Egy általános iskolai feladat egyetemi megvilágításban

Hasonló dokumentumok
Intergrált Intenzív Matematika Érettségi

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Matematika 8. osztály

2. Algebrai átalakítások

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

FELVÉTELI VIZSGA, szeptember 12.

2014. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 11. évfolyam

Magasabbfokú egyenletek

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek V.

A Fermat-Torricelli pont

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa

Határozatlan integrál

Diszkrét matematika 1.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a

Numerikus módszerek 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I márc.11. A csoport

Kongruenciák. Waldhauser Tamás

Vektorok és koordinátageometria

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Bevezetés az algebrába 2

5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze!

Differenciálegyenletek megoldása próbafüggvény-módszerrel

3. Lineáris differenciálegyenletek

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-

y + a y + b y = r(x),

16. modul: ALGEBRAI AZONOSSÁGOK

I. Egyenlet fogalma, algebrai megoldása

Másodfokú egyenletek, egyenlőtlenségek

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Egyenletek, egyenlőtlenségek, egyenletrendszerek I.

Polinomok, Lagrange interpoláció

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

3. Egyenletek, egyenletrendszerek, egyenlőtlenségek

1. A maradékos osztás

KOVÁCS BÉLA, MATEMATIKA I.

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Tanmenet a Matematika 10. tankönyvhöz

Másodfokú egyenletek, egyenlőtlenségek

3. Algebrai kifejezések, átalakítások

Polinomok maradékos osztása

Matematika 7. osztály

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Algebra

Lineáris algebra Gyakorló feladatok

egyenlőtlenségnek kell teljesülnie.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Függvény fogalma, jelölések 15

1. Interpoláció. Egyértelműség (K2.4.10) Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

2017/2018. Matematika 9.K

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

2018/2019. Matematika 10.K

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9

= 1, azaz kijött, hogy 1 > 1, azaz ellentmondásra jutottunk. Így nem lehet, hogy nem igaz

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

Polinomok (előadásvázlat, október 21.) Maróti Miklós

Függvények Megoldások

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22

Paraméteres és összetett egyenlôtlenségek

Megyei matematikaverseny évfolyam 2. forduló

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2014 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 7.

1. Polinomok számelmélete

Ipari matematika 2. gyakorlófeladatok

Nagy Gábor compalg.inf.elte.hu/ nagy

2017/2018. Matematika 9.K

Klasszikus algebra előadás. Waldhauser Tamás március 24.

TANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

Kalkulus. Komplex számok

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

Átírás:

Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.

A feladat

A feladat Kalmár László Matematikaverseny, 8. osztály, országos döntő, 2001, 1. versenynap, 4. feladat

A feladat Kalmár László Matematikaverseny, 8. osztály, országos döntő, 2001, 1. versenynap, 4. feladat Az a, b, c adott, különböző számok. Igazoljuk minél egyszerűbben, hogy a következő egyenlőség minden x-re igaz:

A feladat Kalmár László Matematikaverseny, 8. osztály, országos döntő, 2001, 1. versenynap, 4. feladat Az a, b, c adott, különböző számok. Igazoljuk minél egyszerűbben, hogy a következő egyenlőség minden x-re igaz: 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2.

A feladat Kalmár László Matematikaverseny, 8. osztály, országos döntő, 2001, 1. versenynap, 4. feladat Az a, b, c adott, különböző számok. Igazoljuk minél egyszerűbben, hogy a következő egyenlőség minden x-re igaz: 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2.

Hogyan fogjunk neki? Három megközelítési irány:

Hogyan fogjunk neki? Három megközelítési irány: Általános iskolás Általános iskolás (csak(!) általános iskolás anyagot használó) megoldás keresése. Minél egyszerűbb(!?) ilyen keresése.

