Modern Fizika Labor Fizika BSC

Hasonló dokumentumok
Modern Fizika Labor. 2. Elemi töltés meghatározása

18. Granuláris anyagok

Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok

18. Granuláris anyagok

Granuláris anyagok. 1. Bevezetés

Mérés: Millikan olajcsepp-kísérlete

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv

2. Rugalmas állandók mérése

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia május 6.

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Folyadékok és gázok mechanikája

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Folyadékszcintillációs spektroszkópia jegyz könyv

Rugalmas állandók mérése

Nehézségi gyorsulás mérése megfordítható ingával

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Hangfrekvenciás mechanikai rezgések vizsgálata

Modern fizika laboratórium

Modern Fizika Labor Fizika BSC

Folyadékok és gázok mechanikája

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia március 18.

Rugalmas állandók mérése

Mit nevezünk nehézségi erőnek?

Mágneses szuszceptibilitás mérése

A nyomás. IV. fejezet Összefoglalás

Hatvani István fizikaverseny Döntő. 1. kategória

A mágneses szuszceptibilitás vizsgálata

Termoelektromos hűtőelemek vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Fázisátalakulások vizsgálata

Mágneses szuszceptibilitás mérése

Kísérlettervezés alapfogalmak

DINAMIKA ALAPJAI. Tömeg és az erő

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

1. Feladatok a dinamika tárgyköréből

A mérési eredmény megadása

Hőmérsékleti sugárzás

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Termodinamika (Hőtan)

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK

Abszolút és relatív aktivitás mérése

7. Mágneses szuszceptibilitás mérése

Légköri termodinamika

17. Diffúzió vizsgálata

Fázisátalakulások vizsgálata

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

12. előadás - Markov-láncok I.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

Modern Fizika Labor. 17. Folyadékkristályok

Hidrosztatika. Folyadékok fizikai tulajdonságai

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Mérések állítható hajlásszögű lejtőn


a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

Reológia Mérési technikák

Modern Fizika Labor Fizika BSC

Folyadékok és gázok áramlása

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Kísérlettervezés alapfogalmak

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Peltier-elemek vizsgálata

7.1. Al2O3 95%+MLG 5% ; 3h; 4000rpm; Etanol; ZrO2 G1 (1312 keverék)

Rugalmas állandók mérése

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Modern Fizika Labor Fizika BSC

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Felvételi, 2017 július -Alapképzés, fizika vizsga-

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.

= Φ B(t = t) Φ B (t = 0) t

Prímszámok statisztikai analízise

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.

Magspektroszkópiai gyakorlatok

A II. kategória Fizika OKTV mérési feladatainak megoldása

Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú. ρ = m V.

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség

Mechanika - Versenyfeladatok

HIDROSZTATIKA, HIDRODINAMIKA

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

W = F s A munka származtatott, előjeles skalármennyiség.

BIOMATEMATIKA ELŐADÁS

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Newton törvények, erők

Átírás:

Modern Fizika Labor Fizika BSC A mérés dátuma: 2010. 02.23. A mérés száma és címe: 18. Granuláris anyagok Értékelés: A beadás dátuma: 2010. 03. 09. A mérést végezte: Kozics György, Rudolf Ádám

