A kurzus során először az Abel-csoportokkal kapcsolatos algoritmikus kérdésekkel



Hasonló dokumentumok
15. LINEÁRIS EGYENLETRENDSZEREK

Vektorok, mátrixok, lineáris egyenletrendszerek

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a felbontási teste

Diszkrét matematika 2.

Gy ur uk aprilis 11.

3. Feloldható csoportok

Kongruenciák. Waldhauser Tamás

Diszkrét matematika 2. estis képzés

Bevezetés az algebrába 1

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

1. Mellékosztály, Lagrange tétele

KOVÁCS BÉLA, MATEMATIKA I.

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2. estis képzés

1. Mátrixösszeadás és skalárral szorzás

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

KOVÁCS BÉLA, MATEMATIKA I.

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

3. el adás: Determinánsok

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

Diszkrét matematika I.

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika II., 8. előadás. Vektorterek

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

Juhász Tibor. Lineáris algebra

Intergrált Intenzív Matematika Érettségi

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Alapvető polinomalgoritmusok

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

1. A kétszer kettes determináns

I. VEKTOROK, MÁTRIXOK

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Diszkrét matematika I.

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

összeadjuk 0-t kapunk. Képletben:

1. Homogén lineáris egyenletrendszer megoldástere

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

1. előadás: Halmazelmélet, számfogalom, teljes

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I.

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Mat. A2 3. gyakorlat 2016/17, második félév

Mátrixok 2017 Mátrixok

Algebra és számelmélet blokk III.

Gauss-Seidel iteráció

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Diszkrét matematika I. gyakorlat

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Csoportok II március 7-8.

11. DETERMINÁNSOK Mátrix fogalma, műveletek mátrixokkal

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Permutációk véges halmazon (el adásvázlat, február 12.)

1. Bázistranszformáció

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.


1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. A maradékos osztás

LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév

Gauss elimináció, LU felbontás

Számelméleti alapfogalmak

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

Gauss-eliminációval, Cholesky felbontás, QR felbontás

Számelmélet. 1. Oszthatóság Prímszámok

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Matematika A2a LINEÁRIS ALGEBRA NAGY ATTILA

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

Mátrixok. 3. fejezet Bevezetés: műveletek táblázatokkal

Vektorterek. =a gyakorlatokon megoldásra ajánlott

n =

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

Lineáris algebra (10A103)

Átírás:

1. fejezet Abel-csoportok 1.1. Algoritmikus kérdések Abel-csoportokban A kurzus során először az Abel-csoportokkal kapcsolatos algoritmikus kérdésekkel foglalkozunk. Abel-csoportokban általában additív jelölést használunk, tehát a csoportműveletet a + szimbólum jelöli. 1.2. Szabad Abel-csoportok A szabad objektumok fontos szerepet játszanak az algebrában, hiszen belőlük faktorképzés segítségével előállítható az összes algebrai struktúra. Például egy tetszőleges csoport felírható egy alkalmas szabad csoport faktorcsoportjaként. Az Abel-csoportok családjában a szabad Abel-csoportok játsszák ezt a szerepet. Definíció 1.2.1 Legyen F egy Abel-csoport, X pedig az F csoport egy részhalmaza. Az X halmazt szabad generátor-rendszernek nevezzük, ha X = F, valamint tetszőleges G Abel-csoport és tetszőleges f : X G leképezés esetén létezik pontosan egy homomorfizmus f : F G, úgy hogy f X = f. Egy G Abelcsoportot szabad Abel-csoportnak mondunk, ha van neki szabad generátorrendszere. 1

2 Abel-csoportok Példa 1.2.2 Tekintsük az egész számok Z csoportját az összeadásra nézve. Nyilván az X = {1} halmaz generálja a csoportot. Legyen G egy tetszőleges Abel-csoport, és tekintsünk egy f : X G leképezést; tegyük fel, hogy f(1) = g. Ha létezik f : Z G homomorfizmus melyre f X = f teljesül, akkor n Z esetén ( ) f(n) = f 1 + + 1 } {{ } n-szer = f(1) + + f(1) } {{ } n-szer = g + + g = ng. } {{ } n-szer Tehát, ha a kívánt homomorfizmus létezik, akkor az egyértelmű. A létezés igazolásához meg kell mutatni, hogy a fenti f leképezés homomorfizmus. Mivel, ng + mg = (n + m)g, így f(n + m) = (n + m)g = ng + mg = f(n) + f(m). Tehát f egy homomorfizmus, továbbá f(1) = 1g = g = f(g). Mivel f választása tetszőleges volt, X egy szabad generátor-rendszer, a Z csoport pedig szabad csoport. Példa 1.2.3 Legyen Z 2 = {0 2, 1 2 }, a 2-vel való osztás maradékainak kételemű csoportja. Ennek generátor-rendszere az X = {1 2 } halmaz. Állítjuk, hogy az X halmaz nem szabad generátor-rendszer. Legyen például Z 3 = {0 3, 1 3, 2 3 } a háromelemű maradékosztály csoport, és legyen f : 1 2 1 3. Ha f a f egy kiterjesztése, akkor f(0 2 ) = 0 3 kell, hogy teljesüljön. Viszont, f(0 2 ) = f(1 2 + 1 2 ) = f(1 2 ) + f(1 2 ) = 1 3 + 1 3 = 2 3. Tehát X nem szabad generátor-rendszer. Hasonló gondolatmenet mutatja, hogy Z 2 -ben nincs szabad generátor-rendszer, így az nem szabad Abel-csoport. Lemma 1.2.4 Legyen F egy Abel-csoport és legyenek X, Y szabad generátorrendszerek F-ben. Ekkor X = Y. BIZONYÍTÁS. Jelölje Z 2 a kételemű Abel-csoportot. A szabad generátorrendszerek definíciója szerint az f : F Z 2 homomorfizmusok száma megegyezik az X Z 2, illetve az Y Z 2 leképezések számával. Ezek száma 2 X, illetve 2 Y. Így, X = Y.

