Villamosságtan
A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q 4π
Az elektosztatika I. alaptövénye : Ψ = E d A E A cos( ) E d A = E d A Ed A Gauss tétele : E d A = zát felülete Q
A ponttöltés tee (levezetés) d A E = E da cos( E d A) ( ) ( ) ( ) Q Téeősség E( ) Zát felülete cos = 1 E da= E da = E da = ( ) ( ) ( ) Gömb sugaa: d A E ( ) = 4 π E = = ( ) ΣQ Q E 1 = 4π ( ) Q
Az elektosztatika II alaptövénye : W = F d = Q E d = Q E d l l l E d = Zát göbe vonal menti integáltja Konzevatív eőté (övénymentes) : A munkavégzés csak a kezdő és a végponttól függ. E = gad ( ) ( ) ( ) = E d = Elektomos potenciál W Q Az egységnyi munka : -ból -be viszünk egy ponttöltést. [ ] 1J = 1V = 1 C
Ponttöltés potenciálja: Q 1 d ( ) = 4π ( ) Q d Q 1 1 = = 4π 4π = ( ) Q 1 = 4π Ekvipotenciális felület : a felület minden pontja közt, a potenciálkülönbség nulla. Feszültség = Potenciálkülönbség
Elektomos dipólus : P α -Q +Q l Ql = p 4π P= Q l cosα ( ) Dipólusmomentum vekto Töltéssűűség : σ Q Q = = A A C m [ σ ] = Kapacitás : Kondenzáto Q = C + + + _
Gömbkondenzáto kapacitása : C = 4π 1 1 R R 1 Síkkondenzáto kapacitása : 1C 1F 1V = C = d A Kondenzátook páhuzamos kapcsolása : faad C 1 C = C + C e 1 C Kondenzátook soos kapcsolása : 1 1 1 1 = + + C e C C C 1 3 C 1 C C 3
Töltéseloszlás kondenzátookon : +Q -Q +Q -Q +Q -Q Végtelen síklap és ezen a lapon a töltéseloszlás homogén + + + l + + + d A E( ) E ( ) + d E A ( ) + + b + b Téeősség Ψ = E da= E da = E da = ( ) ( ) ΣQ = E( ) l b =
E ( ) da cos9 = Tehát, az alsó, felső és oldalsó lapoka a fluxus nulla. Ψ = E l b ( ) E ( ) = = l b σ σ l b σ Ψ = E l b = Q ( ) lap
Síkkondenzáto kapacitása : σ σ +σ _ -σ + d _ + _ + _ + σ _ + _ + _ + _ A téeő, itt + _ mindenhol nulla σ A téeő, itt mindenhol: = σ σ σ
+Q -Q d Q E = A A σ = Q A = E d = A d Q C = C = Q d A Q = = C Q A kondenzáto enegiája : 1 Q 1 1 W = = Q = C C Enegiasűűség : egységnyi téfogata jutó enegia C = Q W ω = = V 1 E
Elektosztatika anyagi közegben : C = C Dielektomos állandó (elatív pemittivitás) Dielektomos polaizáció : - + + - + - + - + - D = E + P d P P = dv + - + - E Eltolási vekto Polaizációs vekto
A Coulomb tövény módosulása : F 1 Q = 1 1 4π Q Sík kondenzáto módosult kapacitása : C sík = A d Az elektosztatika alaptövényei dielektikumokban : D d A= ΣQ D = E A l Ed= ω 1 1 E D = E =
Magnetosztatika : a nyugvó elektomos töltés nem lép kölcsönhatásba a nyugvó mágneses töltéssel. mágneses póluseősség : É, D mágneses Coulomb tövény : F 1 m m = 1 1 4πµ mágneses téeőség : F H = m ahol, µ 7 { µ } = π 4 1 [ m] 1 webe a vákuum mágneses pemeabilitása = = Wb
A magnetosztatika alaptövényei: I. A H d A = (csak mágneses dipólusok vannak monopólus nincs) II. l H d = A sztatikus mágneses té, foásmentes, konzevatív eőté. Magnetosztatika anyagi közegben : F 1 m1 m = πµ µ 4 ahol, µ elatív mágneses pemeabilitás
mágneses indukció vekto : B = µ µ H [ B ] = 1tesla = 1T Mágneses polaizáció típusai : Diamágneses anyagok: µ < 1 (pl.: éz, ólom, víz) Paamágneses anyagok: µ > 1 (pl.:alumínium, platina, oxigén) Feomágneses anyagok: µ > > 1 (pl.: vas, kobalt) Cuie pont: az a hőméséklet, ahol a feomágneses anyagok elvesztik a mágneses képességüket.