1. A mérés elve A granuláris anyagok nagy számú makroszkopikus részecskéből álló anyagok. Ebben a mérettartományban a részecskére ható gravitációs erő, a két részecske összenyomódásakor fellépő taszítóerő és az érintkezési pontokon fellépő súrlódási erő tartozik a legjellemzőbb erőhatások közé. A részecskék helyzeti energiájához képest az egy szabadsági fokra jutó k b T termikus energia elhanyagolható, így a hőmérséklet átlagoló szerepe megszűnik. Nem alakul ki stabil egyensúlyi helyzet, így külső megzavarás nélkül a rendszer bármely metastabil állapota végtelen sok ideig fennmarad. A részecskék homogén eloszlása helyett tehát rendeződés, szegregáció és komplex struktúrák kialakulása jelenik meg. A granuláris anyagok leírása még nyugalmi helyzetben sem egyszerű. A fő nehézség ott jelenik meg, hogy a részecskék csak az érintkezési pontokban hatnak kölcsön, amik viszont egy kvázi-véletlenszerű hálózatot alkotnak. A kísérletek tanulsága szerint a legnagyobb feszültségek láncszerű struktúrák mentén lépnek fel, ezeket erő-láncoknak nevezzük. Mivel az erő-láncok lefutását az egyes szemcsék konkrét helyzete határozza meg, így látszólag azonos paraméterekkel rendelkező rendszereknek is lehet különböző a viselkedése. Régóta ismert tény, hogy a szemcsés anyagokban fellépő nyomás nem írható le a hidrosztatikából ismert P(z) = ρgz képlettel. Az oszlop magasságát növelve az oszlop alján mérhető nyomás nem nő a végtelenségig, hanem egy karakterisztikus magasság fölött telítésbe megy, így végtelen magas oszlop esetén is véges nyomást mérhetünk. Ez annak köszönhető, hogy a boltívszerűen létrejövő erő-láncok az edény

falának továbbítják a szemcsék súlyából adódó erőt, így egy bizonyos magasság felett az egész anyagot az edény fala tartja meg. A jelenség leírására 1895-ben Jansen javasolt egy egyszerű modellt, aminek a feltevései nem mind megalapozottak, azonban eredményei jól egyeznek a kísérletekkel. 1.1. Janssen modellje Tekintsünk egy R sugarú függőleges henger alakú edényt megtöltve granuláris anyaggal, melynek átlagos sűrűsége ρ. Tegyük fel, hogy P(x,y,z) = P(z), tehát a nyomás csak a magasságtól függ. Az anyag minden dz vastagságú, S = R 2 π felületű vízszintes szeletének egyensúlyban kell lennie. Egy ilyen szeletre hat a gravitációs erő, a felette és alatta mérhető nyomás különbségéből származó erő és a falaknál fellépő súrlódási erő: ρgsdz dp(z) / dz * Sdz df frict = 0. Feltesszük, hogy a vízszintes irányban mérhető nyomás arányos a függőleges nyomással: P hor (z) = KP(z), ahol K egy konstans, az ún. Janssen-együttható. A súrlódási erőről pedig feltesszük, hogy felfelé mutat, és a maximális értékét veszi fel, tehát df frict = μkp(z) * 2πRdz, ahol μ a fal és az anyag közötti súrlódási együttható. Ezt behelyettesítve az egyenletbe majd azt megoldva a következőt kapjuk: P(z) = λρg(1 e -z/λ ), ahol λ = R/(2μK), vagyis z növekedésével a nyomás exponenciálisan telítésbe megy át, a telítődés karakterisztikus távolsága pedig λ. Ebből következik a mért (látszólagos) és a valódi tömegek közötti összefüggés: m l (m) = m [1 e -m/m ].

Az első feladat ennek az egyenletnek a levezetése volt. Látszik, hogy P = λρg, és mivel m l = PA/g és m = zaρ, így m = Aλρ, ami a végtelen oszlopmagassághoz tartozó látszólagos tömeg (A a lap felülete). Mivel z/λ = m/m, így behelyettesítve megkapjuk, hogy m l (m) = m [1 e -m/m ]. 2. A mérés menete A mérés során 20 db műanyag pohárba azonos mennyiségű granuláris anyagot mértünk ki. A tömeget elektromos mérleggel mértünk, melynek pontossága 2g. A poharakba kimért anyagot egyesével egy d = 4,7 cm átmérőjű hengerbe töltöttük, és minden betöltés után feljegyeztük a mérleg által mutatott tömeget. A mérleget a dugattyú tömegével együtt táráztuk, így azzal a későbbiek folyamán már nem kellett foglalkozni. A mérés során kétféle anyaggal, fajtánként 3-3 független mérést végeztünk. Ahhoz hogy tudjuk, mekkora súlyú anyag van egy pohárban, végeztünk 1-1 méréssorozatot úgy, hogy egy pohárba kanalanként adagoltuk az anyagokat és megmértük a tömegét pohárnak, majd az adatokra egyenest illesztve megkaptuk egy kanálnyi anyag tömegét. Mivel minden pohárba 3 kanálnyit raktunk, így viszonylag pontosan meg tudtuk kapni egy pohárnyi anyag tömegét. A mérési adatok az alábbi táblázatban láthatóak: Kanalak száma A anyag mért tömege (g) B anyag mért tömege (g) 1 6 6 2 18 18 3 26 26 4 36 34