Csoportelméleti algoritmusok 3 Egy szabad Abel-csoportban, a szabad generátor-rendszerek számosságát a csoport rangjának mondjuk. A 1.2.4 lemma szerint a rang egy jól definiált fogalom. Az 1.2.2 példában szereplő csoport rangja 1. Az 1.2.3 példa gondolatmenetét használva nem nehéz látni, hogy véges Abel-csoportok nem lehetnek szabadok. Valójában a végesen generált szabad Abel-csoportok egyszerűen meghatározhatók, a következőképpen. Jól ismert, hogy az egész számok Z halmaza Abel-csoportot alkot az összeadásra nézve. Tekinthetjük ennek a csoportnak az önmagával vett k-szoros Descartes szorzatát, a Z k = Z Z csoportot. Ennek a csoportnak az elemei rendezett k-asok (a 1,...,a k ) ahol az a i elemek egészek. Az (a 1,...,a k ) és a (b 1,..., b k ) elemek összege (a 1 + b 1,...,a k + b k ). Ennek a csoportnak a zéró-eleme a (0,...,0) elem, az (a 1,...,a k ) elem inverze pedig a ( a 1,..., a k ). A csoportok direkt szorzatának definíciója miatt, két csoportbeli elem (a 1,..., a k ) és (b 1,...,b k ) akkor és csakis akkor egyenlő, ha a i = b i teljesül minden i-re. Tétel 1.2.5 Legyen F egy Abel-csoport és legyen X egy véges szabad generátor-rendszer X-ben. Ekkor F izomorf a Z k csoporttal, ahol k = X. BIZONYÍTÁS. Legyen i {1,..., k} és jelölje e i a Z k csoportnak azt az elemét amelynek minden koordinátája 0, kivéve az i-dik koordinátát, ami 1. Legyenek x 1,...,x k az X elemei, és legyen f : x i e i. Mivel X szabad generátorrendszer, a f leképezés kiterjeszthető egy f homomorfizmussá. Állítjuk, hogy f egy bijekció. Mivel az {e 1,...,e k } halmaz generálja a Z k csoportot és benne van az f képében, f szürjektív. Tegyük fel, hogy α 1,...,α k Z esetén az x = α 1 x 1 + + α k x k elem benne van, az f magjában. Ekkor (0,...,0) = f(x) = f(α 1 x 1 + + α k x k ) = α 1 f(x 1 ) + + α k f(x k ) = α 1 e 1 + + α k e k = (α 1,...,α k ). Tehát α 1 = = α k = 0 és így x = 0. Ezért, ker f = 0, ami azt jelenti, hogy f injektív. Tehát f valóban bijekció. Következmény 1.2.6 A fenti {e 1,...,e k } halmaz szabad generátor-rendszere a Z k csoportnak, így a Z k csoport szabad Abel-csoport, melynek rangja k.

4 Abel-csoportok BIZONYÍTÁS. Továbbra is használjuk az előző bizonyítás jelöléseit, és legyen Y = {e 1,...,e k }. Tegyük fel, hogy G egy tetszőleges Abel-csoport, és legyen ḡ : Y G egy tetszőleges leképezés. Mivel X = {x 1,...,x k } szabad generátorrendszere az előző tételben szereplő F csoportnak, a h : x i ḡ(e i ) leképezés kiterjeszthető egy h : F G homomorfizmussá. Definiáljuk az g leképezést a következőképpen: ha x Z k, akkor legyen g(x) = h(f 1 (x)), ahol f az előző bizonyításban definiált izomorfizmus. Mivel, az f és a h homomorfizmus, a g leképezés is az. Továbbá, g(e i ) = h(f 1 (e i )) = h(x i ) = ḡ(e i ). Ezért g kiterjesztése a ḡ leképezésnek és így a kívánt leképezés létezik. Tegyük fel, hogy g 1, g 2 : Z k G homomorfizmusok melyek kiterjesztik a ḡ leképezést. Ekkor az fg 1, fg 2 leképezések kiterjesztik a x i g(e i ) leképezést. Mivel X szabad generátor-rendszer, fg 1 = fg 2, azaz g 1 = g 2. Tehát a ḡ leképezés kiterjesztése egyértelmű, a {e 1,...,e k } halmaz szabad generátor-rendszer, az Z k pedig szabad csoport. van. Természetesen a Z k csoportnak sok más szabad generátor-rendszere is Általában a Z k szabad generátor-rendszereit bázisoknak mondjuk, az {e 1,...,e k } rendszert pedig standard bázisnak nevezzük. Következmény 1.2.7 Egy k elem által generált Abel-csoport előáll mint a Z k csoport faktorcsoportja. BIZONYÍTÁS. Legyen X = {x 1,...,x k } egy k elemű generátor-rendszere a G csoportnak, és definiáljuk az f : Z k G homomorfizmust a e i x i leképezés kiterjesztéseként. Mivel X generálja a G csoportot, f szürjektív, és így, a homomorfizmus tétel szerint, G = Z k /(ker f). Példa 1.2.8 Legyen G = Z 3 Z 5 = a b. Legyen f : Z k G az e 1 a, e 2 b leképezés kiterjesztése. Ekkor f(α 1, α 2 ) = α 1 a + α 2 b, azaz f(α 1, α 2 ) = 0, akkor és csakis akkor, ha 3 α 1 és 5 α 2. Tehát ker f = {(α3, β5) α, β Z} = (3, 0), (0, 5). Így G = Z 2 / (3, 0), (0, 5).