Hogyan fogjunk neki? Három megközelítési irány: Általános iskolás Általános iskolás (csak(!) általános iskolás anyagot használó) megoldás keresése. Minél egyszerűbb(!?) ilyen keresése. Középiskolás Közép/emelt szintű érettségi anyagát használó módszer keresése. Minél egyszerűbb(!?) ilyen keresése.

Hogyan fogjunk neki? Három megközelítési irány: Általános iskolás Általános iskolás (csak(!) általános iskolás anyagot használó) megoldás keresése. Minél egyszerűbb(!?) ilyen keresése. Középiskolás Közép/emelt szintű érettségi anyagát használó módszer keresése. Minél egyszerűbb(!?) ilyen keresése. "Lényeget" kereső A feladat "lényegének" megértése a cél. Hogy lehet egy ilyen feladatot kitalálni?

Az általános iskolás: mit tud, ami hasznos lehet? Mit tanul egy általános iskolás?

Az általános iskolás: mit tud, ami hasznos lehet? Mit tanul egy általános iskolás? MOZAIK: Sokszínű matematika - 8. TARTALOMJEGYZÉK Algebra

Az általános iskolás: mit tud, ami hasznos lehet? Mit tanul egy általános iskolás? MOZAIK: Sokszínű matematika - 8. TARTALOMJEGYZÉK Algebra 1. Algebrai kifejezések (emlékeztető) 2. Hogyan oldunk meg egyenleteket, egyenlőtlenségeket? 3. Többtagú algebrai kifejezések szorzása 4. Összeg, különbség négyzete (kiegészítő anyag) 5. Összeg és különbség szorzata (kiegészítő anyag) 6. Kiemelés, szorzattá alakítás 7. Algebrai törtek (kiegészítő anyag) 8. Egyenletek megoldása szorzattá alakítással 9. Vegyes feladatok

Az általános iskolás: első ötlet A feladat még egyszer Az a, b, c adott, különböző számok. Igazoljuk minél egyszerűbben, hogy a következő egyenlőség minden x-re igaz: 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2.

Az általános iskolás: első ötlet A feladat még egyszer Az a, b, c adott, különböző számok. Igazoljuk minél egyszerűbben, hogy a következő egyenlőség minden x-re igaz: 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2. Első ötlet: Szorozzunk be (a b)(a c)(b c)-vel!

Az általános iskolás: első ötlet A feladat még egyszer Az a, b, c adott, különböző számok. Igazoljuk minél egyszerűbben, hogy a következő egyenlőség minden x-re igaz: 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2. Első ötlet: Szorozzunk be (a b)(a c)(b c)-vel! a 2 (x b)(x c)(b c)+b 2 (x a)(x c)(c a)+c 2 (x a)(x b)(a b) = = x 2 (a b)(a c)(b c).

Az általános iskolás: első ötlet A feladat még egyszer Az a, b, c adott, különböző számok. Igazoljuk minél egyszerűbben, hogy a következő egyenlőség minden x-re igaz: 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2. Első ötlet: Szorozzunk be (a b)(a c)(b c)-vel! a 2 (x b)(x c)(b c)+b 2 (x a)(x c)(c a)+c 2 (x a)(x b)(a b) = Bontsuk fel a zárójeleket! = x 2 (a b)(a c)(b c).

Vigyázat! Könnyen így járhatunk:

Az általános iskolás: első ötlet a 2 (x b)(x c)(b c)+b 2 (x a)(x c)(c a)+c 2 (x a)(x b)(a b) = = x 2 (a b)(a c)(b c).

Az általános iskolás: első ötlet a 2 (x b)(x c)(b c)+b 2 (x a)(x c)(c a)+c 2 (x a)(x b)(a b) = = x 2 (a b)(a c)(b c). A felbontás után a bal oldalon 24 ötödfokú tag lesz (pl. a 2 x 2 b), a jobb oldalon "csak" 8.