Stacionáius ( egyen )-áamok : I dq dt = [ ] 1ampe 1A C A I = = = I J n da j d A = = Ohm tövénye : A s áamsűűsség : A m [ j] = = R I l R = ρ A [ R ] = 1ohm = 1Ω fajlagos ellenállás (anyaga jellemző)
Elektomos vezető képesség : G 1 R = [ G] = 1siemens = 1 S A hőméséklet hatása az ellenállása : ( α ) R R t = 1+ hőméséklet koefficiens Joule tövény : a munka : W = Q a teljesítmény : [ P] = 1watt = 1 W P = = I t W P = = R I R
Elektomos hálózatok : Kichhoff tövényei : I. (csomóponti töv.) : I i = II. (huok töv.) : A gejesztési tövény (Ampee-féle) : H d l = I n + I R = n bi i i i= 1 i= 1 A zát göbén átfolyó áamok összege vonal menti integáltja egyenes, végtelen hosszú vezető mágneses tee: (Biot-Savt-féle tövény Stacione áam mágneses tee) I H = πr
Végtelen hosszú egyenes vezető mágneses tee ( levezetés ) : I H d = I H( ) H ( ) H da H( ) H d = I H π = H = I π I B H d cos( H, d) = µ µ B= µ H = µ µ H I π
Szolenoid mágneses tee : A I l szolenoid mágneses tee: ( hosszú egyenes tekecs ) H ni = n = tekecs menetszáma l l = a tekecs hossza
Mágneses té hatása az áama (Loentz-eő) : F = I l B ( ) F = Q E+ Q v B ( ) dóta töltése
Faaday-féle indukciótövény : Φ= B da A i dφ = dt Lenz-tövény (Indukált áam iánya) Váltakozó áam : t
ω A B α α = ω t B cosα = B cosωt Φ = A B cosωt dφ i = = A B ω sinωt = max sinωt dt
Az effektív éték: = sin ωt ( t) ω = π T I = = R sin t ω R I = I sin ω t T t P = I = = R I R ( t ) eff t t+dt T t ( ) t dq = dt R
T ( t ) eff Q = dt = T R R T 1 eff sin T = ω t dt A sinus feszültség effektív étéke (levezetés) : eff T 1 T = ( t) dt α = α α = α α = α cos cos sin 1 sin sin 1 sin T T sin ω 1 cos ω t t dt = dt = dt dt t T T T T 1 cos ωt 1 sin ωt + = 4ω T
1 T 1 = eff T = eff = Teljesítmény illesztés : Rb R I = R + R k = I R = R R + Rb b
I R k R P k R b R
Pk = K I = R R + Rb R R + R R b b R b ( R + R ) 4 R b b b ( ) 4RR R + R b R b R + R 4RR = R + RR + R 4RR = ( ) = R RR + R b b b b b b b ( R R ) tehát, ha R = Rb-vel akko a P maximális b étékét éi el.