Csoportelméleti algoritmusok 5 A szabad generátor-rendszer definíciója nem teszi lehetővé, hogy egyszerűen ellenőrizzük, hogy egy szabad Abel-csoportbeli halmaz szabad generátor-rendszer-e. A következő lemma, egy könnyebben kezelhető szükséges és elegendő feltételt ad. Lemma 1.2.9 Legyen F egy Abel-csoport, és legyen X = {x 1,...,x k } egy véges részhalmaza F-nek. Ekkor X szabad generátor-rendszer akkor és csakis akkor, ha F minden eleme pontosan egyféleképpen írható α 1,...,α k egész számok segítségével α 1 x 1 + + α k x k alakban. BIZONYÍTÁS. Tegyük fel először, hogy X egy szabad generátor-rendszer. Ebben az esetben az F minden eleme felírható α 1 x 1 + + α k x k alakban. Legyen f : F Z k a 1.2.5 tételben definiált izomorfizmus. Tegyük fel, hogy α 1,...,α k és β 1,...,β k egész számok úgy hogy α 1 x 1 + + α k x k = β 1 x 1 + + β k x k. Mivel f izomorfizmus, (α 1,...,α k ) = f(α 1 x 1 + + α k x k ) = f(β 1 x 1 + + β k x k ) = (β 1,...,β k ). Amiből α 1 = β 1,...,α k = β k következik. Tehát az α 1 x 1 + + α k x k elem felírása egyértelmű. Tegyük most fel, hogy X rendelkezik a tételben megkövetelt tulajdonsággal. Legyen G egy Abel-csoport, és legyen ḡ : X G egy leképezés. Definiáljuk az f : F Z k leképezést: f(α 1 x 1 + + α k x k ) = (α 1,..., α k ). A feltétel szerint, f jól-definiált, és egyszerű számolás mutatja, hogy f homomorfizmus. Mivel f(x i ) = e i, a standard bázis elemek benne vannak az f képében, így f szürjektív. Ha f(α 1 x 1 + + α k x k ) = (0,..., 0), akkor az f definíciója miatt, α 1 = = α k = 0, azaz α 1 x 1 + + α k x k = 0. Tehát, ker f = 0, és így f egy izomorfizmus. Tekintsük az e i standard bázis elemeket Z k -ban és legyen Y = {e 1,...,e k }. Jelölje h : Y G azt a leképezést melyre h(e i ) = ḡ(x i ). Ekkor a h kiterjeszthető egy h : Z k G homomorfizmussá, és definiálhatjuk a g leképezést a következőképpen: x F esetén legyen g(x) = h(f(x)). Mivel h és f homomorfizmusok, a g is az, továbbá g X = ḡ. Ha g 1, g 2 : F G melyekre g 1 X = g 2 X = ḡ, akkor g 1 f 1 és g 2 f 1 olyan leképezések, melyekre g 1 f 1 Y = g 2 f 1 Y. Mivel Y szabad generátor-rendszer, g 1 f 1 = g 2 f 1 következik, tehát g 1 = g 2.

6 Abel-csoportok 1.3. Szabad Abel-csoportok részcsoportjai Egy szabad Abel-csoport minden részcsoportja is szabad Abel-csoport. Mi ezt az eredményt csak végesen generált szabad Abel-csoportok esetén bizonyítjuk. Tétel 1.3.1 Egy k rangú szabad Abel-csoport tetszőleges részcsoportja is egy legfeljebb k rangú szabad Abel-csoport. BIZONYÍTÁS. A 1.2.5 tétel miatt, elegendő belátni, hogy az F = Z k csoport tetszőleges H részcsoportja szabad Abel-csoport melynek rangja legfeljebb k. Legyen i {0,..., k} és jelölje F i azon k-asok halmazát, amelyekben az első i koordináta 0. Ezzel definiáltuk következő F-beli részcsoportláncot: F = F 0 > F 1 > > F k 1 > F k = 0; továbbá i {0,..., k 1} esetén F i /F i+1 = Z. Legyen Hi = H F i. Ekkor, ha i {0,..., k 1}, akkor H i H i+1 = H F i H F i+1 = H F i H F i F i+1 = (H F i ) + F i+1 F i+1, és ezért H i /H i+1 izomorf a F i /F i+1 = Z csoport egy részcsoportjával. A Z egy részcsoportja vagy triviális, vagy pedig izomorf Z-vel, ezért vagy H i /H i+1 = 0 vagy H i /H i+1 = Z. A fentiek szerint a H csoportban definiáltunk egy H 0 = H H 1 H k 1 H k = 0 részcsoportláncot amelynek faktorai vagy triviálisak vagy pedig izomorfak a Z csoporttal. A láncból hagyjuk el az ismétlődéseket, és alkossunk egy H 0 = H > H 1 > > H m 1 > H m = 0 részcsoportláncot amelyben minden faktor izomorf a Z csoporttal. Jegyezzük itt meg, hogy m k. Válasszunk, i {1,..., m} esetén, egy a i H i 1 elemet úgy, hogy a i + H i = H i 1 /H i. Ilyen elem létezik, hiszen H i 1 /H i egy ciklikus csoport. Mivel H i 1 /H i = Z, H i 1 /H i = {k(a i + H i ) k Z} = {ka i + H i k Z},