Az általános iskolás: első ötlet a 2 (x b)(x c)(b c)+b 2 (x a)(x c)(c a)+c 2 (x a)(x b)(a b) = = x 2 (a b)(a c)(b c). A felbontás után a bal oldalon 24 ötödfokú tag lesz (pl. a 2 x 2 b), a jobb oldalon "csak" 8. Ez nagyon fáradságos munka, egyáltalán biztosak lehetünk abban, hogy ha végigcsináljuk, sikerrel járunk?

Az általános iskolás: első ötlet a 2 (x b)(x c)(b c)+b 2 (x a)(x c)(c a)+c 2 (x a)(x b)(a b) = = x 2 (a b)(a c)(b c). A felbontás után a bal oldalon 24 ötödfokú tag lesz (pl. a 2 x 2 b), a jobb oldalon "csak" 8. Ez nagyon fáradságos munka, egyáltalán biztosak lehetünk abban, hogy ha végigcsináljuk, sikerrel járunk? (Azaz összevonások után azonosságot kapunk?)

Az általános iskolás: első ötlet a 2 (x b)(x c)(b c)+b 2 (x a)(x c)(c a)+c 2 (x a)(x b)(a b) = = x 2 (a b)(a c)(b c). A felbontás után a bal oldalon 24 ötödfokú tag lesz (pl. a 2 x 2 b), a jobb oldalon "csak" 8. Ez nagyon fáradságos munka, egyáltalán biztosak lehetünk abban, hogy ha végigcsináljuk, sikerrel járunk? (Azaz összevonások után azonosságot kapunk?) A válasz: IGEN. Egyetemi anyag

Az általános iskolás: egyszerűbb megoldás?

Az általános iskolás: egyszerűbb megoldás? Ügyes kiemelésekkel (melyek megtalálása kellő gyakorlatot igényel), szelídíthető a számolás, de egy ilyen megoldást megtalálni lehet, hogy több idő, mint felbontani a zárójeleket.

Az általános iskolás: egyszerűbb megoldás? Ügyes kiemelésekkel (melyek megtalálása kellő gyakorlatot igényel), szelídíthető a számolás, de egy ilyen megoldást megtalálni lehet, hogy több idő, mint felbontani a zárójeleket.

A középiskolás A feladatunk 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2.

A középiskolás A feladatunk 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2. Megoldás. Első megfigyelés: x valamilyen szempontból megkülönböztetett szerepet játszik.

A középiskolás A feladatunk 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2. Megoldás. Első megfigyelés: x valamilyen szempontból megkülönböztetett szerepet játszik. Rendezzünk mindent tagot a bal oldalra, rögzítsük a, b, c-t és tekintsünk úgy a bal oldalra, mint x függvényére. 2 (x b)(x c) (x a)(x c) (x a)(x b) a +b2 +c2 (a b)(a c) (b a)(b c) (c a)(c b) x 2 = 0. f (x) = 0.

A középiskolás Megoldás. 2 (x b)(x c) (x a)(x c) (x a)(x b) a +b2 +c2 (a b)(a c) (b a)(b c) (c a)(c b) x 2 = 0. A bal oldal (rögzített a, b, c mellett) legfeljebb(!) másodfokú polinomfüggvény,

A középiskolás Megoldás. 2 (x b)(x c) (x a)(x c) (x a)(x b) a +b2 +c2 (a b)(a c) (b a)(b c) (c a)(c b) x 2 = 0. A bal oldal (rögzített a, b, c mellett) legfeljebb(!) másodfokú polinomfüggvény, melynek jól láthatóan gyökei a, b, c.