5 48 42 6 56 50 7 66 58 8 78 68 9 88 78 10 96 86 Az adatokra egyenest illesztettem, majd ebből kiszámoltam egy pohárnyi anyag tömegét: m A = 29,7g m B = 25,9g A következő táblázatban tüntettem fel a hat mérés eredményét. n a poharak számát, m a valódi tömeget, m l pedig a látszólatos tömeget jelöli. A anyag B anyag n m(g) m l (g)(1.) m l (g) (2.) m l (g) (3.) m(g) m l (g) (1.) m l (g) (2.) m l (g) (3.) 1 29,7 30 28 26 25,9 30 24 28 2 59,4 60 56 50 51,8 54 48 52 3 89,1 76 72 62 77,7 62 56 62 4 118,8 92 88 74 103,6 70 66 70 5 148,5 102 102 88 129,5 78 74 78

6 178,2 118 114 104 155,4 86 82 84 7 207,9 126 126 114 181,3 94 90 92 8 237,6 138 140 126 207,2 102 98 102 9 267,3 148 148 136 233,1 108 102 108 10 297 158 156 144 259 112 110 112 11 326,7 164 166 152 284,9 118 116 118 12 356,4 172 172 160 310,8 122 120 124 13 386,1 180 182 168 336,7 128 124 128 14 415,8 186 188 174 362,6 128 130 128 15 445,5 190 194 180 388,5 130 134 16 475,2 198 200 184 414,4 134 134 17 504,9 206 204 190 440,3 138 140 18 534,6 208 210 194 466,2 140 140 19 564,3 216 214 198 492,1 140 144 20 594 220 208 204 518 146 144 A mérési pontok és a rájuk illesztett görbék az alábbi 6 ábrán találhatóak:

Az illesztett görbékhez tartozó m paraméterek: A anyag B anyag 1. mérés 224,1 ± 3,2 g 133,3 ± 2,9 g 2. mérés 224,6 ± 3,0 g 137,9 ± 2,6 g 3. mérés 199,2 ± 4,5 g 140,9 ± 2,2 g Látszik, hogy az illeszkedés egyik mérésnél sem pontos, ez attól lehet, hogy az elméleti illesztett függvény nem illeszkedik pontosan a valósághoz. Továbbá az is látszik, hogy egy anyag két különböző mérésénél is kaphatunk jelentősen eltérő eredményeket. A Jenssen-együttható kiszámításához szükség van az anyagok sűrűségére is. Így szükség van a hengerben lévő anyag tömegére illetve a henger térfogatára. A szükséges adatok az alábbi táblázatban szerepelnek: A/1 mérés A/2 mérés A/3 mérés B/2 mérés B/3 mérés magasság 58 ± 0,5 cm 58,5 ± 0,5 cm 58 ± 0,5 cm 54± 0,5 cm 55,5 ± 0,5 cm tömeg 594 g 594 g 594 g 518 g 518 g A henger átmérője: d =4,7 cm ρ = m/v = m/[(d/2) 2 πh] alapján kiszámolható a sűrűség: ρ A = 588,6 ± 5,1 kg/m 3 ρ B = 545 ± 5,0 kg/m 3 Itt a tömegmérés hibáját elhanyagoltam a hosszúságméréséhez képest. Továbbá szükség volt még a súrlódási együttható meghatározásához is, ehhez egy előre elkészített téglatestet használtunk, aminek 2 oldalára fel volt ragasztva a két