Csoportelméleti algoritmusok 7 továbbá k 1 a i + H i = k 2 a i + H i akkor és csakis akkor, ha k 1 = k 2. Legyen x H i 1. Az x elem a H i részcsoport pontosan egy mellékosztályában található, ezért egyéretelműen léteznek k Z és y H i melyekkel x = ka i + y teljesül. Azt állítjuk, hogy a {a 1,...,a m } halmaz szabad generátor-rendszer a H csoportban. Legyen x H. Az előző bekezdés állítása szerint létezik pontosan egy α 1 Z és pontosan egy y 1 H 1 úgy hogy x = α 1 a 1 + y 1. Hasonlóan, létezik pontosan egy α 2 Z és pontosan egy y 2 H 2 úgy hogy y 1 = α 2 a 2 + y 2, és így y = α 1 a 1 +α 2 a 2 +y 2. Ezt a sort folytatva, azt találjuk, hogy egyértelműen léteznek α 1,...,α m Z amelyek kielégítik az y = α 1 a 1 + + α m a m egyenletet. Az 1.2.9 lemma szerint a {a 1,...,a m } halmaz szabad generátor-rendszer a H csoportban, és így a H csoport szabad Abel-csoport. Továbbá a H csoport rangja m, ami nem nagyobb mint k. 1.4. Sorműveletek egész mátrixokkal Jelölje M m,k (Z) az m sorból és k oszlopból álló Z feletti mátrixok halmazát. A Z k csoport egy G részcsoportját megadhatjuk egy A M m,k (Z) mátrix segítségével, melynek a sorai generáljak a G csoportot. Szimbólumokkal ezt a tényt úgy fejezzük ki, hogy G = A. A fenti 1.3.1 tétel szerint, feltehetjük, hogy m k. Világos, hogy az A csoport megegyezik az A mátrix soraiból álló egész együtthatós lineáris kombinációk a halmazával. Ebben a szakaszban olyan módszereket ismertetünk, amik az alábbi kérdésekre választ adnak: (i) Ha A M m,k (Z) és B M n,k (Z), akkor vajon igaz-e, hogy A = B. (ii) Ha A és B a fenti mátrixok, akkor igaz-e, hogy Z k / A = Z k / B. (iii) Ha A M m,k (Z) és a Z k, akkor vajon igaz-e, hogy a A. A M m,k (Z)-beli mátrixok körében a következő műveleteket elemi (egész) sorműveleteknek nevezzük: (i) két sor felcserélése; (ii) egy sor szorzása 1-gyel;

8 Abel-csoportok (iii) egy sor valamely egész többszörösének hozzáadása egy másik sorhoz. Példa 1.4.1 Tekintsük az alábbi mátrixot 1 1 3 0 2 2 0 4. 3 1 3 0 Az első és a harmadik sor felcserélése után a 3 1 3 0 2 2 0 4. 1 1 3 0 mátrixot kapjuk. Szorozzuk meg a második sort 1-gyel: 3 1 3 0 2 2 0 4 1 1 3 0. Végül pedig adjuk a második sor 2-szeresét a harmadik sorhoz: 3 1 3 0 2 2 0 4 3 3 3 8 Ha A, B M m,k (Z), akkor az A és B mátrixokat sor-ekvivalensnek mondjuk,. ha a B megkapható az A-ból sorműveletek segítségével. Lemma 1.4.2 A sor-ekvivalencia egy ekvivalencia reláció az M m,k (Z) halmazon. Továbbá, ha A és B sor-ekvivalens mátrixok, akkor A = B. BIZONYÍTÁS. Világos, hogy a reláció reflexív, mert az A mátrixból önmagát kapjuk, ha például egy sorát kétszer megszorozzuk 1-gyel. A reláció nyilván tranzitív is, mert ha az A mátrixból megkapható a B, a B-ből pedig a C sorműveletek segítségével, akkor ezeket a sorműveleteket egymás után elvégezve az A mátrixból a C-t nyerjük. tehát csak a szimmetriát kell belátni. Az ekvivalencia reláció igazolásához Először megmutatjuk, hogy a fenti

Csoportelméleti algoritmusok 9 sorműveletek megfordíthatóak, azaz ha B megkapható A-ból egyetlen sorművelet segítségével, akkor A is megkapható B-ből szintén egyetlen sorművelet segítségével. Az állítás nyilvánvaló, ha a sorművelet két sor felcserélése, vagy pedig egy sor 1-gyel való szorzása. Ha a B-t úgy kaptuk, hogy az A mátrix i-dik sorához hozzáadtuk a j-dik sor α-szorosát, (i j) akkor a B-ből visszanyerjük az A-t, ha a B mátrix i-dik sorához hozzáadjuk az j- dik sor α-szorosát. Tehát ha most feltesszük, hogy A és B sor-ekvivalens mátrixok, akkor a B mátrix megkapható az A-ból elemi sorműveletek egy sorozatát végrehajtva. A fenti okoskodás miatt, ha most a B-ből indulunk ki, és a sorműveletek ellentettjét hajtjuk végre fordított sorrendben, akkor visszakapjuk az A mátrixot. Tehát a reláció szimmetrikus. A második állítás bizonyításához először belátjuk, hogy ha a B mátrix megkapható az A mátrixból egy sorművelet segítségével, akkor B A. Az állítás nyilvánvaló, ha a sorművelet két sor felcserélése vagy pedig egy sor 1-gyel való szorzása. Tegyük fel, hogy B-t úgy kaptuk, hogy az A mátrix i-dik sorához hozzáadtuk a j-dik sor α-szorosát. Ekkor az i-dik sor kivételével, a B mátrix minden sora szerepel az A mátrixban is. Ezek a sorok tehát benne vannak az A részcsoportban. A B mátrix i-dik sora felírható a i + αa j alakban, ahol a i és a j jelöli az A mátrix i-dik és j-dik sorát. Ebből a felírásból látszik, hogy ez a sor is benne van az A sorai által generált A részcsoportban, tehát valóban B A. Ha most feltesszük, hogy B megkapható az A-ból egyetlen sorművelet segítségével, akkor az előző bekezdésben bizonyítottak miatt, B A. Ekkor azonban A is megkapható az B mátrixból egy hasonló sorművelet segítségével, így A B. Tehát A = B következik. Végül, ha A és B ekvivalens mátrixok, akkor B megkapható az A-ból sorműveletek egy sorozatának segítségével. Ezek a sorműveletek azonban nem változtatják meg a sorok által generált részcsoportot. Így A = B teljesül. A 1.4.1 példában szereplő négy mátrix egymással páronként sor-ekvivalens.