A középiskolás Megoldás. 2 (x b)(x c) (x a)(x c) (x a)(x b) a +b2 +c2 (a b)(a c) (b a)(b c) (c a)(c b) x 2 = 0. A bal oldal (rögzített a, b, c mellett) legfeljebb(!) másodfokú polinomfüggvény, melynek jól láthatóan gyökei a, b, c. Azt tudjuk, hogy egy másodfokú függvénynek 0, 1 vagy 2 darab gyöke lehet,

A középiskolás Megoldás. 2 (x b)(x c) (x a)(x c) (x a)(x b) a +b2 +c2 (a b)(a c) (b a)(b c) (c a)(c b) x 2 = 0. A bal oldal (rögzített a, b, c mellett) legfeljebb(!) másodfokú polinomfüggvény, melynek jól láthatóan gyökei a, b, c. Azt tudjuk, hogy egy másodfokú függvénynek 0, 1 vagy 2 darab gyöke lehet, ennek pedig 3 (különböző) gyöke van, tehát a bal oldalon valóban az azonosan 0 polinomnak kell állnia. Készen vagyunk.

Egy gyakorlati probléma Adottak pontok a koordináta-rendszerben (pl. mérési eredmények), illesszünk rájuk "szép" függvényeket.

Egy gyakorlati probléma Adottak pontok a koordináta-rendszerben (pl. mérési eredmények), illesszünk rájuk "szép" függvényeket.

Egy gyakorlati probléma Adottak pontok a koordináta-rendszerben (pl. mérési eredmények), illesszünk rájuk "szép" függvényeket. Mi számít szép függvénynek?

Egy gyakorlati probléma Adottak pontok a koordináta-rendszerben (pl. mérési eredmények), illesszünk rájuk "szép" függvényeket. Mi számít szép függvénynek? (Sok szempontból) legszebb függvények: polinomfüggvények.

Egy gyakorlati probléma Probléma. Adjunk meg egy olyan legfeljebb n-edfokú p(x) polinomot, melyre különböző x 0, x 1,..., x n helyeken p(x 0 ) = c 0, p(x 1 ) = c 1,..., p(x n ) = c n. (1)

Egy gyakorlati probléma Probléma. Adjunk meg egy olyan legfeljebb n-edfokú p(x) polinomot, melyre különböző x 0, x 1,..., x n helyeken p(x 0 ) = c 0, p(x 1 ) = c 1,..., p(x n ) = c n. (1) Megoldás. Észrevétel: elegendő lenne olyan polinomokat találnunk, melyek az adott helyek egyikén az adott értékeket veszik fel, a többi helyen pedig 0-t, hiszen ezek összege megfelelő lenne.

Egy gyakorlati probléma Probléma. Adjunk meg egy olyan legfeljebb n-edfokú p(x) polinomot, melyre különböző x 0, x 1,..., x n helyeken p(x 0 ) = c 0, p(x 1 ) = c 1,..., p(x n ) = c n. (1) Megoldás. Észrevétel: elegendő lenne olyan polinomokat találnunk, melyek az adott helyek egyikén az adott értékeket veszik fel, a többi helyen pedig 0-t, hiszen ezek összege megfelelő lenne. Tulajdonképpen elegendő lenne olyan polinomokat találnunk, amelyek az adott helyek egyikén nem 0 értéket vesznek fel, a többin pedig 0-t, hiszen ezeket megfelelő konstansokkal beszorozva megkapnánk az előző észrevételben óhajtottakat.

Egy gyakorlati probléma Megoldás (folytatás). (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) jól láthatóan ilyen.

Egy gyakorlati probléma Megoldás (folytatás). (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) jól láthatóan ilyen. Milyen konstanssal kell ezeket beszorozni, hogy x = x i helyen éppen c i helyettesítési értéket adjanak?

Egy gyakorlati probléma Megoldás (folytatás). (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) jól láthatóan ilyen. Milyen konstanssal kell ezeket beszorozni, hogy x = x i helyen éppen c i helyettesítési értéket adjanak? Ez sem nehéz, legyen: p i (x) = c i (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) (x i x 0 )(x i x 1 ) (x i x i 1 )(x i x i+1 ) (x i x n ).

