 α 2 2 2 arány v. P 1 P 2 = ε 0 z p = (n 1 1) σ 2 1 +(n 2 1) σ2 2 n 1 +n 2 2 1 n1 + 1 n 2 ˆp 1 ˆp 2 ε 0 ˆp1 (1 ˆp 1 ) n 1 + ˆp 2 (1 ˆp 2 ) n 2 N(0, 1) F -próba σ 1 = σ 2 F = σ 1 σ 2 Illeszkedés P(X i ) = P i i χ 2 = k (v i np i ) 2 i=1 np i Függetlenség P ij = P i P j i, j χ 2 = s tj=1 (v ij np i P j ) 2 i=1 Varianciaa. µ i = µ j i, j F = np i P j ˆσ 2 K Mj=1 (n j 1) ˆσ 2 j n M F n 1 1 n 2 1(p) χ 2 α,(k b 1) χ 2 α,(s t 1) F M 1 n M(p) [z α2 ; z 1 α2 ] [ F n 1 1 n 2 1( α 2 ); F n 1 1 n 2 1(1 α 2 [ ] ) 0; χ 2 1 α(szf ) [ ] 0; χ 2 1 α(p) [ 0; F M 1 n M(1 α 2 ) ]

8.1. Gyakorlófeladat A zacskóba csomagolt 1 kg-os kristálycukor tömegének ellenőrzésére 10 elemű véletlen mintát vettünk. Feltételezhető, hogy a csomagolóautomata normális eloszlással tölt. Mérési eredmények dkg-ban: 96; 96; 97; 100; 98; 98; 96; 99; 101; 102. A töltősúly szórásának megengedett mértéke 1 dkg. Feladat: (a) Ellenőrizzük, hogy a kristálycukor töltési tömege megfelel-e a szabványnak! (α = 1%.) (b) Ellenőrizzük 5%-os szignifikanciaszinten azt a feltevést, hogy a csomagolási tömeg szórása meghaladja az 1 dkg-os mértéket!

8.1. Gyakorlófeladat (a) Összefoglalás + (a) feladat µ 0 = 100, x i = 96; 96; 97; 100; 98; 98; 96; 99; 101; 102 (i = 1,..., 10). H 0 : µ = 100 H 1 : µ 100 Kétoldali próba z 0 = x m 0 σ n = 96 3+97+98 2+99+100+101+102 10 100 = 1, 7 1 1 10 [ ] Az elfogadási tartomány z α ; z 1 α = [ 2, 58; 2, 58]. 2 2 z 0 nem esik az elfogadási tartományba, H 0 -t elvetjük. 3,16 = 5, 38

8.1. Gyakorlófeladat (b) Egymintás szóráspróba H 0 : σ = 1 H 1 : σ > 1 Egyoldali próba, jobboldali kritikus tart. (xi x) 2 χ 2 0 = (n 1)s2 s 2 = σ0 2 n 1 x = 98, 3 s 2 = (96 98,3)2 (102 98,3) 2 10 1 = 42,1 9 = 4, 68 Ebből χ 2 0 = 42,1 1 = 42, 1. α = 5%, szf= n 1 = 9, a jobbo.-i kritikus érték χ 2 0,95(9) = 16, 9. 42, 1 > 16, 9, tehát a (jobb oldali) kritikus tartományba esik. A feltevés helytelen, a szórás nagyobb.

8.13. Gyakorlófeladat Egy marketinggel foglalkozó cég vezetője arra kiváncsi, hogy jól képzett munkatársainak ügynöki teljesítménye független-e az életkortól. Az adatokat úgy gyűjtötték, hogy egy hónap alatt hány darabot sikerült az ügynöknek eladni. A 600 elemű minta alapján: Eladások száma Kor 5-9 10-15 16-20 összesen -30 50 80 70 200 30-40 80 90 90 260 40+ 60 50 30 140 összesen 190 220 190 600 Befolyásolja-e az életkor az ügynökök munkájának eredményességét? (α = 5%)

8.13. Gyakorlófeladat: Függetlenségvizsgálat H 0 : függetlenség: P ij = P i P j i, j, H 1 : i, j : P ij P i P j Eladások száma Kor 5-9 10-15 16-20 összesen -30 50 63,3 80 73,3 70 63,3 200-13,3 176,89 6,7 44,89 6,7 44,89 30-40 80 82,3 90 95,3 90 82,3 260-2,3 5,29-5,3 28,09 7,7 59,29 40+ 60 44,3 50 51,3 30 44,3 140 15,7 246,49-1,3 1,69-14,3 204,49 összesen 190 220 190 600 χ 2 0 = s i=1 t j=1 (n ij n i n n n ) 2 n i n n n = s t (n ij nij) 2 i=1 j=1 nij A szf száma (s 1)(t 1), így a kritikus érték χ 2 1 α(szf ) = χ2 0,95(4) = 9, 49. Mivel 812 > 9, 49, a nullhipotézist elutasítjuk. = 812.