A tanszfomáto : = sin ω t = sin ω t ( t ) max ω = π T n A n1 I( t ) l
B = n1i µ l Φ = B A = µ µ n I 1 l ( t ) A d Φ n A di µ µ dt l dt 1 = = n di = L dt 1 ( t) L 1 Kölcsönös induktivitási együttható dφ 1 = n1 dt 1 = µ µ l dt L n A di Öngejesztési feszültség
1 di = L dt L önindukciós együttható L = 1 heny = 1H n n A di µ µ 1 n = l dt = 1 n1 A di n1 µ µ l dt n n = 1 1
Maxwell egyenletek : I. II. III. IV. a, b, D d A = Q dφ E d = dt B d A = dψ B d = µ I + µ dt B = µ H = µ µ H D = E = E Q E da= E H da= dψ H d = I + dt Izotóp endszee
Izotóp: az anyag minden iányban egyfomán viselkedik µ = 4π 1 7 = 8,854 1 = 1 4π k Vs Am 1 As Vm { k} = 9 1 9
Az eltolási áam ( levezetése ) : B H d = I B d = Iµ µ = µ I Gauss tételéből I = dq dt I ' dq = = A dt dq A de AdE = = dt d Ψ dt Eltolási áam B d = I + d dt µ µ Ψ
Az elektomágneses hullámok tejedési sebessége : ds E B l K da d Φ B ds l E l = = dt dt d Ψ E ds l B l = µ dt v E = B v M.. µ E v= B M.4.
M.. M.4. E = B v= µ E v µ 1 = v 1 v = 3 1 4 1 8,854 1 7 1 π az elektomágneses hullámok tejedési sebessége vákuumban 8 m s A töésmutató levezetése : c c 1 1 = = µ µ µ 1 = c µ vák C 1 = C vák µ 1 n =
Poynting-vekto ω ED H B 1 1 de dv = + = E + B = µ 1 S = E H = E B µ ( ) Poynting-vekto B E S
Kvázistacionáius hálózatok : C R L Q + i = I R + C di L = I R + dt Q C di Q L + R I + = dt C I = dq dt
d Q dq Q dt dt C L + R + = d x dx m + c + D x = F dt dt i i R Q Q + i Q L + LC = = i i i Q + β Q + ω Q = β = R L ω = 1 LC Q = Ae sin ωt + α βt ( ) ( t) ha, β < ω ω = ω β
Csillapított ezgőmozgás : R = β = ω = 1 LC π 1 = T LC Váltakozó áamú hálózatok : ^ R L C = cosωt + j sin ωt = e ( ) t T = Rezgőkö saját fekvenciája π LC Thomson képlet di L + RI + I dt = dt C jωt 1 t i ( Komplex geneáto feszültség ) ^ ^ ^ ^ 1 t L I + R I + I dt = C ( j = i,imagináius egység) ( t) sinωt cosωt
megoldás : ^ I ^ j t I e ω j t I = jω I e ω = ω i ^ ^ ^ ^ ^ jωt jωt jωt Lj I e + R I e + I e = ^ 1 I jωt + R + = jωt ^ I ^ ^ ^ ^ 1 jω = = 1 ^ jωt + R + Z komplex impedancia jωt, t ^ 1 jωt I dt = I e = jω ^ ^ I jω Impedancia ( váltakozó áamú ellenállás) ^ 1 = = + ω Z Z R L Cω
Az RLC kö legkisebb ellenállása : X X ^ I L C ^ Z ( t ) = = Lω 1 Cω j = Z e ϕ ^ Induktív eaktancia és Kapacitív eaktancia 1 Lω X L X C tgϕ = = Cω R R jωt e = = = ^ j Z e Z Z ϕ e ( ϕ ) jωt ha, ( ) = sin t ωt ^ I j I t Z ( ) = m ( ) = sin t t ( ω ϕ )
Rezonancia : RLC kö ellenállása minimális ( ) Z = R + X X = R min L C I max 1 1 = Lω ω = Thomson képlet Cω LC RLC kö : R L C X ^ ^ R L = R X = Lω j ^ 1 1 X C = = j C ω j C ω ^ ^ ^ ^ 1 ω Z = X R + X L + X C = R + L j j C ω
Páhuzamos RLC köök eedő impedanciája : R1 L1 C1 R L C ^ Z ^ Z 1 1 1 1 = + ^ j Ze R + jl ω R + jl ω 1 1 1 = + ^ ^ ^ Ze Z Z 1 1 C1ω C 1 j ω