Egy gyakorlati probléma Megoldás (folytatás). (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) jól láthatóan ilyen. Milyen konstanssal kell ezeket beszorozni, hogy x = x i helyen éppen c i helyettesítési értéket adjanak? Ez sem nehéz, legyen: p i (x) = c i (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) (x i x 0 )(x i x 1 ) (x i x i 1 )(x i x i+1 ) (x i x n ). Ezekkel tehát már megadhatjuk a keresett polinomunkat, ugyanis: p(x) = p 0 (x) + p 1 (x) +... + p n (x).

Egy gyakorlati probléma Megoldás (folytatás). (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) jól láthatóan ilyen. Milyen konstanssal kell ezeket beszorozni, hogy x = x i helyen éppen c i helyettesítési értéket adjanak? Ez sem nehéz, legyen: p i (x) = c i (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) (x i x 0 )(x i x 1 ) (x i x i 1 )(x i x i+1 ) (x i x n ). Ezekkel tehát már megadhatjuk a keresett polinomunkat, ugyanis: p(x) = p 0 (x) + p 1 (x) +... + p n (x). Ezt a módszert Langrange-interpolációnak nevezik.

Egy gyakorlati probléma Megoldás (folytatás). (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) jól láthatóan ilyen. Milyen konstanssal kell ezeket beszorozni, hogy x = x i helyen éppen c i helyettesítési értéket adjanak? Ez sem nehéz, legyen: p i (x) = c i (x x 0 )(x x 1 ) (x x i 1 )(x x i+1 ) (x x n ) (x i x 0 )(x i x 1 ) (x i x i 1 )(x i x i+1 ) (x i x n ). Ezekkel tehát már megadhatjuk a keresett polinomunkat, ugyanis: p(x) = p 0 (x) + p 1 (x) +... + p n (x). Ezt a módszert Langrange-interpolációnak nevezik. Megjegyzés. Tetszőleges c 0, c 1,..., c n valós számokhoz és különböző x 0, x 1,..., x n helyekhez pontosan egy megfelelő polinom létezik, ezt konstruáltuk meg.

Példa Lagrange-interpolációra Írjuk fel az f (x) = x 2 függvényre három pontja alapján a Lagrange-interpolációs polinomot.

Példa Lagrange-interpolációra Írjuk fel az f (x) = x 2 függvényre három pontja alapján a Lagrange-interpolációs polinomot. Nyilván a kapott másodfokú függvény meg kell, hogy egyezzen x 2 -tel.

Példa Lagrange-interpolációra Írjuk fel az f (x) = x 2 függvényre három pontja alapján a Lagrange-interpolációs polinomot. Nyilván a kapott másodfokú függvény meg kell, hogy egyezzen x 2 -tel. Legyen a három különböző pontunk a b c. Ekkor az előbb meghatározott Lagrange-interpolációs polinom:

Példa Lagrange-interpolációra f (x) = x 2 = p 1 (x) + p 2 (x) + p 3 (x) =

Példa Lagrange-interpolációra f (x) = x 2 = p 1 (x) + p 2 (x) + p 3 (x) = 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b).

Példa Lagrange-interpolációra f (x) = x 2 = p 1 (x) + p 2 (x) + p 3 (x) = 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b). Kalmár László Matematikaverseny, 8. osztály, országos döntő, 2001, 1. versenynap, 4. feladat Az a, b, c adott, különböző számok. Igazoljuk minél egyszerűbben, hogy a következő egyenlőség minden x-re igaz: 2 (x b)(x c) (x a)(x c) (x a)(x b) a + b2 + c2 (a b)(a c) (b a)(b c) (c a)(c b) = x 2.

Egy "triviális" alkalmazás Egyenes egyenlete. Keressük az (x 1, y 1 ), (x 2, y 2 ) pontokon átmenő egyenes egyenletét.

Egy "triviális" alkalmazás Egyenes egyenlete. Keressük az (x 1, y 1 ), (x 2, y 2 ) pontokon átmenő egyenes egyenletét.