10 Abel-csoportok 1.5. A Hermite normál forma Az előző fejezetben láttuk, hogy az elemi sorműveletek nem változtatnak egy M m,k (Z)-beli mátrix sorai által generált részcsoporton. Így ha A M m,k (Z), akkor elemi sorműveletek segítségével szeretnénk egy szép B M m,k (Z) mátrixot kapni melyre A = B teljesül. Lássunk erre egy példát. Példa 1.5.1 Legyen A a következő mátrix: 1 2 1 2 2 0 2 0 1 3 1 2 3 2 2 3 1 2 3 2 3 3 2 2 1. Az első sor megfelelő skalárszorosait hozzáadva a többi sorhoz, elérhetjük, hogy az első oszlopban csak az első sorbeli elem nem-nulla: 1 2 1 2 2 0 2 0 1 3 0 4 4 0 4. 0 5 1 9 8 0 3 5 4 5 Vegyük az első sor ellentettjét, hogy vezéreleme (a sorbeli első nem-nulla elem) pozitív legyen: 1 2 1 2 2 0 2 0 1 3 0 4 4 0 4. 0 5 1 9 8 0 3 5 4 5 A második sor megfelelő skalárszorosait hozzáadva a többi sorhoz, csökkenthetjük a második oszlopban, a második sortól lefelé lévő elemek abszolút

Csoportelméleti algoritmusok 11 értékét: 1 2 1 2 2 0 2 0 1 3 0 0 4 2 2. 0 1 1 12 1 0 1 5 6 1 A negyedik sort használva, lenullázhatjuk a második oszlop második, harmadik, és ötödik sorában lévő elemeit: 1 2 1 2 2 0 0 2 23 1 0 0 4 2 2. 0 1 1 12 1 0 0 4 6 0 Cseréljük fel második és negyedik sorokat: 1 2 1 2 2 0 1 1 12 1 0 0 4 2 2 0 0 2 23 1 0 0 4 6 0. A második sor 2-szeresét az első sorhoz adva elérjük, hogy a második sor vezéreleme felett az első sorban 0 legyen: 1 0 3 26 0 0 1 1 12 1 0 0 4 2 2. 0 0 2 23 1 0 0 4 6 0 A fenti eljáráshoz hasonlóan, a negyedik sor segítségével lenullázzuk a harmadik oszlop harmadik és ötödik sorában lévő elemeit, felcseréljük a negyedik és a harmadik sorokat, majd gondoskodunk róla, hogy a harmadik sor vezéreleme felett csak a vezérelemnél kisebb abszolút értékű elemek legyenek.

12 Abel-csoportok Így a következő mátrixot kapjuk: 1 0 1 3 1 0 1 1 11 2 0 0 2 23 1 0 0 0 44 4 0 0 0 52 2. A negyedik és ötödik sorokat addig adogatjuk egymáshoz, vagy vonogatjuk egymásból, míg az egyikben a negyedik oszlopban lévő elem 0 lesz. Aztán sorcserével elérjük, hogy a negyedik sorban és negyedik oszlopban lévő elem nem-nulla, majd a negyedik sor vezéreleme feletti elemeket redukáljuk: 1 0 1 3 1 0 1 1 3 26 0 0 2 3 69. 0 0 0 4 14 0 0 0 0 30 Végül az ötödik sor segítségével redukáljuk az ötödik oszlopban lévő elemeket: 1 0 1 3 1 0 1 1 3 26 0 0 2 3 9. 0 0 0 4 16 0 0 0 0 30 Az eljárás végeredménye egy felső háromszög mátrix, melyben a vezérelemek nem-negatívak, illetve a vezérelemek felett tőlik kisebb abszolút értékű nemnegatív számok vannak. Definíció 1.5.2 Azt mondjuk, hogy egy A M m,k (Z) mátrix Hermite normál formában (HNF) van ha a következők teljesülnek: (i) Valamely r-re az első r sor nem-nulla, az utolsó m r sor pedig nulla. Azaz a nulla sorok a mátrix alján találhatók.