-féle anyag, és azt egy üveglapra helyezve megmértük, hogy mekkora szögnél kezd el csúszni a téglatest. Ez alapján μ A = 0,22 és μ B = 0,31. A Jenssen-együttható megadásához a λ = R/(2μK) illetve a λ = m /(ρa) képletre van szükség. Ezekből K = RρA/(2μm ) = R 3 ρπ/(2μm ). A Jenssen-együttható értéke a különböző mérésekben az alábbi táblázatban látható: A anyag B anyag 1. mérés 0,243 ± 0,009 0,269 ± 0,009 2. mérés 0,243 ± 0,009 0,260 ± 0,009 3. mérés 0,274 ± 0,009 0,254 ± 0,009 A hibákat a sűrűségmérés illetve az illesztés hibájából számoltam. A három értéket átlagolva megkapom a két anyag Jenssen-együtthatóját: K A = 0,253 ± 0,009 K B = 0,261 ± 0,009

2. Mikroszkópikus erőeloszlás vizsgálata A mérés ezen részében az erőláncokkal foglalkozunk. 2.1. Elméleti háttér, a q-modell A modell alapfeltevése az, hogy az erőláncok kialakításában egy kiszemelt szemcsere felülről ható erők nem egyenletesen oszlanak meg az őt tartó szemcsék között. Tekintsünk egy szabályos rácsot, melynek minden rács pontjaiban egy egységnyi tömegű részecske található. Minden részecske az alatta levő rétegben megtalálható N részecskén nyugszik. Egy adott szemcsére ható összes súlyerő ennek az N részecskének továbbítódik véletlenszerű megoszlásban: az i-edik részecske által a j-edik részecskének továbbított erőt jelölje a qij véletlen változó. Hasonlóan tart a részecske N felette levő másikat, az i-edik által megtartott súlynak w(m, i), a következő sztochasztikus egyenletet kell kielégítenie: w M, j =1 q ij M 1 w M 1, i A modell keretein belül figyelmen kívül hagyjuk a qij térbeli korrelációit és feltesszük, hogy mindenütt azonos eloszlást követnek. Ez a feltevés az átlagtér közelítésnek felel meg. Azt mondhatjuk tehát, hogy a qij változóknak eleget kell tenniük a: N q ij =1 j=1 kényszerfeltételnek. A legegyszerűbb választás az, amikor a minden qij készlet valószínűsége ugyanaz. Megmutatható, hogy ekkor az egy szemcse által megtartott redukált súly, v = w/m eloszlásfüggvénye M határesetben, egy adott eloszláshoz

tart: N N P egyenletes v = N 1! nn 1 e Nv Az is megmutatható, hogy ha qij -k eloszlására más feltevést teszünk, átlagtérközelítésben, akkor is hasonló eredményre jutunk, nagy v-k eseten: P v v N 1 e av, ahol a konstans. Azt kaptuk tehát, hogy a szemcséken merhető erők eloszlása exponenciálisan cseng le. Ez jóval lassabb, mint a Gauss-tipúsú e x2, vagyis ez azt jelenti, hogy az átlagos erőnél lényegesen nagyobb erők súlya meglepően nagy. Ezt az eredményt ellenőriztük a mérés során. 2.2. A mérés menete és kiértékelése Egy henger alakú tartó aljára egy kartonlapon fekvő indigót erősítettünk. A tartóba szabályos üveggolyókból álló szemcsés anyagot töltöttünk, amelyre egy dugattyút helyeztünk és egyikünk ráállt. Az erő a szemcsés anyagban az erőláncokon keresztül továbbítódik a falnak és az edény aljának. Az edény alján levő szemcsék nekinyomódnak az indigónak és a rajuk ható erővel aranyos foltot hagynak a papíron. Ezáltal a papíron levő foltok méreteloszlásából következtetni tudunk az erőeloszlásra. A kísérlet elvégzése során ügyelnünk kell, hogy a golyók beöntéskor ne hagyjanak nyomot a papíron. Összesen öt lenyomatot készítettünk. Ezeket a megadott képfeldolgozó laborprogramok, illetve a GIMP segítségével értékeltük ki. A dobozméret 20, a háttér 220 volt. Az egyesített eloszlás a következő oldalon látható:

Láthatóan exponenciális függvényt kaptunk, vagyis a méreteloszlásra jó becslést adott a q modell.