Egy "triviális" alkalmazás Egyenes egyenlete. Keressük az (x 1, y 1 ), (x 2, y 2 ) pontokon átmenő egyenes egyenletét. Megoldás. Fogalmazzuk át a problémát. Keressük azt az elsőfokú f (x) polinomot, melyre f (x 1 ) = y 1, f (x 2 ) = y 2.

Egy "triviális" alkalmazás Egyenes egyenlete. Keressük az (x 1, y 1 ), (x 2, y 2 ) pontokon átmenő egyenes egyenletét. Megoldás. Fogalmazzuk át a problémát. Keressük azt az elsőfokú f (x) polinomot, melyre f (x 1 ) = y 1, f (x 2 ) = y 2. Lagrange-interpolációval ez: y = f (x 1 ) x x 2 x 1 x 2 + f (x 2 ) x x 1 x 2 x 1 = y 1 x x 2 x 1 x 2 + y 2 x x 1 x 2 x 1, melyet átrendezve a már ismert összefüggést kapjuk.

Egy apró feladat Folytassuk! 1, 2, 4, 8,...?

Egy apró feladat Folytassuk! 1, 2, 4, 8,...? 1, 2, 4, 8, 16, 32,..., 2 n,...

Egy apró feladat Folytassuk! 1, 2, 4, 8,...? 1, 2, 4, 8, 16, 32,..., 2 n,... Ennyire azért nem apró...

Egy apró feladat Folytassuk! 1, 2, 4, 8,...? 1, 2, 4, 8, 16, 32,..., 2 n,... Ennyire azért nem apró... A megoldás: 1, 2, 4, 8, 15, 26, 42, 64,...????????

Egy apró feladat Folytassuk! 1, 2, 4, 8,...? 1, 2, 4, 8, 16, 32,..., 2 n,... Ennyire azért nem apró... A megoldás: 1, 2, 4, 8, 15, 26, 42, 64,...???????? f (0) = 1, f (1) = 2, f (2) = 4, f (3) = 8 alapján Lagrange interpoláljunk:

Egy apró feladat Folytassuk! 1, 2, 4, 8,...? 1, 2, 4, 8, 16, 32,..., 2 n,... Ennyire azért nem apró... A megoldás: 1, 2, 4, 8, 15, 26, 42, 64,...???????? f (0) = 1, f (1) = 2, f (2) = 4, f (3) = 8 alapján Lagrange interpoláljunk: (x 0)(x 1)(x 2) 8 (3 0)(3 1)(3 2) +4 (x 0)(x 1)(x 3) (2 0)(2 1)(2 3) (x 0)(x 2)(x 3) (x 1)(x 2)(x 3) +2 +1 (1 0)(1 2)(1 3) (0 1)(0 2)(2 3) =

Egy apró feladat Folytassuk! 1, 2, 4, 8,...? 1, 2, 4, 8, 16, 32,..., 2 n,... Ennyire azért nem apró... A megoldás: 1, 2, 4, 8, 15, 26, 42, 64,...???????? f (0) = 1, f (1) = 2, f (2) = 4, f (3) = 8 alapján Lagrange interpoláljunk: (x 0)(x 1)(x 2) 8 (3 0)(3 1)(3 2) +4 (x 0)(x 1)(x 3) (2 0)(2 1)(2 3) (x 0)(x 2)(x 3) (x 1)(x 2)(x 3) +2 +1 (1 0)(1 2)(1 3) (0 1)(0 2)(2 3) = = x 3 + 5x + 6 6

Egy apró feladat Folytassuk! 1, 2, 4, 8,...? 1, 2, 4, 8, 16, 32,..., 2 n,... Ennyire azért nem apró... A megoldás: 1, 2, 4, 8, 15, 26, 42, 64,...???????? f (0) = 1, f (1) = 2, f (2) = 4, f (3) = 8 alapján Lagrange interpoláljunk: (x 0)(x 1)(x 2) 8 (3 0)(3 1)(3 2) +4 (x 0)(x 1)(x 3) (2 0)(2 1)(2 3) (x 0)(x 2)(x 3) (x 1)(x 2)(x 3) +2 +1 (1 0)(1 2)(1 3) (0 1)(0 2)(2 3) = = x 3 + 5x + 6 6 Hf.: Bizonyítsuk be, hogy x db. általános helyzetű sík éppen ennyi részre osztja a teret!