Csoportelméleti algoritmusok 13 (ii) Ha i r és A i,ji az i-dik sor első nem-nulla eleme, akkor j 1 < j 2 < < j r. Azaz, a nem-nulla sorok vezérelemei (a sorban lévő első nem-nulla elem) egyre beljebb találhatók, és így a mátrix felső háromszög alakú. (iii) Ha i r, akkor A i,ji > 0. Azaz a nem-nulla sorok vezéreleme pozitív. (iv) Ha k < i r akkor 0 A k,ji < A i,ji. Azaz, a egy nem-nulla sor vezéreleme felett kisebb, nem-negatív elemek találhatók. Az 1.5.1 példában az számolás végén kapott mátrix HNF alakú. A példa jól szemlélteti, azt az eljárást, amivel bármely egész értékű mátrix HNF alakra hozható. Az eljárás egy leírását adja a HNF algoritmus, mely egy tetszőleges mátrixot Hermite normál formájúvá konvertál. Az algoritmus leírásában M i jelöli az M mátrix i-dik sorát, M i,j pedig az i-dik sor j-dik elemét. Ha a, b Z, akkor egyértelműen léteznek q és r egész számok melyekre a = qb + r és 0 r < b (euklideszi osztás) és a div b jelöli az osztás q hányadosát. Sajnos a HNF algoritmus nem túlságosan hatékony. Tekintsük például az alábbi mátrixot: 5 1 1 1 4 2 4 3 3 1 1 1 3 4 2. 3 3 4 4 2 2 1 5 1 4 Ennek HNF alakja az algoritmus GAP implementációja segítségével megkapható: 1 0 0 0 210 0 1 0 0 92 0 0 1 0 446 0 0 0 1 1400 0 0 0 0 2073 Míg az input mátrix elemei viszonylag kicsik (legfeljebb 5 abszolút értékűek), és az eredmény maximális abszolút értékű eleme is 2073, addig a közbülső mátrixokban előforduló legmagasabb abszolút értékű elem 2.386.233. Mivel, nagyobb mátrixokban ez a probléma még élesebben jelentkezik, fontos feladat, hogy olyan HNF algoritmusokat tervezzünk, amelyekben a közbülső mátrixok elemei nem nőnek túlzottan nagyra. Ez jelenleg is egy aktív kutatási terület.

14 Abel-csoportok 1. algoritmus: HNF Input: M M m,n (Z) Output: HNF of M set i := 1; j := 1; while i m and j n if M i,j = = M m,j = 0 then else set j := j + 1 while k l {i,...,m} : 0 < M k,j M l,j do set q := M l,j div M k,j set M l := M l qm k end while set k {i,...,m} : M k,j 0 /* k egyértelmű */ if k i then set M i M k end if if M i,j < 0 then set M i := M i end if for l {1,..., i 1} set q := M l,j div M i,j set M l := M l qm i end if set i := i + 1; j := j + 1 end if end while return M Algorithm 1: A HNF kiszámítása

Csoportelméleti algoritmusok 15 Tétel 1.5.3 A HNF program outputja az egy olyan HNF alakú mátrix amely sorekvivalens az M M m,n (Z) input mátrixszal. BIZONYÍTÁS. Mivel a programban csak elemi sorműveleteket hajtottunk végre, a program futása során minden lépés az eredetivel sor-ekvivalens mátrixot eredményez. Tehát a végső mátrix szintén sor-ekvivalens lesz az eredeti M mátrixszal. Ha i {1,..., n}, akkor jelölje M (i) azt a mátrixot melyet az M első i oszlopából kapunk. Teljes indukcióval belátjuk, hogy a következő állítások teljesülnek. (i) A j változó számlálja, hogy a külső while ciklus hányszor futott le. Továbbá, a külső while ciklus j lefutása után M (j) HNF alakú. (ii) A külső while ciklus j lefutása után az M (j) mátrixban a nem-nulla sorok száma i 1, továbbá i j teljesül. A fenti állításokat j szerinti indukcióval bizonyítjuk. Az j = 0 esetben nincs mit belátnunk. Tegyük fel, hogy az állítás igaz a ciklus j 1 elvégzése után, és lássuk be, hogy az j-dik lefutás után is igaz marad. A while utáni if utasítás feltétele pontosan akkor teljesül, ha a j-dik oszlopban az i-dik sortól lefelé, nincs nem-nulla elem. Ekkor, ha M (j 1) HNF alakú, akkor M (j) is az, továbbá, a nem-nulla sorok száma M (j 1) -ben és M (j) -ben megegyezik. Tehát a j változót eggyel megnöveljük, az i változót nem változtatjuk, és a while ciklus végére ugrunk. Így ebben az esetben a fenti (i) (ii) állítások továbbra is fennállnak. Ezt tesszük egészen addig, míg az if utasítás feltétele hamissá nem válik, azaz a j-dik oszlopban az i-dik sortól kezdődően található egy nem-nulla elem. Tegyük fel most, hogy ebben az esetben vagyunk. A belső while ciklus mindaddig fut, míg M k,j 0 legalább két különböző k {i,...,m} esetén. Amennyiben ez a feltétel teljesül, úgy az algoritmus kiválaszt ezen elemek közül két nem-nullát, mondjuk M k,j -t és M l,j -t, úgy hogy a M k,j M l,j teljesüljön. Ezekkel az elemekkel maradékos osztást végzünk: M l,j = qm k,j + r, ahol q és r egész számok és 0 r < M k,j. Ezután kivonjuk az l-dik sorból a k- dik sor q-szorosát. A művelet után az M l,j = r teljesül, így sikerült csökkenteni az M l,j elem abszolút értékét. A belső while ciklus minden iterációja után az M i,j + + M m,j összeg csökken, így a ciklus véges sok lépés után véget ér.

16 Abel-csoportok A fentiek miatt, a belső while ciklus befejezése után M k,j 0 pontosan egy k {i,...,m} esetén. Ha k i akkor felcseréljük az i-dik és k-dik sorokat, majd pedig, ha ez az elem negatív, akkor negáljuk az i-dik sort. Ezután az M (j) mátrix i-dik sorának vezéreleme M i,j, amelyre teljesül, hogy j i, M i,j > 0, és az is, hogy a vezérelem alatt csupa nulla elem található. Tehát a 1.5.2 definíció (i) (ii) feltételeit beláttuk. A (iii) feltétel az algoritmus végén található for ciklus miatt teljesül. Ha ugyanis, valamely l {1,..., i 1} esetén M l,j -re az (iii) feltétel nem teljesül, akkor ismét maradékos osztást végzünk, M l,j = qm i,j + r ahol 0 r < M i,j, és kivonjuk az i-dik sor q-szorosát az l-dik sorból. Ezután az M l,j elem kielégíti a 1.5.2 definíció (iii) feltételét is. Ha a mátrix oszlopainak száma n, akkor a while ciklus n lefutása után M (n) = M HNF alakú lesz. Következmény 1.5.4 Minden egész mátrix sor-ekvivalens egy Hermite normál formában lévő mátrixszal. BIZONYÍTÁS. Az előző tétel szerint, a HNF algoritmus outputja épp megfelelő. Emlékezzünk, hogy a 1.3.1 tétel szerint a Z n csoport minden részcsoportja szabad csoport, így egy A M m,n (Z) mátrix esetén is igaz, hogy A szabad. A HNF segítségével meghatározhatjuk ennek a csoportnak egy bázisát. Tétel 1.5.5 Ha A egy HNF mátrix, akkor A nem-nulla sorai az A csoport egy bázisát alkotják. BIZONYÍTÁS. Tegyük fel, hogy A M m,n (Z) egy HNF mátrix, és legyen v A. A 1.2.9 lemma szerint elegendő belátni, hogy v pontosan egyféleképpen írható fel az A mátrix nem-nulla sorainak egész együtthatós lineáris kombinációjaként. Legyen r az A-beli nem-nulla sorok száma, és i {1,..., r} esetén legyen A i,ji az i-dik sor vezéreleme. Ha feltesszük, hogy v = (v 1,...,v n ) A, akkor v felírható v = α 1 A 1 + + α r A r (1.1) alakban, ahol A 1,...,A r az A mátrix első r sora, α 1,...,α r pedig egész számok. A (1.1) egyenletből r számú v ji elemre az alábbi r egyenletből álló egyenletrend-

Csoportelméleti algoritmusok 17 szert kapjuk: v j1 = α 1 A 1,j1 v j2 = α 1 A 1,j2 + α 2 A 2,j2. v jr = α 1 A 1,jr + α 2 A 2,jr + + α r A r,jr. Tekintsük ezt az egyenletrendszert a Q test felett. Az egyenletrendszer mátrixa négyzet alakú alsó háromszög mátrix, így ennek a mátrixnak a determinánsa nem-zéró. Ezért, ennek az egyenletrendszernek pontosan egy Q k -beli megoldása van: (α 1,..., α r ). Következésképp, a (1.1) felírás egyértelmű, tehát az A nem-nulla sorai az A csoport egy bázisát adják. Ha A M m,k (Z), akkor szeretnénk eldönteni például, hogy egy Z k -beli v elem benne van-e az A csoportban. A 1.5.5 tétel bizonyítása azt sugallja, hogy a Hermite normál forma segítségével ezt a problémát is hatékonyan meg tudjuk oldani. Példa 1.5.6 Legyen A a következő mátrix: 0 0 0 2 2 0 2 1 1 1 2 1 2 0 0 0 3 1 3 3 és legyen v = (2, 1, 2, 4, 4). Kérdés, hogy a v vektor eleme-e az A csoportnak. Egy A mátrixszal ekvivalens HNF mátrix a HNF algoritmus segítségével könnyen kiszámítható: 2 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 2 2 Az 1.4.2 lemma szerint feltehetjük, hogy A a fenti HNF mátrix. Legyenek A 1, A 2, A 3, A 4 az A mátrix sorai, és tegyük fel hogy v A, azaz a v vektor felírható v = α 1 A 1 +α 2 A 2 +α 3 A 3 +α 4 A 4 alakban valamely α 1, α 2, α 3, α 4 Z számok segítségével. A fenti lineáris kombináció első koordinátája mindenképp 2α 1.

18 Abel-csoportok Mivel v első koordinátája 2, így α 1 = 1 kell, hogy teljesüljön. Ugyanez a gondolatmenet mutatja, hogy a v második koordinátája α 2, így α 2 = 1, és hasonlóan α 3 = 2. A v vektor negyedik koordinátája α 3 + 2α 4. Emiatt, α 4 = 3. Ezek után könnyű számolás mutatja, hogy valóban v = A 1 A 2 + 2A 3 3A 4, tehát v A. A fenti példa alapján könnyű egy általános algoritmust létrehozni. Az algoritmus leírásában a HNF algoritmusnál használt jelölést alkalmazzuk, a v vektor i-dik komponensét pedig v i jelöli. 2. algoritmus: ISMEMBER Input: A M m,n (Z) HNF mátrix és v Z n Output: (x 1,...,x m ) ha v A ; egyébként false set r := a nem-nulla sorok száma for i {1,...,r} do set A i,j := az i-dik sor vezéreleme if A i,j v j then return false end if set x i := v j /A i,j set v := v x i A i end for if v 0 then return false else return (x 1,...,x r, 0,..., 0) Z n end if Algorithm 2: Tartalmazási algoritmus Tétel 1.5.7 Legyen A M m,n (Z) egy HNF mátrix, legyenek A 1,...,A m az A mátrix sorai, és legyen v Z n. Ha v A, akkor az IsMember algoritmus outputja egy vektor (x 1,...,x m ) amelyre teljesül a v = x 1 A 1 + + x m A m ; (1.2) egyébként az output false.