Valami nagyon más (vagy mégsem?) Feladat. Adott ABC háromszög és síkjában egy P pont. Igazoljuk, hogy PA BC + PB CA + PC AB 3.

Valami nagyon más (vagy mégsem?) Feladat. Adott ABC háromszög és síkjában egy P pont. Igazoljuk, hogy PA BC + PB CA + PC AB 3. Megoldás. A komplex (Gauss-féle) számsíkon fogunk dolgozni. Legyenek az A, B, C, P pontok helyvektorainak megfelelő komplex számok rendre a, b, c, x.

Valami nagyon más (vagy mégsem?) Feladat. Adott ABC háromszög és síkjában egy P pont. Igazoljuk, hogy PA BC + PB CA + PC AB 3. Megoldás. A komplex (Gauss-féle) számsíkon fogunk dolgozni. Legyenek az A, B, C, P pontok helyvektorainak megfelelő komplex számok rendre a, b, c, x. A konstans 1 polinomra, mint legfeljebb másodfokú polinomra felírva a Lagrange-interpolációs polinomot az a, b, c pontokban: (x a)(x b) (x b)(x c) (x a)(x c) + + (c a)(c b) (a b)(a c) (b a)(b c) = 1.

Valami nagyon más (vagy mégsem?) Megoldás. Felhasználva a háromszög-egyenlőtlenséget és a komplex számok abszolútértékének megfelelő tulajdonságait, az előzőből x a x b x b x c x a x c + + c a c b a b a c b a b c 1,

Valami nagyon más (vagy mégsem?) Megoldás. Felhasználva a háromszög-egyenlőtlenséget és a komplex számok abszolútértékének megfelelő tulajdonságait, az előzőből adódik, mely éppen x a x b x b x c x a x c + + c a c b a b a c b a b c 1, PA PB CA CB + PB PC AB AC + PA PC BA BC 1.

Valami nagyon más (vagy mégsem?) Megoldás. Felhasználva a háromszög-egyenlőtlenséget és a komplex számok abszolútértékének megfelelő tulajdonságait, az előzőből adódik, mely éppen r = PA CB, s = PB CA, t = PC AB alakú. x a x b x b x c x a x c + + c a c b a b a c b a b c 1, PA PB CA CB + PB PC AB AC + PA PC BA BC 1. jelöléssel ez rs + st + rt 1

Valami nagyon más (vagy mégsem?) Megoldás. Felhasználva a háromszög-egyenlőtlenséget és a komplex számok abszolútértékének megfelelő tulajdonságait, az előzőből adódik, mely éppen r = PA CB, s = PB CA, t = PC AB x a x b x b x c x a x c + + c a c b a b a c b a b c 1, PA PB CA CB + PB PC AB AC + PA PC BA BC 1. jelöléssel ez rs + st + rt 1 alakú. Felhasználva az ismert (r + s + t) 2 3(rs + st + tr) egyenlőtlenséget, ebből éppen PA BC + PB CA + PC AB = r + s + t 3(rs + st + tr) 3.

Köszönöm a megtisztelő figyelmet! 1 1 A vetítés anyaga megtalálható lesz a honlapomon: www.stud.u-szeged.hu/kunos.adam/ Megjegyzéseket, észrevételeket, véleményeket, egyszerűbb megoldásokat szeretettel várok: kunosadam@gmail.com