Csoportelméleti algoritmusok 19 BIZONYÍTÁS. Az r változó jelöli a nem-nulla sorok számát. A for ciklus belsejében A i,j az i-dik sor első nem nulla eleme. Tegyük fel először, hogy v A és így v = x 1 A 1 + + x m A m, ahol x 1,...,x m Z. Az 1.5.5 tétel szerint az A mátrix első r sora az A csoport egy bázisát adja, ezért az x 1,...,x r együtthatók egyértelműen meghatározottak. Továbbá, mivel az utolsó m r sor nulla, az x r+1,...,x m együtthatók tetszőlegesek, tehát feltehetjük, hogy x r+1 = = x m = 0. Legyen, i {0,...,r 1} esetén, v i = x i+1 A i+1 + + x r A r, és legyen v r = 0. Állítjuk, hogy ha for ciklus i-szer sikeresen végigfut (azaz a ciklusbeli return utasítás nem hajtódik végre), az x 1,...,x i együtthatók értéke helyes, az algoritmusbeli v változó értéke pedig v i. Az i = 0 esetben nincs mit belátni. Tegyük fel, hogy az állítás igaz a for ciklus i 1 lefutása után, és igazoljuk, hogy i lefutás után is igaz marad. Legyen A i,j az i-dik sor első nem-nulla eleme. Ekkor a v i 1 vektor első j 1 komponense szükségszerűen 0, v j pedig az A i,j elem x i -szerese kell, hogy legyen. Tehát ha A i,j v j, akkor v A és az output false. Másrészről, ha A i,j v j, akkor x i = v j /A i,j, és így a x i skalárt megtaláltuk. Az ezt követő set parancs miatt, v = v i 1 x i A i = v i. Ha a v vektor nem eleme a A csoportnak akkor két eset lehetséges. Az első esetben a for cikluson belüli if feltétele nem teljesül, és így az output false. Ha ez nem igaz, akkor a for ciklus elvégzése után a v vektor nem lehet nullvektor, mert ebben az esetben a v A teljesülne. Tehát az algoritmus outputja ebben az esetben is false. Korábban láttuk, hogy minden egész mátrix sor-ekvivalens egy HNF mátrixszal. Most igazoljuk, hogy ez a mátrix lényegében egyértelműen meghatározott. Tétel 1.5.8 Ha H a Z n csoport egy részcsoportja, akkor létezik pontosan egy HNF mátrix A melynek nincsenek zéró sorai, és amelyre H = A teljesül. BIZONYÍTÁS. Legyenek A és B HNF mátrixok zéró sorok nélkül melyekre H = A = B teljesül. Az 1.5.5 tétel szerint, az A sorai és a B sorai is bázisát adják az A = B csoportnak, így az 1.2.4 lemma szerint, az A sorainak száma megegyezik a B sorainak számával. Jelöljük ezt a számot m-mel. Az állítást m szerinti indukcióval igazoljuk.

20 Abel-csoportok Ha m = 1, akkor mátrixaink mindössze egy sorból állnak. Mivel, A B, létezik α Z, melyre A = αb teljesül. Hasonlóan, B = βa valamely β Z egész számra. Tehát, A = αb = αβa. Mivel A-nak van nem-nulla eleme, azt kapjuk, hogy αβ = 1, tehát vagy α = β = 1, vagy pedig α = β = 1. Mivel az A és B mátrixok vezérelemei nem-negatívak, α = β = 1 következik. Tehát, ebben az esetben A = B, így az állítást az m = 1 esetben igazoltuk. Tegyük most fel, hogy m > 1. Legyenek a és b az A és B mátrixok első sorainak vezérelemei. Tegyük fel, hogy a a j 1 -dik oszlopban található, a b pedig a j 2 -dik oszlopban. Ekkor, a HNF definíciója miatt, a A csoport minden elemében az első j 1 1 koordináta 0, tehát a b elem oszlopszáma legalább j 1. Tehát j 1 j 2. Az érvelést megfordítva kapjuk, hogy j 2 j 1, azaz j 1 = j 2 következik; jelölje j ezt a számot. Legyen A 1 az a mátrix melyet A-ból kapunk az első sor törlése után; képezzük a B 1 mátrixot hasonlóan. A A 1 csoport a A csoport pontosan azon elemeiből áll, melyekben a j-dik komponens 0. Hasonlóan, a B 1 csoport a B csoport pontosan azon elemeiből áll, melyekben a j-dik komponens 0. Mivel A = B, következik, hogy A 1 = B 1. Jelölje H 1 ezt a csoportot. Mivel az A 1 és B 1 mátrixok HNF alakúak, az indukciós feltevés miatt, A 1 = B 1. Legyen u az A első sora, v pedig a B első sora. Jelölje D a H-beli elemek j-dik komponenseinek a halmazát. A D halmaz a Z egy részcsoportja, melyet a is és b is generál. Ezért a = ±b, de mivel a is és b is pozitív, a = b következik. Tehát u v H 1. Tegyük fel, hogy u v, és legyen c az u v vektor első nem-nulla komponense. Tételezzük fel, hogy c a k-dik oszlopban van. Ekkor az A 1 mátrix egyik sorának vezéreleme d szintén a k-dik oszlopban van, és d c. Azonban a HNF definíciója szerint, a d felett csak d-nél kisebb nem-negatív elemek lehetnek, ezért az u és v mátrixok k-dik komponense kisebb mint d, így a különbségük abszolút érteke is legfeljebb d 1, ami ellentmondás. Tehát u = v, és így A = B. Következmény 1.5.9 Minden egész mátrix sor-ekvivalens pontosan egy HNF mátrixszal. BIZONYÍTÁS. Korábban láttuk, hogy létezik egy ilyen HNF mátrix. Tegyük fel, hogy A és B ilyen mátrixok, és jelölje  és ˆB a nulla sorok elhagyása után